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This article presents permutation–inversion group-theoretical strategies and recipes aimed at helping a
high-resolution molecular spectroscopist use the existing pedagogical literature to carry out their own
treatment of the basic symmetry questions in rotating molecules with large-amplitude vibrational
motions. Topics addressed include: determination of the feasible permutation-inversion group and its
symmetry species and character table; a general equation defining coordinates that can describe trans-
lation, overall rotation, large-amplitude vibrations and small-amplitude vibrations for a large class of
floppy molecules; and the determination of symmetry species for basis functions and selection rules
for operators written in these coordinates. The article is intended to be more advanced than existing ped-
agogical works, but it still leaves many important topics untreated.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The purpose of this article is to present a set of strategies and
recipes for do-it-yourself applications of permutation–inversion
(PI) groups to the high-resolution rotational spectra of molecules
with large-amplitude motions. Vibrations will be divided into
small-amplitude vibrations (SAVs), which are usually nearly har-
monic and well behaved, and large-amplitude motions (LAMs),
which are usually very anharmonic and often give rise to tunneling
splittings, very large LAM-rotation interactions, and/or other com-
plications. The treatment of SAVs in molecules that also have LAVs
requires consideration of a number of subtle questions. Some of
these questions are mentioned below, but SAVs are not discussed
in detail.

The material covered can be grouped into four main tasks: (i)
Postulate the molecular structure and its LAMs. Select from the full
PI group those elements which correspond to feasible motions in
the Longuet–Higgens sense [1]. Determine the molecular symme-
try group [2]. (ii) Determine the class structure of the PI group ob-
tained. From the class structure and some guessed basis set
functions determine the character table [3–5]. (iii) Fix in some
way an axis system in the molecule. The orientation of this axis
system in the laboratory will define the rotational angles. Define
in some mathematical way the LAM coordinate(s) of interest. Then
find the transformation properties of the rotational angles and the
LAM coordinates that correspond to each element of the PI group.
ll rights reserved.
(iv) From these transformation properties determine the symmetry
species of various functions, e.g., determine the symmetry species
of the basis functions, interaction terms in the Hamiltonian opera-
tor, the electric dipole moment operator, the total angular momen-
tum operator, etc. Tasks (i), (ii), and (iv) are frequently discussed in
the pedagogical literature, so the main emphasis here will be on
task (iii). General principles are discussed in the main part of the
text. Tips for improving speed in the numerous mathematical
manipulations needed for any actual application are given in the
appendices.

The reader is assumed to be relatively familiar with the feasible
permutation–inversion ideas in Longuet–Higgins’ original article
[1] and/or in the book by Bunker and Jensen [2], and with the
mathematical fundamentals of the theory of finite groups [3–5].
Basic concepts associated with these topics are not repeated here.
In addition, the references are not exhaustive, but instead cite rep-
resentative works the author is familiar with.

The reader is assumed to be quite familiar with point groups
and their application to molecular spectroscopic problems. The PI
groups for many molecules with LAMs contain a number of opera-
tions that correspond exactly to point-group operations for some
equilibrium conformation of the molecule or for some intermedi-
ate conformation along the LAMs. For such PI operations it is con-
venient to make use of the very familiar language and ideas of
point-groups. Even for PI operations that do not correspond to
point-group operations, the author (when trying to think intui-
tively) finds it convenient to visualize them as ‘‘point-group oper-
ations applied to only part of the molecule,” i.e., as rotations and
reflections applied to only certain functional groups. Thus, while
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permutation–inversion operations and their algebraic conse-
quences are taken as the fundamental and definitive symmetry
operations in this article, pictorial and intuitive understanding
can be gained by discussing some properties of the PI operations
using point-group ideas.

The words ‘‘strategies and recipes” are shorthand expressions
meant to indicate that: (i) This article does not contain a collection
of ready-to-use group-theoretical results for various molecules, but
rather attempts to describe how to obtain such results. (ii) Only the
author’s preferred way of thinking and preferred schemes for
avoiding mathematical inconsistencies are presented. Many other
ways of approaching this problem can be found in the literature,
but they are not discussed here. (iii) Only the procedures them-
selves will be presented. For mathematical underpinnings, the
reader must consult the references. (iv) Some qualitative discus-
sion is given of what can go wrong, and why the author therefore
favors a given way of doing things.

The complexity and ambiguity of the general problem addressed
here is illustrated by the following statements: (i) The same feasible
PI group, G36, is derived for the molecules CH3–C„C–CH3 (dimeth-
ylacetylene), CH3–O–CH3 (dimethylether), and CH3–NH–CH3

(dimethylamine). (ii) As can be seen more clearly using ball-and-
stick models, dimethylacetylene, with its linear carbon chain and
coaxial methyl rotors, has one LAM (an internal rotation of one
methyl group against the other); dimethylether, with its bent C–
O–C skeleton, has two LAMs (the internal rotation of each methyl
group against the C–O–C plane); and dimethylamine, with its pyra-
midal nitrogen bonds, has three LAMs (the internal rotation of each
methyl group against the C–N–C plane and an ‘‘inversion” motion
taking the amino hydrogen from one side of this plane to the other).
(iii) The quantum mechanical (SAV–LAM-rotation) energy levels
and their associated tunneling splittings, etc. will obviously be very
different for these three molecules, so how do we ‘‘go beyond” the
G36 character table to obtain spectrocopically useful symmetry la-
bels, selection rules, etc. For example, how do we obtain symmetry
labels and selection rules for the LAM problem by itself and for the
rotational problem by itself.

The answer to this question is complicated, because: (i) The
bulk of our spectroscopic experience is based on the fact that it
is possible to set up a general vibration–rotation formalism for
essentially all molecules containing only SAVs by: (a) locking a
molecule-fixed axis system to the principal-axis directions of the
equilibrium structure [6], and then (b) treating all displacements
from the equilibrium configuration as infinitesimal [7]. The orien-
tation of the molecule-fixed axis system in the laboratory defines
the rotational (Eulerian) angles. The vibrational displacements, be-
cause they are infinitesimal, can all be lumped together and treated
simultaneously by a set of linear algebra techniques, e.g., Wilson’s
FG matrix formalism [7]. The mathematical simplicity of this SAV-
rotation problem, and the universality of many of its main results,
gives us a false sense of security. (ii) When LAMs are present, the
principal moments of inertia are in general no longer nearly con-
stant in direction or magnitude, so the concept of a molecule-fixed
principal axis system loses some of its usefulness. This prompts
different investigators to define their molecule-fixed axis systems
in different ways. The group-theoretical symmetry properties of
the components of the total angular momentum operator in the
molecule-fixed axis system depend on how a given investigator
chooses to lock this axis system to the molecule, so these symme-
try properties become investigator-dependent. The pure rotational
selection rules will therefore also be investigator-dependent.
While this appears at first to be ridiculous, it must be remembered
that interaction of the LAMs with rotation often gives rise to large
contributions to the energy levels (via tunneling splittings, Coriolis
interactions, etc.), so that the concept of pure rotational selection
rules also loses some of its usefulness in molecules with LAMs.
(iii) LAMs are almost never well described by a perturbed harmonic
oscillator formalism, either because the displacements are so large
that anharmonic ‘‘perturbations” become comparable to harmonic
effects, or because tunneling through various barriers leads to a
splitting of the LAM vibrational energy levels. These difficulties
mean, at least at the present time, that almost every new combina-
tion of LAMs in a molecule must be treated quantum mechanically
as a special case, and that group-theoretical symmetry consider-
ations will often be investigator-dependent, even when the same
PI group is used.

