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Differential effective medium theory (D-EMT) has been used by a number of investigators to derive
expressions for the shear viscosity of a colloidal suspension or an emulsion as a function of the volume
fraction of the dispersed phase. Pal and Rhodes [R. Pal, E. Rhodes, J. Rheol. 33 (7) (1989) 1021–1045] used
D-EMT to derive a viscosity–concentration expression for non-Newtonian emulsions, in which variations
among different oil–water emulsions were accommodated by fitting the value of an empirical solvation
factor by matching the volume fraction at which the ratio of each emulsion was experimentally observed
to have a viscosity 100 times greater than that of the pure solvent. When the particles in suspension have
occluded volume due to solvation or flocculation, we show that the application of D-EMT to the problem
becomes more ambiguous than these investigators have indicated. In addition, the resulting equations
either do not account for the limiting behavior near the critical concentration, that is, the concentration
at which the viscosity diverges, or they incorporate this critical behavior in an ad hoc way. We suggest
an alternative viscosity–concentration equation for emulsions, based on work by Bicerano and coworkers
[J. Bicerano, J.F. Douglas, D.A. Brune, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C 39 (4) (1999) 561–
642]. This alternative equation has the advantages that (1) its parameters are more closely related to
physical properties of the suspension and (2) it recovers the correct limiting behavior both in the dilute
limit and near the critical concentration for rigid particles. In addition, the equation can account for the
deformability of flexible particles in the semidilute regime. The proposed equation is compared to the
equation proposed by Pal and Rhodes.

Published by Elsevier Inc.
1. Introduction

The shear viscosity of an emulsion, or of a solid particle dis-
persion in a liquid, can be described formally as a power series in
the dispersed phase volume fraction φ. If η0 is the viscosity1 of
the liquid and η is the viscosity of the dispersion, then the relative
viscosity, ηr ≡ η/η0, can be written as a virial series,

ηr ≈ 1 + [η]φ + kHφ2 + · · · , (1)

where [η] is the intrinsic viscosity, defined by

[η] ≡ lim
φ→0

η − η0

φη0
, (2)

and kH is called the Huggins coefficient. The coefficients of higher-
order terms in Eq. (1) do not have specific names and have not
been studied as intensively as [η] and kH .
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The dilute regime for a given dispersion is defined as the range
of φ for which the first two terms in Eq. (1) are sufficient for a
good approximation of the viscosity, i.e., ηr ≈ 1 + [η]φ. This lin-
ear approximation was first proposed by Einstein [1], who showed
that [η] = 5/2 for dispersions of hard spheres. The crossover con-
centration between the dilute regime and the semidilute regime
is dependent on the shape of the dispersed phase and the inter-
actions between dispersed phase particles, but typically is quite
low, usually <0.02. As the concentration increases in the semidi-
lute regime, the viscosity increases more rapidly with concentra-
tion than predicted by the linear approximation. And as concen-
tration increases further, a geometrical percolation threshold is
reached at which the particles form an interconnected network.
Near this point, the viscosity is often observed to increase sharply.
This behavior marks the concentrated regime. At still higher con-
centrations, the viscosity of hard-particle suspensions diverges as
some critical concentration, the rigidity percolation threshold, is
approached. Because most emulsions of practical importance are in
the semidilute or concentrated regimes, great emphasis has been
placed on finding relationships that are valid at higher concentra-
tions.
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Other than attempts to provide empirical fits to experimental
viscosity data at higher emulsion concentrations, two main the-
oretical approaches have been used to derive equations that can
be used to predict the viscosity of emulsions at higher concentra-
tions. The first approach begins with the dilute limit and attempts
to extend it to higher concentrations using differential effective
medium theory (D-EMT) [2]. The second approach starts in the
concentrated regime, near the percolation threshold, and uses the
theoretically expected scaling of the divergence of viscosity as a
starting point to obtain a crossover equation that is applicable at
lower concentrations. This latter approach is detailed in a review
by Douglas and coworkers [3].

Of the two methods just described, the use of D-EMT has his-
torically received the most attention. Using D-EMT, the relative vis-
cosity is calculated incrementally, starting at a known dilute limit,
and repeatedly adding differential volumes of the dispersed phase.
The process is executed by always assuming that (1) the mate-
rial surrounding the differential added volume is a homogeneous
material with well-defined properties, (2) the property of the sur-
rounding homogeneous material is unaffected by the addition of a
differential volume of dispersed phase, and therefore, (3) the addi-
tion of a differential volume of dispersed phase produces a dilute
composite, the change in property of which may be inferred from
the known change in property in the dilute limit. Brinkman [4]
and Roscoe [5] were the first to apply D-EMT to derive the fol-
lowing viscosity–concentration relationship for suspensions of hard
spheres:

ηr = (1 − φ)−[η]. (3)

Krieger and Dougherty [6] modified Eq. (3) by introducing the con-
cept of a maximum packing fraction, φm , at which the viscosity
diverges, which they justified using the crowding effect originally
introduced by Mooney [7] to account for volume exclusion as par-
ticles are added incrementally to the composite. Their resulting
equation, also derived by D-EMT methods, is

ηr =
(

1 − φ

φm

)−[η]φm

. (4)

Later, Pal and Rhodes [8] appealed to D-EMT concepts to pro-
pose a simple form of Eq. (4) for emulsions,

ηr = [1 − K0 Kαφ]−[η]. (5)

In Eq. (5), K0 and Kα are empirical correction factors that are in-
terpreted as accounting for the influence of immobilized solvent
volume due to, respectively, binding at the interface between the
phases and entrapment in the interstitial spaces within flocs of the
dispersed phase. K0 is assumed to be a constant for a given emul-
sion, and Kα is assumed to depend on the shear rate. In practice,
the product of the two parameters are fit to viscosity data, for a
given emulsion, according to the equation

K0 Kα = 0.8415/φ(100),

where φ(100) is the volume fraction at which ηr = 100. Equation
(5) has been used widely to model the viscosity of emulsions in
the non-dilute regime since it was introduced; as of this writing,
Ref. [8] has been cited at least 89 times.

In emulsions, the relative viscosity depends not only on the
concentration of the dispersed phase, but also on the ratio, z, of
the viscosity of the dispersed phase to the viscosity of the pure
solvent. To avoid confusion in terminology, we emphasize that z
is the ratio of the viscosities of the two phases in the emulsion,
whereas ηr is the ratio of the emulsion viscosity to the solvent
viscosity. Pal [9] has incorporated z into D-EMT derivations of
viscosity–concentration relations for emulsions. In this case, the in-
trinsic viscosity [η] was taken to be that derived by Taylor [10] for
undeformable spherical droplets in a liquid medium,

[η] = 1 + 3z/2

1 + z
undeformable spherical droplet. (6)

In addition, Pal utilized the concept of a crowding effect, origi-
nally introduced by Mooney [7] to account for volume exclusion as
droplets are added incrementally to the composite. The resulting
equation is

ηr

[
2ηr + 5z

2 + 5z

]3/2

=
(

1 − φ

φm

)−[η]φm

, (7)

where φm is the maximum packing fraction of the liquid droplets,
which must be determined separately either by fitting to experi-
ment or by computer simulation.

In this paper, we scrutinize the applicability of D-EMT to emul-
sions more closely. In particular, the assumptions that underly
the D-EMT approach are analyzed, and their validity is found to
be questionable when solvation of the dispersed phase particles
is possible. Because of the ambiguities involved, we revisit the
derivation of Pal and Rhodes [8] using two different sets of start-
ing assumptions about the way the emulsion is constructed. In
so doing, we arrive at two different, yet somewhat complemen-
tary, equations for the relative viscosity. Afterward, we explore
the second approach mentioned earlier, based on scaling of crit-
ical phenomena, to obtain an alternative viscosity–concentration
equation for emulsions. We draw largely on the work by Douglas
and coworkers [3] to account for influences of dispersed phase vis-
cosity, deformability of the dispersed phase, and the possibility of
interparticle forces. The resulting viscosity equation is compared
with D-EMT results like Eq. (5) and Eq. (7), and is found to provide
better fits to experimental data for oil–water emulsions covering a
wide range of viscosity ratios.

2. D-EMT approach

In this section, we highlight some of the ambiguities that can
arise when applying D-EMT to suspensions of particles that may
themselves incorporate some of the solvent either by solvation
or by occlusion in interstitial pores. We imagine a suspension or
emulsion consisting of a continuous solvent phase and a number
N of particles in suspension. The particles, shown schematically in
Fig. 1, are modeled as a fixed volume of primary particles which
may be flocculated to form a cluster, and a certain volume of liq-
uid that is immobilized either by solvation or entrapment within
the interstitial spaces between the primary particles. Both the sol-
vent and the particles are assumed to be incompressible and, for
the moment, we assume that the clusters are undeformable.

The total liquid volume, V L,tot, is the sum of the mobile liquid,
solvated liquid, and interstitial liquid:

V L,tot = V L,m + V L,s + V L,a, (8)

where V L,m is the volume of solvent that is free, i.e. not associ-
ated with any particle, V L,s/N is the average volume of solvent
that is tightly bound to each particle by solvation, and V L,a/N is
the average volume of solvent trapped in the interstitial spaces of
a flocculated cluster. If V is the actual volume of dispersed phase,
that is, the primary particles, then the volume of flocculated clus-
ters is

V c = V + V L,s + V L,a. (9)

Normalizing Eqs. (8) and (9) to the total suspension volume, V T ,
gives
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Fig. 1. Conceptual model of a particle, enclosed by the dashed circle. The particle,
suspended in a mobile solvent denoted by “m,” consists of primary particles (black),
solvated liquid that is tightly bound to the primary particle surfaces, denoted by “s,”
and water that is trapped in the interstitial void space of the flocculated structure,
denoted by “a.”