2. Recipe for applying permutation–inversion operations

Many spectroscopists reading this article will already have car-
ried out Task (i) in the introduction, i.e., they will already have a
good guess for the feasible PI group appropriate for their molecule,
either because the molecule has been discussed before in the liter-
ature, or because they have read parts of Ref. [2]. Since the effects of
PI operations are central to the whole discussion here, we define
various conventions needed for concrete applications of PI group
operations before discussing determination of the PI group.

Permutations are conveniently represented by cycles of the
form (1245); the inversion is represented by a ‘‘star” * [1]. The pre-
cise meaning of these symbols in the present article is illustrated
by their application to the following functions, where Xi, Yi, Zi are
variables representing the laboratory-fixed Cartesian coordinates
of atom i.

ð1245Þf ðX1; Y1;X2;Y3; Z5Þ � f ðX2;Y2;X4; Y3; Z1Þ ð1aÞ
ð357Þ�f ðX1;Y1;X2;Y3; Z5Þ � f ð�X1;�Y1;�X2;�Y5;�Z7Þ ð1bÞ
ð1245Þ½X2 þ X2

1 � Y3
3 þ Z4

5 � Y5
1� � ½X4 þ X2

2 � Y3
3 þ Z4

1 � Y5
2� ð1cÞ

ð357Þ�½X2 þ X2
1 � Y3

3 þ Z4
5 � Y5

1� � ½�X2 þ X2
1 þ Y3

5 þ Z4
7 þ Y5

1�: ð1dÞ

In Eqs. (1a) and (1b) the variables are ordered by atom subscript; in
Eqs. (1c) and (1d) they are ordered by increasing exponent, to illus-
trate the point that (1245) seeks out variables with atom 1 sub-
scripts wherever they may be in the original function and
replaces them by variables with atom subscript 2, seeks out all atom
2 subscripts in the original function and replaces them by the sub-
script 4, etc.

If several permutations are to be applied in succession, e.g.,
(123)(124)(23), we first apply the permutation on the right, then
apply the permutation in the middle, and finally the permutation
on the left, in the same way that sequences of other operators
are conventionally applied to a function. A recipe for quickly carry-
ing out multiplications is given in Appendix A.

The procedure illustrated in Eqs. (1) applies to drawings as well
as to functions. If the original configuration had atoms 1,2,3,4 on
the coordinate axes in the XY plane as shown in Fig. 1(a), then this
figure can be represented by the function Fig(X1 = �1, Y1 = 0, X2 = 0,
Y2 = �1, X3 = +1, Y3 = 0, X4 = 0, Y4 = +1), in which the various Carte-
sian-coordinate variables are given numerical values. The figure
obtained after applying (1234) is

ð1234ÞFigðX1 ¼ �1;Y1 ¼ 0;X2 ¼ 0;Y2 ¼ �1;X3 ¼ þ1;
Y3 ¼ 0;X4 ¼ 0;Y4 ¼ þ1Þ
¼ FigðX2 ¼ �1;Y2 ¼ 0;X3 ¼ 0;Y3 ¼ �1;X4 ¼ þ1;

Y4 ¼ 0;X1 ¼ 0;Y1 ¼ þ1Þ
¼ FigðX1 ¼ 0;Y1 ¼ þ1;X2 ¼ �1; Y2 ¼ 0;X3 ¼ 0;

Y3 ¼ �1;X4 ¼ þ1; Y4 ¼ 0Þ: ð2Þ
Note that changing the order in which the ‘‘pieces between com-
mas” (i.e., Xi = constant, etc.) are written in the function defined in
Eq. (2) does not change the figure to be drawn. Eq. (2) leads to
Fig. 1(b), where atom 2 has gone to the position originally occupied
by atom 1. The replacement of the coordinate variables of atom 1 by



1 

1

2 

4 

3

3

4 2 XX

YY 

(a)   Fig(Xi,Yi)       (b)   (1234) Fig(Xi,Yi)     

Fig. 1. Illustration of the effect of (1234) on a function of the laboratory-fixed
coordinates Xi, Yi of the atoms i = 1,2,3,4, which for this example is the function
describing how to draw the figure shown in (a): Fig(X1 = �1, Y1 = 0, X2 = 0, Y2 = �1,
X3 = +1, Y3 = 0, X4 = 0, Y4 = +1). The permutation (1234) as defined in Eq. (2) involves
a cyclic exchange of the coordinate variables, i.e., (1234) Fig(X1 = �1, Y1 = 0, X2 = 0,
Y2 = �1, X3 = +1, Y3 = 0, X4 = 0, Y4 = +1) = Fig(X2 = �1, Y2 = 0, X3 = 0,Y3 = �1, X4 = +1,
Y4 = 0, X1 = 0, Y1 = +1) = Fig(X1 = 0, Y1 = +1, X2 = �1, Y2 = 0, X3 = 0, Y3 = �1, X4 = +1,
Y4 = 0). This has the effect of sending atom 1 to the previous position of atom 4, etc.,
as shown in (b), which is the opposite of what would be obtained if coordinate
values (parameters) were exchanged instead of coordinate variables.
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the coordinate variables of atom 2, as required by the present def-
inition of (1234), turns out to be equivalent to the replacement of
numerical values for the coordinates of atom 2 by the numerical val-
ues for atom 1. This result is just opposite to that defined for (1234)
in many other works.

Why would one want to use a seemingly counter-intuitive def-
inition? The answer to this question concerns the interplay be-
tween geometrical (pictorial) and algebraic thinking for problems
of symmetry. The author strongly believes that geometrical think-
ing, which essentially involves permuting numerical values for the
atom position variables, i.e., moving an atom from (x,y) = (1,0) to
(x,y) = (2,3), should be used only for inspirational hints of what to
do next, and that algebraic operations on the variables of the prob-
lem, as defined in Eqs. (1) and (2), should be used for the derivation
of all theoretical results. This is the approach that will be followed
here. Many spectroscopists express mild or strong disapproval of
favoring algebra over geometry, but: (i) It is nearly impossible for
two investigators, each waving his/her own arms in some ostensi-
bly geometrically meaningful way in multidimensional space, to
understand in precise mathematical detail what the other one is
saying. It is, however, almost trivial to check another investigator’s
algebra against one’s own. (ii) Much of the derivation of selection
rules and energy splitting patterns in the presence of multidimen-
sional tunneling paths, etc. depends on paying close attention to
phase factors. It is difficult to keep track of complicated phase-fac-
tor changes across a set of pictures. It is almost trivial to keep track
of such things with the help of equations corresponding to a se-
quence of variable transformations. (iii) The principal use of group
theory in quantum mechanics is to determine selection rules by
examining the behavior of a multi-dimensional definite integral
after some change of variables in that integral. If these variable
changes are to be useful, one must in general insure that both
the Hamiltonian operator and the definite integral operator remain
invariant. This is best demonstrated algebraically, particularly for
Hamiltonians and integrals involving the complicated, relatively
unfamiliar, and sometimes multiply valued curvilinear coordinates
that often arise when treating LAM problems.

3. Recipe for finding the permutation–inversion group [1,2]

3.1. Long procedure

Make two identical ball-and-stick models of the equilibrium
configuration and tape numbers or letters to each atom as labels.
Keep one model as the reference and put the second model along
side it in ‘‘the same orientation,” i.e., so that the two models and
all their atom labels are related by a simple translation. Ball-and-
stick models can be replaced by careful drawings with labeled
atoms, though care must be taken to properly indicate the loca-
tions of atoms above and below the plane of the paper.