φL,tot = φL,m + φL,s + φL,a, (10)

φc = φ + φL,s + φL,a, (11)

where, for example, φ ≡ V /V T is the volume fraction, or concen-
tration, of primary particles.

Equation (11) can be rearranged as

φc = 1 + (φL,s/φ)

1 − (φL,a/φc)
φ

= K0 Kαφ ≡ Kφ, (12)

where we follow Pal and Rhodes [8] in defining an empirical sol-
vation factor, K0, an empirical flocculation factor, Kα , and an “ef-
fective solvation” factor, K , according to

K0 ≡ 1 + φL,s/φ,

Kα ≡ 1

1 − (φL,a/φc)
= 1

1 − α
,

K ≡ K0 Kα.

If we think of the effective volume of the particles as the area
within the dashed circle in Fig. 1, then K represents the ratio of
the effective volume to the volume of the primary particles in the
cluster. This factor is decomposed into the product of two other
factors: K0 is the ratio of the solvated liquid volume to the pri-
mary particle volume, and Kα is the ratio of the effective particle
volume to the combined volume of primary particles with their
solvated liquid. As noted by Pal and Rhodes [8], K0 should be a
constant for a given suspension, but Kα depends on the flocculated
cluster size and shape, which in turn can be influenced by the ap-
plied shear rate. Throughout this section, we will neglect the shear
rate dependence of Kα , so it will be convenient to incorporate the
effective volume through K alone. K � 1 by definition. Application
of D-EMT is not as straightforward for solvated, flocculated clus-
ters of primary particles as it is when the particles are dense and
unsolvated. The source of the difficulty is the multiphase nature
of the clusters. Specifically, in developing a D-EMT procedure for
clusters, one has to decide on the source of the liquid of solvation
and occlusion. Basically, there are two choices: (1) The necessary
extra liquid can be assumed to be added along with the primary
particles at each step. This has the advantage that the composition
of the surrounding medium will not be altered, but it has the dis-
advantage that the total liquid volume is not conserved. (2) The
required liquid for solvation and occlusion can be assumed to be
drawn from the mobile liquid in the surrounding medium after
the particles are added. This assumption conserves the total liquid
volume, but forces a reduction in the volume of mobile liquid in
the surrounding medium and, therefore, an increase in its viscos-
ity. But such an alteration in the medium viscosity violates one of
the principle assumptions of D-EMT, namely that there is no dif-
ferential change to the viscosity of the surrounding medium when
a differential volume of new particles is added. Although a small
effect during any differential step, the depletion of mobile solvent
must increase the viscosity of the medium itself, and the accumu-
lated effect can be significant.

Based on these considerations, we need to examine the applica-
tion of D-EMT carefully when solvated clusters are involved. A pre-
vious paper [8] in which Eq. (5) was introduced, used the second
assumption from the preceding paragraph, i.e. that the required
liquid of solvation and occlusion is drawn from the surrounding
medium after primary particles are added. Because of a couple of
mathematical errors introduced in the derivation, Eq. (5) was ob-
tained in Ref. [8]. As shown in Appendix A, however, the equation
that should result from these assumptions is actually

ηr = (1 − φ)−K [η]c , (13)

where [η]c is the intrinsic viscosity of the solvated and flocculated
clusters, a quantity that will likely depend on the shear rate ap-
plied to the suspension because the degree of flocculation is likely
to be reduced at higher shear rates. In addition to this difficulty
and the fact that it diverges only when φ → 1, Eq. (13) probably is
not valid because, as described already, its derivation violates the
assumption that the addition of a differential volume of particles
does not alter the viscosity of the surrounding effective medium.

It is important to remember that, in the D-EMT method, the
medium is assumed to be a homogeneous pure solvent at each step
even though its composition and viscosity change incrementally
with each step. Therefore, φ in the dilute limit must be interpreted
as just the volume fraction that is added during one step, not the
actual volume fraction. To emphasize this point, the dilute limit of
Eq. (1) is rewritten in finite difference form as follows:

�ηr = ηr[η]�φ′, (14)

where the prime superscript on the volume fraction means that it
is the incremental volume fraction added to the effective medium
during each step.

In Appendix A, we derive the following equation using D-EMT,
based on the assumption that the differential extra volume of liq-
uid required for solvation and occlusion is added to the medium
along with the differential volume of primary particles during each
step:

ηr = (1 − Kφ)−[η]/K . (15)

When K = 1 and when there is no flocculation, then [η]c = [η] and
Eq. (15) reduces to Eq. (3) obtained for hard spheres by Brinkman
[4] and Roscoe [5]. The D-EMT result also is similar in form to
Eq. (5) proposed by Pal and Rhodes [8], except that the exponent in
Eq. (5) is now shown to be [η]/K instead of [η]. We can compare
the form of Eq. (15) to the virial expansion in Eq. (1) expanding
the former as a Maclaurin series:

ηr = (1 − Kφ)−[η]/K

= 1 + [η]φ + 1 ([η]2 + K [η])φ2 + · · · . (16)

2
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The expansion agrees with Eq. (1) to first order, and comparison
of the second-order terms provides a general approximation sug-
gested by Douglas [11]:

kH = 1

2
[η]([η] + K

)
. (17)

For undeformable, repulsive spherical particles, theoretical calcula-
tions of kH predict values between 5.0 [12,13] and 5.2 [14] when
only hydrodynamic effects are considered. If the spheres are suffi-
ciently small, influences of Brownian motion increase the theoret-
ical estimates to between 6.0 [12,13] and 6.2 [14]. For these same
particles, K = 1 and [η] = 2.5, so Eq. (17) suggests that kH ≈ 4.4,
which for large spheres is about 90% of the theoretical values.
Thus, Eq. (15) provides approximate corrections to the dilute limit
that are only approximate to second order. The effective medium
approach is more accurate at low concentrations, so these correc-
tions are expected to be quite an effective approximation in the
absence of further information about kH , even for particles of gen-
eral shape. When a dispersion becomes increasingly concentrated,
the assumptions of D-EMT become increasingly dubious. Particles
added to a more concentrated suspension will begin to interact
with the particles that are already present. This interaction may be
due to interparticle forces or to the onset of a percolation tran-
sition, as described in the Introduction. The concentration beyond
which these interactions become important will depend on the na-
ture of the dispersion, such as the range of interparticle forces
and the shape and deformability of the particles. In many cases,
interactions can become important in the semidilute regime, but
even suspensions composed of rigid inert spheres will undergo
interactions in the concentrated regime due to the onset of perco-
lation. In any event, once the interactions become important, the
assumptions of D-EMT are no longer strictly valid, and therefore
the validity of Eq. (15) becomes questionable. For these reasons, in
the next section we propose an alternate approach that may better
address these complications.

3. Approach based on critical phenomena

In 1995, Douglas and Garboczi [15] demonstrated, both theo-
retically and computationally, that the viscosity of suspensions in
the dilute regime has an exact correspondence to the electrical
conductivity of composites, formed by embedding conducting in-
clusions in an insulating matrix. In [3], Douglas and coworkers
argued that, for suspensions of rigid particles at high concentra-
tions, the relative viscosity diverges as φ → φ∗ according to an
asymptotic universal relationship,

ηr ∼
(

1 − φ

φ∗

)−2

, (18)

which is independent of the shape of the particles in suspension.
Using Eq. (18) as a starting point, Douglas and coworkers [3]

proposed a crossover equation between it and the virial expansion
in Eq. (1), which provides a smooth transition between the semidi-
lute and concentrated regimes:

ηr =
(

1 − φ

φ∗

)−2
[

1 + C1

(
φ

φ∗

)
+ C2

(
φ

φ∗

)2
]

(19)

to second order in φ, where

C1 = [η]φ∗ − 2, (20)

C2 = kHφ∗2 − 2[η]φ∗ + 1. (21)

The critical exponent of 2 in Eq. (19) is strictly valid for rigid
particles in three-dimensional (3-D) suspensions [15]. The corre-
spondence shown by Douglas and Garboczi also predicts that the
critical exponent is 4/3 for 2-D suspensions [15], a prediction that
is confirmed by experiments on thin films of oil containing small
spherical particles [16]. Although there is some question in the lit-
erature about its universality, the value of 2 has been shown to be,
at the very least, a good approximation of the exponent for a wide
range of 3-D suspensions [3,17–20,26]. The numerical value of the
critical exponent is not as well established for emulsions near φ∗ ,
but there is experimental evidence that the viscosity of emulsions
typically diverges near a critical concentration with a critical expo-
nent that is often near 2 [8]. Therefore, lacking further information
we will assume that a critical exponent of approximately 2 is also
valid for emulsions. In any case, the advantage of Eq. (19) is that
it incorporates, into one continuous relation, both the generalized
scaling of the divergence of ηr near φ∗ , as well as the linear and
second-order terms of the virial expansion for more dilute sus-
pensions. Therefore, this equation should be appropriate for dilute,
semidilute, or concentrated suspensions.