It is simplest to begin by finding the PI equivalents of all point-
group operations of the equilibrium configuration. (i) Carry out
each proper rotation from the point-group character table for this
equilibrium shape on the second model, and then write down,
from an inspection of how the atom labels have changed, the
appropriate permutation cycles. In principle, great care should be
taken to write down the permutation cycles so that they are con-
sistent with Eq. (2). But in practice, if all PI operations are eventu-
ally to be found and verified, such care is not needed, since lack of
care at this stage will only lead to ‘‘confusing” a PI-group element
with its inverse. (ii) Carry out each sense-reversing operation from
the point-group character table on the second model, which will
often require taking the model partially apart and putting it back
together again in a new, mirror-image or inverted configuration.
Write down the resultant permutation cycles and add a *. There
are no sense-reversing operations in the point group for a chiral
molecule.

A convenient check on the PI operations found above can be de-
scribed using the concept of a ‘‘framework.” A framework is a ball-
and-stick model with each atom having a different number painted
on it. Two frameworks are different if their ball-and-stick models
cannot be superimposed with all atom numbers matching. Two
frameworks are chemically equivalent (and isoenergetic) if they
are indistinguishable when the atom numbers are removed. It
turns out that PI operations corresponding to point-group opera-
tions for a molecule in a given framework never take the molecule
from that framework to another. This fact is obvious for the proper
rotations of the point group, since they are defined to be nothing
more than overall rotations of the given framework. This fact is less
obvious for the sense-reversing operations, because they are de-
fined to be exactly those point-group operations which do in fact
generate a mirror image of the original object. Indeed, the permu-
tation part of the PI operation associated with a given sense-
reversing point-group operation will also generate a mirror image
of the original framework, but the required * then generates a mir-
ror image of the mirror image, which takes the molecule back to its
original framework. After checking to make sure that no new
frameworks are generated by the PI operations found in steps (i)
and (ii) above (changing frameworks is not a feasible operation
for ‘‘rigid” molecules), we are finished with the point-group con-
siderations appropriate for the equilibrium configuration.

We must now deal with the LAMs. In most molecules of interest
to high-resolution molecular spectroscopists, the LAMs correspond
to tunneling processes (occasionally with almost no barrier) be-
tween different, but chemically equivalent, frameworks, and these
are the only types of LAMs considered in this article (an example of
LAMs not satisfying this criterion are those associated with chem-
ical isomerizations). Thus: (iii) Carry out the first of the chemically
feasible large-amplitude tunneling motions on the second model. If
the LAM-transformed shape can still be superimposed on the origi-
nal by only an overall rotation plus translation, do this and write
down the resultant permutation of atom labels. The permutation
found in this way will not be unique if more than one overall rota-
tion brings the ‘‘pre-LAM” and ‘‘post-LAM” shapes into coinci-
dence. When the umbrella motion is carried out in ammonia, for
example, with hydrogens numbered 1,2,3, the rule above will yield
the three permutations (12), (23) and (31), corresponding to the
fact that any one of these permutations takes ammonia from its
‘‘left-handed” framework to its ‘‘right-handed” framework. For chi-
ral equilibrium configurations, some large-amplitude motions may
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result in a post-LAM shape that is a non-superimposable mirror
image of the pre-LAM shape. In that case, make a mirror image
of the post-LAM framework, compare atom labels after superpos-
ing the post-LAM’s mirror image on the original framework, write
down the appropriate permutation and add a *. Continue the pro-
cedure for all large-amplitude tunneling motions that are ‘‘feasi-
ble” in the Longuet-Higgins sense [1].

After finishing the pictorially driven steps (i)–(iii), find all
remaining PI operations in the group by examining algebraically
all powers and products of the PI operations found in steps (i)–(iii).

3.2. Short procedure

(See the example in Appendix B) Try to guess a set of generators
(generating operations) for the PI group, and determine PI opera-
tions as in steps (i)–(iii) above, but only for the generators. Then
generate the whole group of PI operations by taking all algebraic
powers and products of the generators, using the multiplication
procedure of Eq. (A.1). Make sure (by chemical intuition) that
you have not forgotten a feasible permutation–inversion or in-
cluded a non-feasible one.

3.3. Shortest procedure

It is tempting to avoid the hassle of making two ball-and-stick
models or the tedium of making a large number of carefully labeled
molecular drawings, by deciding to investigate all of these PI oper-
ations in one’s head. This procedure does not work well for the
author.

4. Recipe for finding the character table of the PI group [3–5]

Task (ii) of the introduction begins in this section. This task can
in principle be avoided entirely. If the resultant PI group is isomor-
phic to a point group, we can use the character table for that point
group. If the resultant PI group is not a point group, but has been
considered before in the literature, we can use the character table
in the literature. A paper by Groner [8], for example, contains infor-
mation on a number of larger PI groups. If the PI group is new (or
apparently new) to the molecular spectroscopy literature, we can
use the publically available GAP software package [9] to find the
character table for that PI group as well as the nuclear-spin statis-
tical weights for the particular isotopolog of the molecule under
consideration. The author has not personally used the GAP package
(which was kindly brought to his attention by a referee), but
according to its developers [9], the input information consists of
the generators of the PI group to be considered and the nuclear
spins of the atoms in the molecule, and only a few seconds is re-
quired on a personal computer to go from this input to an output
containing the character table and statistical weights. If one of
the options in this paragraph is chosen, the reader can skip the rest
of this section and go directly to Section 5.

Only if one wishes to check someone else’s character table
(which is sometimes a good idea), or if one wishes to understand
in more detail what is going on in the black boxes of the previous
paragraph (which is sometimes enjoyable), will it be necessary to
follow the various steps outlined in the rest of this section for mak-
ing an old-fashioned hand calculation (the example in Appendix B
illustrates these steps in more detail).

Determine the classes of your PI group by computing all triple
products of the form

P ¼ X�1QX: ð3Þ

Start with a given element Q and let X run through all elements of
the group. Then Q and all the elements P generated by Eq. (3) are in
the same class. This is a very laborious procedure when carried out
by brute force. It is often much easier to accomplish if one makes
use of the generating equations associated with the generating
operations, as in Appendix B.

From the class structure of the group, one can determine the
structure of the character table. The number of irreducible repre-
sentations (i.e., the number of symmetry species) is equal to the
number of classes. The dimensions di of the irreducible representa-
tions must satisfy the equation

Rid
2
i ¼ g; ð4Þ

where the summation index i runs over all species and g is the num-
ber of elements in the group. Sometimes the integers di satisfying
this equation are unique. Sometimes they are not. For the example
in Appendix B, the number of classes in the group is 6 and the num-
ber of elements is 12, so we are looking for six integers di. Since
g = 12, di P 4 is impossible. One di = 3 and one di = 2 is also impos-
sible. Even one di = 3 and five di = 1 is not possible. By considering
various combinations of di = 2 and di = 1, we find that only the com-
bination of two di = 2 and four di = 1 satisfies Eq. (4), so we are look-
ing for four one-dimensional (1D) and two 2D irreducible
representations.

We seek the characters of these six irreducible representations
by guessing at small basis sets that might span an irreducible rep-
resentation. The elements of the example group G12 in Appendix B
are listed at the top of Table 1. As a first guess, let us see what the
characters for a 1D basis set consisting of a single numerical con-
stant might be. Since a constant is invariant to all PI elements of
the group (which, as mentioned earlier, act only on variables),
the character must be +1 for all elements of the group. This species
is normally called the totally symmetric representation and is of-
ten represented by the symbol A1, as shown in the first row of Ta-
ble 1. As a guess for the basis of another 1D representation, we
might try the symmetrical sum of the laboratory-fixed X coordi-
nates of the three hydrogens in CH3F: X1 + X2 + X3. This function
obviously has the character +1 for permutations of G12 with no *

and the character �1 for permutations with a *, as shown for the
irreducible representation A2 in Table 1. As a guess for a 2D basis
set, try the pair of ‘‘rather symmetrical” sums involving
e�exp(2pi/3), i.e., X1 + e X2 + e2X3 and X1 + e2X2 + eX3. We find for
E the character +2, for (123) and (132) the character �1, and for
(12), (23), and (31) the character 0. Similarly, for E* the character
is -2, for (123)* and (132)* the character is +1, and for (12)*, (23)*

and (31)* the character is 0. This species is called E1 in the third
row of Table 1.