In the next section, we apply Eq. (19) to emulsions and com-
pare the results to Eq. (7) and Eq. (15). Therefore, we now require
some means of estimating [η], kH , and φ∗ for emulsions. We will
assume that the particles in suspension are the solvated clusters
from earlier sections of the paper, the shapes of which are ba-
sically spherical due to surface tension effects. If the interfacial
tension between the particles and the surrounding liquid is suffi-
ciently high, or if the shear rate is sufficiently low, then the particle
shapes will remain approximately spherical and

[η] = 1 + z[η]∞
1 + z

undeformable spherical droplet (22)

will describe the intrinsic viscosity, where we have written Eq. (6)
in an equivalent form and [η]∞ refers to an infinite-viscosity par-
ticle of the same shape (e.g. 2.5 for a hard sphere). Equation (22)
is usually a good approximation for [η] at low shear rates when
the dispersed phase has a high surface tension in the solvent, and
often is appropriate both for liquid-in-liquid emulsions and for gas-
in-liquid dispersions [3,9]. But for particles that can deform easily,
the following equation for the intrinsic viscosity holds [15]:

[η] = z − 1

1 + (z − 1)/[η]∞ freely deformable liquid droplet. (23)

Like Eq. (22), Eq. (23) recovers the rigid particle value, [η]∞ , in the
limit z → ∞, but Eq. (23) also predicts negative values of [η] when
z < 1. That is, Eq. (23) predicts that emulsions will become less
viscous with increasing concentration when particles are added
that have lower viscosity than the pure liquid medium. In contrast,
Eq. (22) always predicts 1 � [η] � 2.5.

The quantity φ∗ can be thought of as a viscosity percolation
threshold, which generally is greater than the purely geometrical
percolation threshold of the particles but less than or equal to the
maximum packing fraction φm [3]. φ∗ is interpreted as the con-
centration at which the dispersion loses its fluidity, and this same
interpretation was implicitly used as a working definition of φm

[6,8,9]. As with other percolation phenomena, the value of φ∗ is
expected to depend sensitively on particle shape, aggregation ten-
dency, and the shear rate applied to the suspension [3]. Wildemuth
and Williams [21] analyzed experimental data on hard-sphere dis-
persions and found that φ∗ ≈ 1.7/[η] is a good approximation over
a wide range of shear rates in which both φ∗ and [η] vary. Bicer-
ano et al. [3] further suggested that the inverse relation between
φ∗ and [η] is universal for monodisperse spheres. For polydis-
perse spheres, the simple inverse relation is questionable because
[η] = 2.5 for rigid spheres of any size but φ∗ for rigid spheres can
increase from the random close packing fraction of approximately
0.64 for monodisperse spheres, to much higher values for polydis-
perse spheres.
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We have already noted that the Huggins coefficient, kH , de-
pends sensitively on particle interactions and on [η]. Equation
(17) was given earlier as an approximate relationship between kH

and [η]. Other investigators [22] have suggested kH ∼ [η]2 as a
good approximation for spherical particles, but this is likely to be
valid only over a modest range of intrinsic viscosities near the
hard-sphere value of 2.5. When the dispersed phase tends to floc-
culate, [η] and kH depend greatly on the degree of flocculation.
Furthermore, if weak flocs can be broken down by application of
high shear rates, then both [η] and kH will depend on shear rate,
too, decreasing as the shear rate increases.

4. Comparison of D-EMT and percolation equations

In this section, we compare the predictions of Eqs. (7), (15),
and (19). All three equations involve parameters such as φ∗ , kH ,
and z, that depend on the particular emulsion being studied. How-
ever, a parametric study of the equations seems to have limited
value outside the context of experimental measurements on real
emulsions. Therefore, we prefer to compare the theoretical equa-
tions to measurements on several emulsions to determine how
well each equation fits the data when reasonable values are cho-
sen for the parameters. The aim of this paper is primarily theo-
retical, and generating new experimental measurements of emul-
sion viscosity lies outside its scope. Therefore, we have chosen to
use measurements on emulsions previously reported by Pal [9].
These experimental data were chosen for two reasons. First, the
emulsions span five orders of magnitude in the viscosity ratio, z,
ranging from 0.0112 to 1170. Second, Pal used these same experi-
mental data for validating his own viscosity equation, Eq. (7). He
chose those four particular emulsions—a polymer-thickened emul-
sion, two mineral oil emulsions, and one emulsion of heavy oil
in water—because their properties were known to be consistent
with the assumptions that “(a) the capillary number is small so
that deformation of droplets can be neglected, and (b) the emul-
sions are stable (unflocculated), consisting of noncolloidal droplets
with negligible colloidal interactions” [9]. Therefore, although we
do not have further knowledge of those emulsions nor the details
surrounding the measurement techniques that were used, it is ap-
propriate to use these experimental data for comparing the other
two equations considered here. Nevertheless, our choice of previ-
ously published experimental data is intended only to show how
Eq. (19) can give at least as good a fit to the experimental data as
either Eq. (7) or Eq. (15). We do not consider this cursory compar-
ison to be a full validation of any of the equations, and we invite
other experimentalists to make more stringent tests of these equa-
tions in the future.

We first note that the D-EMT result, Eq. (15), diverges as Kφ →
1, with critical exponent [η]/K . In this respect, the inverse solva-
tion factor, 1/K , plays the role of a critical concentration. Indeed,
if we assign 1/K = φ∗ , then Eq. (15) is identical to the Krieger–
Dougherty equation, Eq. (4), if φ∗ is equated to the maximum
packing fraction φm . Therefore, although there is a significant phys-
ical difference between φ∗ and φm [3], there is no mathematical
distinction between Eq. (15) and the Krieger–Dougherty equation.
This point will be taken up in the Discussion, but to make compar-
isons between Eq. (7), Eq. (15), and Eq. (19), we will simply assume
that K = 1/φ∗ . Also, because we have no detailed information on
the polydispersity of the emulsions to which we are comparing,
we will assume that φm ≈ φ∗ in Eq. (7) which, as already men-
tioned is entirely consistent with the definition given to φm in the
derivations of Eqs. (4) and (7) [6,9]. When using Eq. (19), we will
estimate kH using Eq. (17) with K = 1. As already shown, Eq. (17)
is required for consistency between the D-EMT equation (15), and
it also agrees reasonably well with earlier theoretical calculations
[12–14,22]. In addition, we will assume for both equations that the
Fig. 2. Comparison of viscosity equations against experimental data (open circles)
given in [9] for a polymer-thickened emulsion with z = 0.0112. Equations (7) and
(15) are indistinguishable.

Fig. 3. Comparison of viscosity equations against experimental data (open circles)
given in [9] for a mineral oil emulsion with z = 0.165.

intrinsic viscosity is given by Eq. (22). Finally, because of the dif-
ficulty associated with estimating φ∗ when the polydispersity of
the emulsion is not known, we will treat it as a fitting parameter
when comparing the equations to experimental data.

Figs. 2–5 compare the crossover equation, Eq. (19), the D-EMT
equation, Eq. (15), and the equation of Pal, Eq. (7), to experimen-
tal data on the four emulsions previously described here and in
Ref. [9]. Each plot in Figs. 2–5 show the three equations as curves,
with φ∗ or K chosen to provide the best qualitative fit to the ex-
perimental data. The experimental data were obtained from the
figures in [9] by high-resolution electronic scans, using the coordi-
nates of the four corners of the scanned figure and interpolating
the values from the coordinates of each point. The uncertainties in
the experimental data were not reported.
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Fig. 4. Comparison of viscosity equations against experimental data (open circles)
given in [9] for a mineral oil emulsion with z = 2.57.

Fig. 5. Comparison of viscosity equations against experimental data (open circles)
given in [9] for an emulsion of heavy oil in water with z = 1170. Equations (7) and
(15) are indistinguishable.

In each of the figures, all three equations give reasonable fits
to the experimental data at lower volume fractions, and the values
of the fitting parameter are within a reasonable range. However,
Eq. (19) provides a better fit to the data in each plot, over the en-
tire range of volume fractions measured but especially at higher
volume fractions. We also note that the D-EMT equation (15) and
the more complicated equation (7) proposed in [9] nearly coincide
over the range of volume fractions measured, and are basically in-
distinguishable when z = 0.0112 and z = 1170.

Despite the better fit of Eq. (19) to the experimental data, there
is still some discrepancy at higher concentrations when z = 0.165
in Fig. 3. Without more information about the nature of this par-
ticular emulsion, it is difficult to pinpoint why its measured viscos-
ity is lower than predicted at higher concentrations. One possible
explanation is a mild attraction between the dispersed phase par-
ticles, in which case we would expect kH to be higher than the
value of 1.3 predicted by Eq. (17). In fact, if we assign kH = 3 for
this emulsion, then the fit of Eq. (19) is even better, as shown by
the “+” symbols in Fig. 3, although φ∗ also must be increased to
0.9 to obtain the fit. For this emulsion, the dispersed phase has
a significantly lower viscosity than the solvent, so higher values
of φ∗ are plausible. But without more information about the emul-
sion, we will not speculate further on the meaning of the better fit.