All these characters pass the test for an irreducible representa-
tion, i.e., the sum of the squares of the characters for a given spe-
cies taken over all elements of the group is equal to the order g
of the group. It is necessary to perform this test on every set of
characters obtained from the guessed basis sets. If the test fails,
the basis set contains too many, too few, or poorly designed func-
tions and must be discarded.

Looking for another species, without guessing at a new basis set,
see if the direct product A2 � E1 gives a new irreducible represen-
tation. Indeed, it gives the characters shown for E2 in the fourth
row of Table 1. We are still missing two 1D irreducible representa-
tions. As a guess (using a second method that does not involve
designing a new basis set), see what the 4D reducible representa-
tion corresponding to E1 � E1 contains. It contains the already
found A1 and E2 irreducible representations each once, but also
contains a new one, shown as A3 in the fifth row of Table 1. As an-
other guess, try A2 � A3, which indeed gives the last 1D irreducible
representation, shown as A4 in the last row of Table 1. Comparison
of this character table with those for known point groups shows
that G12 of this example is isomorphic with C6v, D6, D3h, and D3d.



Table 1
Character table for G12

a.

E (123) (12) E* (123)* (12)* How obtainedb

(132) (23) (132)* (23)*

(31) (31)*

A1 1 1 1 1 1 1 Basis set = {1}
A2 1 1 1 �1 �1 �1 Basis set = {X1 + X2 + X3}
E1 2 �1 0 �2 1 0 Basis set = {X1 + eX2 + e2X3, X1 + e2X2 + eX3}c

E2 2 �1 0 2 �1 0 A2 � E1

A3 1 1 �1 1 1 �1 E1 � E1 � A1 � E2

A4 1 1 �1 �1 �1 1 A2 � A3

a See Section 4 and Appendix B.
b See Section 4 for more explanation.
c e � exp(2pi/3), so that e2 = e�1 = e* and e3 = 1.
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One should therefore seriously consider using the symmetry spe-
cies symbols and character table arrangement from one of these
common point groups, rather than devising an entirely new char-
acter table of one’s own, as we have done here.

For checking purposes, if each element of the PI group is in the
same class as its inverse, then all characters for the irreducible rep-
resentations will be real. In the author’s experience [10–12], this
condition is sometimes not fulfilled, and then some characters
are complex (as for the point groups C3 or C3h, for example). Under
these conditions it is often convenient to use separable (reducible)
representations with real characters for many molecular symmetry
applications, but this topic will not be discussed here.

5. Definition of molecule-fixed coordinates

So far we have been working only with laboratory-fixed Carte-
sian coordinates for the atoms in the molecule. Task (iii), which in-
volves finding the algebraic connection necessary to go from the
easily understood laboratory-fixed Cartesian coordinates (Xi, Yi,
Zi) for each particle in the molecule to some set of translational,
rotational, LAM, and SAV coordinates that are spectroscopically
appropriate for the molecule under consideration, begins in this
section. This set will be referred to here by the shorthand expres-
sion ‘‘molecule-fixed coordinates.” Task (iii) is probably the most
important and the most difficult challenge in any advanced appli-
cation of PI groups.

For readers wanting more detail on how the general ideas asso-
ciated with tasks (iii) and (iv) can be applied to a concrete example,
it may be helpful to refer to Section 4.2 of Ref. [12], which deals
with the case of three equivalent methyl rotors in (CH3)3SnCl, or
to Section 3 of Ref. [10], which deals with the case of two equiva-
lent methyl rotors and one ‘‘generalized inversion motion” (see
Section 13.4 below) in (CH3O)2P(@O)CH3. Note, however, that the
full group-theoretical treatment of both of these molecules re-
quires use of some general ideas not covered in this paper (see Sec-
tion 17 below).

Speaking simply, we want at this point to find the equation that
gives the correspondence between coordinates in the laboratory-
fixed Cartesian axis system and coordinates ‘‘attached” to the mol-
ecule. With such an equation in hand, which in fact defines the
molecule-fixed coordinates mathematically, we can check the
transformation properties of different molecule-fixed coordinates
under the symmetry operations and, if desired, derive the exact ki-
netic energy operator in the molecule-fixed coordinates. We can
also: (i) determine the symmetry species of our chosen basis set
functions, (ii) generate symmetry-allowed LAM-rotation Hamilto-
nian operators; and (iii) determine selection rules for the Hamilto-
nian and dipole-moment operator in our chosen basis set.

Why is it so desirable to find the equation described above? As
seen in Section 2, the recipe for applying PI operations to labora-
tory-fixed Cartesian coordinates is simple, and involves only
exchanging particle subscripts with or without a change of sign
of the Cartesian coordinates for all particles. As will be seen below,
the much more complicated recipe for the effects of PI operations
on a given choice of molecule-fixed coordinates can be determined
with confidence only after these coordinates have been mathemat-
ically related to the laboratory-fixed Cartesian coordinates. This is
equivalent to saying that symmetry properties of vibrational and
rotational basis functions expressed in molecule-fixed coordinates
can be determined only after these coordinates have been precisely
defined. In the author’s opinion (though this opinion is not univer-
sal), dealing in some mathematically precise way with the con-
cepts in the rest of this section is the barrier that must be
crossed if a practicing spectroscopist wishes to progress from
‘‘applications” to ‘‘advanced applications” of PI group theory to
his/her molecule.

Since molecule-fixed coordinates for LAM problems can become
very complicated, we content ourselves here with some compro-
mise between convenience of mathematical definition, and accu-
racy of description of the true LAM. This reflects the general
philosophy of carrying out group theoretical algebra on relatively
simply defined molecule-fixed coordinates, and then compensat-
ing in later energy level calculations for any inaccuracies in LAM
description by introducing into the Hamiltonian operator appro-
priate symmetry-allowed ‘‘higher-order” distortion and interaction
terms.

In spite of the emphasis on algebraic methods in this article,
there is still a place for pictorial thinking at the beginning of Task
(iii), as summarized by the following outline. (i) Keep the mole-
cule-fixed axis system at the instantaneous center of mass. Other-
wise you cannot separate off translations of the molecule. (ii) Look
at the LAMs to see if any part of the molecule is unaffected by
them. If there is such a part, consider locking the molecule-fixed
axis system to that part. (iii) If there is no part of the molecule that
does not change, see if some symmetry element is preserved dur-
ing one of the LAMs (we are studying symmetry, after all), e.g., for
internally rotating HO–OH a C2 axis is always present, for inverting
NH3 a C3 axis is always present, for H transfer in malonaldehyde, a
Cs plane is always present. Consider putting one of the molecular
axes along a Cn axis or perpendicular to a symmetry plane, etc.
(iv) If some ‘‘transition state” has high symmetry, consider locking
the molecular axes in a symmetrical way to that transition state.
(v) For near prolate rotors try to keep the z axis pointing nearly
along the principal a axis during most of the LAMs. We consider
next how these pictorial ideas can be represented by algebraic
equations.
6. Recipe for defining the center-of-mass coordinates R

For spectroscopic study of an isolated molecule in free space it
is convenient to separate off the motion of the center of mass. As is



J.T. Hougen / Journal of Molecular Spectroscopy 256 (2009) 170–185 175
well known, this is conveniently done by defining three linear
combinations of the Cartesian coordinates, which are then col-
lected in one vector equation

R � ð1=MÞRimiRi: ð5Þ

In this equation R is a 3 � 1 vector containing the laboratory-
fixed X, Y, Z coordinates of the molecular center of mass, M is the
total mass of the molecule, mi is the mass of atom i, and Ri is a
3 � 1 vector containing the laboratory-fixed Xi, Yi, Zi coordinates
of atom i.

In p-H2 crystals or other matrix hosts, it may not be advisable to
separate off translation of the center-of-mass, since this motion
then takes place in a cage, and thus affects the host’s phonon spec-
trum, i.e., the three translations of the guest molecule in general
mix with various phonons of the host matrix, and via that mixing,
with various low-frequency modes of the molecule itself. We will
not consider this complication here.
7. Recipe for defining the overall rotational coordinates v,h,/

For an isolated molecule in free space it is often convenient to
separate overall rotation from the other motions by defining a mol-
ecule-fixed axis system whose orientation with respect to the lab-
oratory-fixed axis system determines the molecular rotational
angles. Again, this may not be advisable in matrix hosts, since
the overall molecular rotations are then hindered, and form part
of the librational phonon spectrum, with the consequent possibil-
ity of mixing with low-frequency molecular vibrations. Even for a
molecule in free space, the concept of overall molecular rotation
may lose its meaning if the bonds between atoms are not long-last-
ing enough or not sufficient in number to define a ‘‘molecular
shape.” This can happen, for example, in a very loosely bound
bimolecular complex A–B or in a metal droplet. In the former case,
it may be convenient to use two rotating molecular axis systems,
one fixed in A and one fixed in B, with vector addition used to de-
fine the total angular momentum components. In the latter case,
the total angular momentum should probably be treated as it is
in atoms, i.e., without introducing a molecule-fixed axis system
at all.

In this article we restrict consideration to molecules where the
number of long-lasting bonds is large enough that picturing the
subset of tightly bonded atoms in the molecule as a rotating nearly
rigid body still has some meaning. The problems of this subsection
are thus: (i) to somehow define an axis system fixed in the mole-
cule, and then (ii) to relate its orientation to the orientation of
the laboratory-fixed axis system.

The second goal, which we consider first, is traditionally accom-
plished via the definition of a direction-cosine matrix. The compli-
cation here is that a very large number of direction cosine matrices
have been defined in the scientific literature of various countries,
disciplines, and eras, each with a slightly different arrangement
of sines, cosines, and minus signs, and with slightly different sym-
bols for the three Eulerian angles. To avoid inconsistencies over the
course of a long career (and thereby a trail of incorrect results) a
spectroscopist should ideally make the choice of direction cosine
matrix only once in his/her lifetime and then stick with it. In this
article we use the direction cosine matrix given in Appendix I of
the book by Wilson et al. [7], which then makes all of the vibra-
tion-rotation results (equations) in that book usable without
change. We thus choose:

S�1ðv; h;/Þ ¼
þcvchc/� svs/ �svchc/� cvs/ þshc/

þcvchs/þ svc/ �svchs/þ cvc/ þshs/

�cvsh þsvsh þch

2
64

3
75;

ð6Þ
where cv and sv represent cosv and sinv, respectively, etc. The
rows of this direction cosine matrix are labeled by laboratory-fixed
axes X, Y, Z. The columns are labeled by the molecule-fixed axes x, y,
z. This matrix does not have a standard name in the spectroscopic
literature, but we call it S�1(v,h,/), as indicated in Eq. (6). We inter-
pret it to mean that if the molecule-fixed components x, y, z of a gi-
ven vector are contained in the column vector v, then the
laboratory-fixed components X, Y, Z of that same vector are con-
tained in the column vector V = S�1(v,h,/) v. This is another exam-
ple of the algebraic approach used here (the geometric approach
would tend to first visualize S�1 using the several intersecting
planes in Fig. I-2 of [7], and then interpret S�1 as rotating a vector
pointing in one direction into a vector pointing in some other direc-
tion). Note for future use, that because the determinant of S�1 is +1,
it can only relate the coordinates in one right-handed (left-handed)
coordinate system to those in another right-handed (left-handed)
system. We consider here only right-handed coordinate systems.
A collection of useful mathematical properties of the direction co-
sine matrix in Eq. (6) is given in Appendix C.

Returning to the first goal, i.e., the question of how best to fix an
axis system in the molecule (which often deserves a reasonable
amount of thought), we note that two possible definitions are easy
to understand: (i) We can use an instantaneous principal axis sys-
tem. (ii) We can use the instantaneous bond between two chosen
atoms to define the z axis, and the instantaneous bond from one
of these to a third atom to define the xz plane. For most microwave
studies, all SAVs are removed from explicit consideration, and their
effects are taken into account by some sort of (usually implicit)
contact transformation followed by (again usually implicit)
small-amplitude vibrational averaging of all coefficients for the
LAM-rotation terms. When SAVs are ignored and when none of
the three atoms chosen for special treatment in (ii) are exchanged
by the PI operations with other atoms, then the two coordinate
systems described above can be quite useful. When SAVs are
explicitly considered, however, as is necessary when symmetry
species, selection rules, etc. are desired for infrared spectra involv-
ing SAV excited states, then the two coordinate systems defined
above have the conceptual disadvantage that the SAVs introduce
a high-frequency vibrational jitter into the rotational variables.
8. Reasons for restricting consideration to LAM-rotation
problems at this point

It turns out that a slight generalization of the Eckart condition
[13] together with the Sayvetz conditions [14] can be used to de-
fine the molecule-fixed axis system when SAVs (and especially
their excited states) are to be considered, but there is a fundamen-
tal problem associated with the SAV displacement vectors [15], as
well as with molecular orbitals for the electrons in molecules with
LAMs, that leads to group-theoretical ambiguities. Consider as an
example the vibrational displacement vector for the carbon atom
in methanol CH3OH [16]. Should this displacement vector be de-
fined so that it remains constant in direction with respect to the
COH plane as the methyl top rotates, or should it be defined to re-
main constant in direction as viewed from the rotating CH3 top? It
turns out that PI group theory is flexible enough to deal with either
definition for this and other displacement vectors in the molecule,
but the symmetry species determined for the SAV vibrational de-
grees of freedom change when the definition changes. This change
in symmetry species is easier to imagine in the somewhat exotic
molecule CH3–C„C–C„C–CHO. We can then ask if the best zer-
oth-order small-amplitude vibrational basis set for the stretches
of the methyl group should consist of one non-degenerate A and
one degenerate E vibration, as would make sense if the methyl
group cannot feel any effects from the distant aldehyde group, or
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should this basis set consist of two in-plane A0 stretches and one
out-of-plane A00 stretch, as would be appropriate if the methyl
group can clearly feel effects of the planar aldehyde group.

A similar problem obviously arises for molecular orbitals
expressed as a linear combination of atomic p orbitals, since the
direction of a p orbital in a molecule with two parts rotating
against each other can be defined to follow one part or the
other.

While it will be disappointing to many readers to abandon
infrared (vibrational) and visible/UV (electronic) transitions at this
point, it is necessary to limit this already long pedagogical article
by excluding electronic motions and SAVs from in-depth
consideration.