5. Discussion

As mentioned already, the D-EMT equation (15) given here,
which corrects the equation derived by Pal and Rhodes [8], is
mathematically identical to the Krieger–Dougherty equation if one
identifies the solvation factor K with 1/φm although, as previously
noted [3], it is more proper to think of φm as the viscosity per-
colation threshold φ∗ instead of the maximum packing fraction of
the dispersed phase. Not only mathematically, but physically there
should be qualitative similarities between K and 1/φ∗ . For exam-
ple, K increases as the volume of solvent bound to the dispersed
phase increases, either by solvation or by occluding the internal
porosity of flocculated droplets. But flocculation also decreases φ∗
relative to its value for unflocculated systems, and Bicerano et al.
suggest a semiquantitative relationship for relating φ∗ to the aver-
age size and fractal dimension of the flocs [3]. Also, in flocculated
suspensions both K and 1/φ∗ decrease with increasing shear rate
if the flocs are weak enough to be broken down [3,8]. But the
physical analogy between K and 1/φ∗ cannot be taken too far be-
cause a change in φ∗ may not always cause an inverse change in
K . For example, increasing the polydispersity of a suspension of
unsolvated/deflocculated hard spheres (K ≡ 1) will generally in-
crease φ∗ . Similarly, changing the shape of the dispersed phase
can have a dramatic influence on φ∗ [3,23] without influencing K
at all. Therefore, when fitting K to experimental viscosity data, as
in [8], differences in K among different emulsions cannot necessar-
ily be interpreted physically solely in terms of degree of solvation
or flocculation.

In this paper, we have assumed that emulsions possess a fi-
nite viscosity percolation threshold. That is, we have assumed that
there is some concentration φ∗ < 1 at which the viscosity diverges
and the emulsion loses its fluidity. A number of experiments [8,9]
seem to indicate this divergent behavior. However, viscosity mea-
surements can be difficult in the concentrated regime, and a rapid
increase in viscosity may not necessarily indicate divergence. In-
deed, zero-shear viscosity measurements on some polymer solu-
tions indicate a power law relation between viscosity and concen-
tration [24,25]:

ηr ∝ φα,

where the exponent α is related to the exponent in the rela-
tionship between the radius of gyration of the polymer and its
molecular weight. For some emulsions, especially those with a
highly deformable dispersed phase, the suspension might not un-
dergo gelation or lose fluidity at any finite concentration. Instead,
such suspensions might exhibit a continuous, but not necessarily
monotonic, viscosity–concentration relationship involving power-
law behavior up to intermediate concentrations followed by an
asymptotic approach to the viscosity of the dispersed phase as
φ → 1. Considerably more experimental work is necessary to de-
termine if such behavior by emulsions can be observed.

Finally, we have not addressed temperature effects on the rela-
tive viscosity of emulsions in this paper. Predicting the influence
of temperature on relative viscosity can be extremely compli-
cated and is outside the scope of this paper, but a few general
comments can be made. At low shear rates and above the glass
transition temperature, the viscosity of a pure liquid often ap-
proaches an Arrhenius-like dependence on absolute temperature T ,
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i.e. η∼ exp(Eη/RT ), where Eη is an activation energy for viscous
flow and R is the gas constant. In a suspension of large, non-
interacting hard particles that are chemically inert with respect
to the solvent, ηr should not be a strong function of tempera-
ture because the relative viscosity normalizes the viscosity of the
suspension to that of the solvent. In emulsions, however, tempera-
ture effects can be manifested in several ways. First, the viscosity
of both the solvent and the dispersed phase can change by dif-
ferent amounts with changes in temperature, which means that
z is a function of temperature. A temperature dependence of z in
turn implies a temperature dependence of [η] according to Eq. (22)
or Eq. (23), which further implies a temperature dependence of
kH and φ∗ . Secondly, the magnitude of interparticle interactions,
due to electrostatic or steric effects, for example, can be functions
of temperature which influence kH and φ∗ . Furthermore, changes
in temperature can influence the degree of miscibility of the dis-
persed phase with the solvent, thereby changing the composition
(and viscosity) of the solvent and also altering the volume fraction
of the dispersed phase.

6. Summary

We have suggested two alternative equations for the shear vis-
cosity of emulsions. One of them, Eq. (15) is based on differential
effective medium theory, which attempts to extend the known
dilute limit to higher volume fractions. This equation is mathe-
matically identical to the Krieger–Dougherty equation if the sol-
vation factor K is identified as the inverse of the critical concen-
tration φ∗ . The other relation, Eq. (19)d, first suggested by Bicer-
ano and coworkers [3] and generalized by Martys and Flatt [26],
is based on known scaling relations in the concentrated regime
near φ∗ , and is also consistent with the virial expansion of the
viscosity to second order in concentration. Both equations account
for the effect on the intrinsic viscosity of the emulsion’s viscos-
ity ratio. Consistency with Eq. (15) requires that kH ∼ [η]2 in the
absence of other complicating effects, and we have assumed that
kH = [η]2 in using Eq. (19). Comparison of both equations to pub-
lished experimental data, covering a wide range of viscosity ratios,
shows that Eq. (19) agrees more closely with the data, particularly
at high concentrations.