9. Recipe for a general equation

It is possible to write a widely applicable general equation
relating laboratory-fixed (Ri) and molecule-fixed coordinates un-
der the four assumptions that: (i) we want to separate off trans-
lation of the center of mass (R), (ii) we want to define a unique
molecule-fixed x, y, z axis system, whose orientation is described
by the Eulerian angles v,h,/ in the direction cosine matrix of Eq.
(6), (iii) we want to define some LAMs, represented by the curvi-
linear coordinates cj, and (iv) we want to define some SAVs, de-
scribed by infinitesimal Cartesian atomic displacement vectors di

in the molecule-fixed axis system. Spectroscopists faced with a
molecule not satisfying these four assumptions will require a
modified version of the formalism below (as examples of mole-
cules that do not satisfy one or more of these four assumptions,
we recall here the three types briefly discussed in Sections 6 and
7, i.e., molecules in a matrix cage, bimolecular complexes A-B
within which the A and B molecules each carry out nearly-free
three-dimensional rotation, and atomic droplets with no long-
lasting interatomic bonds). Many of the general principles can
still be applied, but the details of the rest of this paper are only
applicable to LAM-rotation problems satisfying the four require-
ments in this paragraph.

The following two expressions are suggested by assumptions (i)
and (ii) above:

Ri ¼ Rþ laboratory-fixed Cartesian coordinates

relative to the center of mass ð7aÞ
Ri ¼ Rþ S�1ðv; h;/Þ½molecule-fixed Cartesian

coordinates in a center-of-mass system� ð7bÞ

The molecule-fixed Cartesian coordinates of each atom i in a center-
of-mass system in Eq. (7b) are then further separated into a refer-
ence configuration part ai(LAMs), which describes the (frequently
large) changes in atom position as a function of the LAMs, and a
SAV infinitesimal displacement vector part di.

Ri ¼ Rþ S�1ðv; h;/Þ½aiðcjÞ þ di� ð8Þ

As mentioned above, by ignoring the SAVs, we can simplify Eq. (8)
to read

Ri ¼ Rþ S�1ðv; h;/ÞaiðcjÞ: ð9Þ

At this point a little mathematical cheating occurs, because the
number of degrees of freedom on the left of Eq. (9) does not match
the number of degrees of freedom on the right. We normally think
of this as just setting all di = 0 and then ignoring them. The uncer-
tainty principle then requires, however, that all momenta in the
molecular Hamiltonian conjugate to the di become infinite, and
these infinities should in principle be shown mathematically to be
harmless before proceeding. A treatment of the di which avoids
setting them to zero requires the introduction of constraints, as
briefly discussed in Appendix D. We shall be concerned for most
of the rest of this article only with definitions and transformations
of the ‘‘di-free” variable set (R, v, h, /, cj) on the right of Eq. (9).

One may be tempted to ask at about this point: Can’t we just
skip this tedious discussion of coordinates and go straight to the
desired group-theoretical results? Such a simplified and direct ap-
proach may indeed exist, but the author doesn’t know how to find
it, so the formulation of that approach is left as an exercise for the
reader.

Before proceeding, it is necessary to emphasize what is meant
mathematically by the word ‘‘variable” in this article. Consider
putting all symbols in every equation into one of three mutually
exclusive categories, i.e., consider classifying all symbols as ‘‘vari-
ables,” ‘‘parameters,” or ‘‘functions of the variables and/or param-
eters.” Variables are then the degrees of freedom with respect to
which differentiation is carried out by the momentum operators
in the Hamiltonian, or equivalently the degrees of freedom with re-
spect to which integration is carried out in the definite integrals
arising when quantum mechanical matrix elements are evaluated.
Parameters is a shorthand term meant to include true constants
(like p) as well as molecular constants occurring in the Hamilto-
nian (like equilibrium bond lengths and atomic masses). The
group-theoretical variable transformations in the partial differen-
tial operator representing the quantum mechanical Hamiltonian
and in the definite integrals representing matrix elements, do not
ever involve transforming the parameters. Essentially no one
would be tempted to change p into 2 during some group theoret-
ical operation, but the temptation is significantly greater when
both quantities are represented by letters. For example, we should
consider changing b1 into b2 as part of a group-theoretical transfor-
mation only if both are variables.

We note in passing, that this same distinction between param-
eter and variable is made when one says that the electronic wave-
function of a diatomic molecule contains the internuclear distance
r as a parameter. The mathematical implication is that the fixed-
nucleus electronic Hamiltonian problem does not involve differen-
tiation or integration with respect to r. The internuclear distance
only becomes a variable in the second stage of the Born–Oppenhei-
mer approximation, when the vibrational Hamiltonian is
considered.
10. Generalized recipe for transformation of the variables in a
function

Before considering PI variable transformations for the molecule-
fixed coordinates in detail we must give a precise definition of the
recipe for how a given transformation of variables T is to be carried
out on a given function f of these variables. This is necessary be-
cause a number of different conventions exist (which we do not
discuss here). To describe the recipe used here, which is just a gen-
eralization of that described in section 2, it is convenient to distin-
guish between old (pre-transformation) variables, and new (post-
transformation) variables. Begin with a function of the old
variables

f ðwold; xold; yold; zoldÞ: ð10Þ

Define the variable transformation T by equations of the form

wnew ¼ gwðwold; xold; yold; zoldÞ
xnew ¼ gxðwold; xold; yold; zoldÞ
ynew ¼ gyðwold; xold; yold; zoldÞ
znew ¼ gzðwold; xold; yold; zoldÞ:

ð11Þ

Then define
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Tf ðwold; xold; yold; zoldÞ � f ðwnew; xnew; ynew; znewÞ
¼ f ½gwðwold; xold; yold; zoldÞ; gxðwold; xold; yold; zoldÞ;

gyðwold; xold; yold; zoldÞ; gzðwold; xold; yold; zoldÞ�
¼ hðwold; xold; yold; zoldÞ; ð12Þ

i.e., every place that wold occurs in f, it must be replaced by wnew, as
given by gw(wold,xold,yold,zold), etc. This replacement then yields a
(frequently different) function of wold,xold,yold,zold, which is ready
either for comparison with the original function or for a subsequent
variable transformation using exactly the same procedure, but for a
different transformation T1.

When we speak of determining variable transformations in this
article, we mean constructing a table like Table 2 of [12]. The first
row of the table contains the unchanged ‘‘old” variables, corre-
sponding to (the lack of) transformation caused by applying the
identity operation. These old variables are in fact the translational,
rotational, and large-amplitude variables on the right of Eq. (9)
(which are represented above by the four variables w,x,y,z). Each
of the other rows contains the ‘‘new” variables for some given PI
operation expressed explicitly in terms of the ‘‘old” (not symboli-
cally as on the right of Eq. (11)). For the purpose of determining
symmetry species, the rows in the table can be limited to one rep-
resentative PI operation from each class.
11. Review of molecule-fixed coordinate transformations for
rigid molecules

In this section, we work through the details of coordinate trans-
formations caused by PI operations applied to ‘‘rigid” molecules,
i.e., to molecules with no LAMs, because: (i) these transformations
can be described by simple fixed rules, (ii) these transformations
can be used almost without change in molecules with LAMs for
PIs that correspond to point-group operations, and (iii) these trans-
formations can serve as the basis for intuitive guesses in molecules
with LAMs when we consider PI operations that correspond to
point-group-like operations for only some part of the molecule.

Because the infinitesimal displacement vectors di of SAVs in ri-
gid molecules cause no special group-theoretical complications,
we retain them in our discussion of coordinate transformation
properties in this section. We do this not only for instructional pur-
poses, but also because a knowledge of the transformation proper-
ties of the di for the equilibrium (or other specially chosen)
configuration of a molecule with LAMs (i.e., a knowledge of the
point-group vibrational symmetry species and transformation
properties for that configuration) frequently permits rather accu-
rate intuitive guesses for the transformation properties of the
LAM coordinates under the subset of PI operations corresponding
to point-group operations for the chosen configuration.

For rigid molecules, pure permutations (i.e., permutations with
no *) always correspond to proper rotations. In fact, permutation
cycles of order n correspond to Cn about some axis, e.g.,
(12) ? C2, (345) ? C3, (1234) ? C4, etc. Proper rotations are repre-
sented in this section by the letter C. Permutation–inversions (i.e.,
permutations with a final *) always correspond (for rigid mole-
cules) to improper rotations (also often called sense-reversing
operations). Sense-reversing point-group operations come in three
types: mirror reflections r in a plane, inversion i with respect to a
point, and rotation–reflections Sn. In this section we represent all of
these by the letter B. Unlike the case for proper rotations, the rela-
tion between permutation–inversions and improper rotations is
not unique, e.g., hypothetical rigid molecules can be drawn such
that (12)(34)(56)* corresponds to either r or i.

For a rigid molecule, the analog of Eq. (8) becomes

Ri ¼ Rþ S�1ðv; h;/Þ½ai þ di�; ð13Þ
where the ai are constant parameters describing the equilibrium
structure in its principal axis system. The algebraic formulation of
transformations of the variables on the right of this equation under
point-group operations is the subject of the rest of this section.

11.1. Recipe for a proper-rotation point-group operation C

For the transformation of the SAV displacements di in Eq. (13),
we follow Ref. [7], i.e., we rotate a given di (together with the
tightly attached vector connecting it to the molecular center of
mass) about the center of mass until we can attach it to some other
identical atom. Mathematically, the first part of the recipe is then
(di)new = C (dj)old for some appropriate j. But how do we chose j
for given i, i.e., how are the atoms i and j related, or equivalently,
how do we define the integer function j(i)? The second part of
the di recipe is to pick j from an examination of the equation
aj = C�1 ai. (If this equation cannot be satisfied, then C is not a
point-group symmetry operation for the equilibrium configuration
described by the ai, and C should be dropped from consideration).

For the transformation of rotational variables we follow the rec-
ipe in Refs. [17,18] and seek some triple of Eulerian angles vnew,
hnew, /new such that S�1(vnew,hnew,/new) = S�1(vold,hold,/old) C�1. This
equation can always be solved for vnew, hnew, /new (albeit some-
times only implicitly [18,19]), since the product of two rotations
on the right is always a third rotation, which can then be repre-
sented by the direction cosine matrix on the left.

For the transformation of the center of mass we use the simple
recipe [17,18] Rnew = +Rold.

Consider for simplicity the example of a function only of (Ri)old

for atom i,

ffðRiÞoldg � ffRold þ S�1ðvold; hold;/oldÞ½ai þ ðdiÞold�g: ð14Þ

The recipe above then yields for the transformation T

TffðRiÞoldg � TffRold þ S�1ðvold; hold;/oldÞ½ai þ ðdiÞold�g ð15aÞ

¼ ffRnew þ S�1ðvnew; hnew;/newÞ½ai þ ðdiÞnew�g ð15bÞ

¼ ffRold þ S�1ðvold; hold;/oldÞC
�1½ai þ CðdjÞold�g ð15cÞ

¼ ffRold þ S�1ðvold; hold;/oldÞ½aj þ ðdjÞold�g ð15dÞ

¼ ffðRjÞoldg ð15eÞ

Eq. (15a) is just a statement that we are going to apply the transfor-
mation T to both sides of Eq. (14). Eq. (15b) replaces old variables by
new variables on the right hand side of Eq. (15a). Eq. (15c) expresses
the new variables in terms of the old, using the recipe for T given at
the beginning of this section. Eq. (15d) gives the results of letting
C�1 act on the quantities in square brackets. Eq. (15e) notes that
the expression in braces in Eq. (15d) is equal to the expression for
(Rj)old.

Consider now a set of n > 2 atoms arranged symmetrically
around a circle, i.e., atoms at the vertices of a regular n-gon, and
numbered such that C�1

n ai ¼ aiþ1. The reader can then easily show
that the effect of T on a function of the molecule-fixed variables is
equivalent to the effect of the PI operation (123. . .n) on a function
of the laboratory-fixed Cartesian coordinates of the atoms. As men-
tioned, close analogs of this procedure can be used in molecules
with LAMs to treat many cyclic permutations of the form (123. . .n).

11.2. Recipe for a sense-reversing point-group operation B

For the transformation of the SAV displacement variables, we
again follow Ref. [7], i.e., we ‘‘reflect, invert, or rotation-reflect” a
given di vector to some symmetrically related atom, so that
(di)new = B (dj)old for some appropriate j. The integer function j(i)
is defined by the equation aj = B�1 ai.
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For the transformation of rotational variables, one is at first
tempted to seek values for vnew, hnew, /new such that S�1(vnew, hnew,
/new) = S�1(vold, hold, /old) B�1. But this equation has no solution,
since the determinants of the two S�1 direction cosine matrices
are +1, while the determinant of the 3 � 3 matrix corresponding
to the sense-reversing operation B is �1. We again follow the rec-
ipe in Refs. [17,18] and seek vnew, hnew, /new such that S�1(vnew,
hnew, /new) = S�1(vold, hold, /old) [iB�1]. The product of the inversion
i times B�1 is now a 3 � 3 rotation matrix with determinant +1, so
that this equation always has a solution for vnew, hnew, /new. Note
that the inversion i must be considered when dealing with rota-
tional-angle transformations for all sense-reversing operations of
a rigid molecule, whether or not i is an element of the point group
for that molecule. Note further that iB takes rather simple forms,
since ir(xy) = C2(z), ii = E (the identity), and iSn(z) = C2(z)Cn(z).

For sense-reversing operations we take [17–19] Rnew = �Rold.
The recipe above then yields the following analog of Eq. (15)

TffðRiÞoldg � TffRold þ S�1ðvold; hold;/oldÞ½ai þ ðdiÞold�g ð16aÞ

¼ ffRnew þ S�1ðvnew; hnew;/newÞ½ai þ ðdiÞnew�g ð16bÞ

¼ ff�Rold þ S�1ðvold; hold;/oldÞ½iB
�1�½ai þ BðdjÞold�g ð16cÞ

¼ ff�Rold þ S�1ðvold; hold;/oldÞ½i�½aj þ ðdjÞold�g ð16dÞ

¼ ffð�RjÞoldg ð16eÞ

Eq. (16) has essentially the same meaning in words as Eq. (15), with
the main difference arising in (16d), where the 3 � 3 inversion ma-
trix i = �E coming from iB�1 changes both vectors in square brackets
into their negatives.

The reader can easily show for a pair of atoms 1,2 related by the
inversion (B = i) or by a reflection (B = r), that the transformation T
on the molecule-fixed variables is equivalent to the PI operation
(12)* acting on the laboratory-fixed Cartesian coordinates. A proof
that Sn has the PI form (12. . .n)* (for some atom numbering) is only
slightly more complicated. The procedure above can often be used
essentially without change for atoms in non-rigid molecules that
do not participate in the LAMs.

The 3 � 3 rotation matrix associated with C�1 in Eq. (15) or iB�1

in Eq. (16) is called the equivalent rotation in Ref. [2]. Equivalent
rotations are important because, as we shall see below, they
determine the symmetry species of the molecule-fixed compo-
nents of the electric dipole moment operator and of the total
angular momentum operator, as well as the symmetry properties
of the symmetric-top and asymmetric-rotor rotational basis
functions.