In addition to its better fit to experimental data, we believe that
the form of Eq. (19) provides a closer tie to the physics and chem-
istry of emulsions than does Eq. (15). In particular, the stability of
a given emulsion might be directly connected to kH and φ∗ , since
these properties are related to interactions among dispersed-phase
particles. The fitting of solvation constants to viscosity data on as-
phalt binders already has been used as a predictor of their stability
[27–29], and we expect that similar analyses using Eq. (19) could
have important practical implications for transport and long-term
storage of emulsions.
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Appendix A

A.1. Derivation of Eq. (15)

As a starting point, consider an homogenized medium with the
following composition:

V ◦ = volume of primary particle phase,

V ◦
L,m = volume of mobile solvent,
V ◦
c = K V ◦ = volume of clusters,

V ◦
T = V ◦

L,m + V ◦
c = total volume.

Suppose that a small volume �X of material is added to the
homogenized medium, including both primary particles and the
volume of liquid required to solvate them and occlude their floc-
culated pore structure. The volume of the medium changes by �X ,
but the volume of primary particles changes by only �X/K , so the
added volume fraction of primary particles is

�φ′ = �X/K

V ◦
T + K�X

= �X

K V ◦
T

(
1 + �X

V ◦
T

)−1

. (A.1)

Since �X < V ◦
T , the second factor on the right can be expanded as

a convergent geometric series, giving

�φ′ = �X

K V ◦
T

(
1 − �X

V ◦
T

+ O(�X2)

)

= �X

K V ◦
T

+ O(�X2). (A.2)

The actual change in the volume fraction of primary particles
in the medium is

�

(
V

V T

)
= V ◦ + �X/K

V ◦
T + �X

− V ◦

V ◦
T

. (A.3)

Expanding the denominator and rearranging gives

�

(
V

V T

)
=

(
1 − K V ◦

V ◦
T

)
�X

K V ◦
T

+ O(�X2). (A.4)

Solving for �X/(K V ◦
T ) and rewriting in terms of volume fractions,

�X

K V ◦
T

= �φ

1 − Kφ◦ + O(�X2). (A.5)

Substituting into Eq. (14), taking the limit as �φ → 0 and �X → 0,
and integrating gives

ηr∫
1

dx

x
= [η]

φ∫
0

dx

1 − K x
. (A.6)

The result this time is Eq. (15),

ηr = (1 − Kφ)−[η]/K . (A.7)

A.2. Derivation of Pal–Rhodes equation in Ref. [8]

Pal and Rhodes [8] assumed that primary particles are added
to the suspension without including the liquid of solvation or liq-
uid necessary to fill the internal pores of the cluster that forms.
The cluster was assumed to form immediately, but the required
liquid was assumed to be drawn from the surrounding medium. It
was assumed that this withdrawal of liquid from the medium had
a negligible impact on its viscosity. If we use these assumptions,
even though they are at odds with the principles of D-EMT, then
it is equivalent to adding pre-assembled clusters without the asso-
ciated liquid. Therefore, we must use [η]c as the intrinsic viscosity
in what follows, and the appropriate dilute limit is

�ηr = ηr[η]c�φ′
c, (A.8)

where φ′
c is the effective volume fraction of clusters corresponding

to the addition of the primary particles in one incremental step of
the D-EMT procedure.
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If a volume �X of primary particles is added to the medium
without including the additional liquid volume needed for cluster
formation, then that volume of mobile solvent, (K − 1)�X , must
be withdrawn from the surrounding medium. The net effect is to
add a volume K�X of clusters to the medium. In other words, the
effective volume of clusters added is K�X , but the total volume
increases by just �X , the volume of material added to the system.

�φ′
c = K�X

V ◦
T + �X

= K�X

V ◦
T

(
1 + �X

V ◦
T

)−1

= K�X

V ◦
T

+ O(�X2), (A.9)

where the last form comes from expanding second term as a
Maclaurin series. The rest of the mathematics is like that in Sec-
tion 2. The actual change in the volume of clusters in the medium
is

�

(
V c

V T

)
= V ◦

c + K�X

V ◦
T + �X

− V ◦
c

V ◦
T

=
(

1 − V ◦
c

K V ◦
T

)
K�X

V ◦
T

+ O(�X2). (A.10)

Rearranging produces

K�X

V ◦
T

= �φc − O(�X2)

1 − (φ◦
c /K )

, (A.11)

and substituting into Eq. (A.8), taking the limit as �φc → 0 and
�X → 0, and integrating gives

ηr∫
1

dx

x
= K [η]c

φc∫
0

dx

K − x
(A.12)

or, after integration,
ηr = (1 − φ)−K [η]c . (A.13)

This is the result given in Eq. (13).
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