12. Strategies for guessing equivalent rotations for molecules
with LAMs

Before determining equivalent rotations, it is necessary to
choose a molecule-fixed axis system for the molecule. One com-
mon method is to use the principal axes (or nearly the principal
axes) of the equilibrium configuration of the molecule. For the Cs

equilibrium configuration of CH3OH, three variants of this method
would correspond to putting the y axis perpendicular to the plane
of symmetry, and the z axis along: (i) the principal a axis, (ii) the
CH3 symmetry axis, or (iii) the C–O bond. Another common meth-
od is to use the principal axes of a ‘‘highly symmetrical transition
state” for one of the LAMs, e.g., the principal axes of the planar
D3h configuration of NH3 at the top of its inversion barrier. In these
cases, and in any others where some initial ‘‘reference” configura-
tion is chosen, equivalent rotations for all PI operations contained
in the point group of the chosen reference configuration can be
found as described for rigid molecules in the preceding section.
We consider below general strategies for determining equivalent
rotations for internal-rotation-like LAMs and for inversion-like
LAMs.

The PI operation corresponding to internal rotation of a top with
n symmetrically equivalent atoms is (123. . .n). If the molecule-
fixed axis system is fixed to some part of the molecule external
to the top, the equivalent rotation can usually be taken to be the
identity E.

Some LAM motions (e.g., umbrella motions, H-transfer motions,
etc.) are ‘‘of order 2,” in the sense that one application of the LAM
takes the molecule from framework A to B and a second applica-
tion takes the molecule from B back to A. Under these circum-
stances, the corresponding PI operation is also of order 2, and the
equivalent rotation must therefore be either the identity or a C2

rotation about some axis. For the C2 case, clever choice of orienta-
tion for the molecule-fixed axes may put the C2 axis along the x, y,
or z axis, allowing use of the simple equations in Appendix C.

From the above two paragraphs, it is clear that if the PI opera-
tion for a given LAM is of order n, then the equivalent rotation must
have the form of Cp about some axis, where p is one of the factors of
n (including 1 and n).

For PI groups with many elements (e.g., G162 [12]), it will save
considerable time (usually a factor equal to the ratio of the number
of elements in the group to the number of generators) if one tries
to find equivalent rotations only for the generators of the PI group
(see Appendix B).
13. Strategies for finding LAM transformations

The guesses for equivalent rotations in the previous section
must be verified by a two-step process. (i) Each equivalent rotation
must be associated with a transformation of the LAMs. (ii) The
combined transformation must then be substituted into the right
side of Eq. (9) to verify that their combined effect does indeed pro-
duce the desired PI operation on the left of Eq. (9), analogous to
what was done in Section 11 for rigid molecules. But before deter-
mining LAM transformations, we have to define the LAM coordi-
nates. In this section we discuss strategies for defining the LAMs
and for guessing at their transformations, as well as the algebraic
procedure for verifying these guesses.

We note in passing, that it is possible to write small computer
programs to check the algebraically derived results for changes
caused by any transformation of variables on one side of an equa-
tion. It should also be possible to do and/or check much of the alge-
bra described in this paper with software designed to carry out
algebraic manipulations (provided one recognizes that possessing
such software does not eliminate all necessity for careful thought
and detailed understanding, as implied by the well known ‘‘gar-
bage-in, garbage-out” warning).

13.1. Internal rotation in a one-top molecule

Internal rotations are particularly simple. To specifically indi-
cate such LAMs we replace cj by the internal rotation angle a. In
general we would like each of the i = 1 to n atoms in the top to fol-
low the same trajectory as its neighbors, but with an angular offset
of some appropriate multiple of 2p/n. This can be expressed alge-
braically as

aiðaÞ ¼ a1½aþ 2pði� 1Þ=n�: ð17Þ

This trajectory can be made more explicit (but less general) as fol-
lows. We first choose a constant reference position a0

i for each atom
i (frequently corresponding to the equilibrium configuration in its
principal axis system). Then we select the subset of atoms (i 6 n)
that is to be rotated and define their a0

i and their LAM-dependent
positions ai(a) to satisfy
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a0
i ¼ S�1½2pði� 1Þ=n; 0;0�a0

1 ð18aÞ
aiðaÞ ¼ S�1ða;0; 0Þa0

i : ð18bÞ

All other atoms (i > n) are defined to be unaffected by a, so that for
them

aiðaÞ � a0
i : ð19Þ

As it happens, the rotations in Eq. (18) are about the z axis,
which will in general not be the direction of the single bond about
which internal rotation actually takes place. We have two choices.
The first approach, which seems simpler to the author when the ef-
fects of numerous symmetry operations must to be determined
and which is therefore the approach followed in this paper, is to al-
ways start with a set of constant reference positions a0

i that put the
internal rotation axis along the z axis. We can then first do the
internal rotation R(a) of the top about the z axis, and afterwards ro-
tate atoms in the whole molecule (i.e., atoms in both the top and
frame) to their true positions in our chosen molecule-fixed axis
system using some (frequently constant) matrix Q. This procedure
can be represented symbolically (although somewhat imprecisely)
by defining the a0

i structure as jtopi0 + jframei0, the structure with
the internally rotated top as R(a)jtopi0+jframei0, and the rotated
whole molecule as Q[R(a)jtopi0+jframei0].

The other approach would be to start from constant reference
positions a0Q

i that already have the molecule correctly oriented in
our chosen molecule-fixed axis system, i.e., to start symbolically
from jtopi0Q + jframei0Q. Since this starting point can be expressed
in terms of the a0

i structure with z along the top axis as
Qjtopi0 + Qjframei0, it is obvious that we need to apply the rotation
matrix QR(a)Q�1 to jtopi0Q to arrive at our internally rotated and
correctly oriented structure QR(a)Q�1jtopi0Q + jframei0Q.

13.2. Example: One-top molecule with a plane of symmetry

Consider a Cs molecule with all atoms lying in the plane, except
for a C3v methyl top, which has its symmetry axis in the plane
[20,21]. Choose as the reference configuration one of the three
equivalent equilibrium configurations of the molecule, with the y
axis perpendicular to the plane of symmetry and the z axis along
to the top axis. Number the methyl top atoms as H1, H2, H3, C4,
and all other atoms as An with n = 5, 6, 7, etc. The PI group for this
molecule is G6 and its generators are (123) and (23)*. If two of the
other atoms Ap and Aq are out of plane, but symmetrically placed
above and below the plane so they preserve Cs symmetry, then
the generators of G6 would be (123) and (23)(pq)*.

The problem now is to define a functional form for ai(a) and
then determine the equivalent rotations and transformations of a
corresponding to the two generating operations.

Since the z axis lies along the top axis we can use Eqs. (18) and
(19) above to describe the internal rotation motion. A complication
arises because a z axis along the top axis will in general not pass
through the center of mass, and Eq. (9) requires that the ai(a) be
in a center-of-mass system. This is easily remedied by defining a
center of mass vector A(a) as

AðaÞ ¼ ð1=MÞRimiaiðaÞ; ð20Þ

and subtracting it from the ai(a), leading to a modified Eq. (9) which
must be used in this example.

Ri ¼ Rþ S�1ðv; h;/Þ½aiðaÞ � AðaÞ�: ð21Þ

For the simple internal-rotation LAM considered here A(a) is actu-
ally independent of a, but for more complicated LAMs, the center
of mass will have the form A(LAMs).

We now insert Eqs. (18b) and (19) simultaneously into Eq. (21)
by putting a subscript i on the S�1(a,0,0) matrix to indicate that it
has the form S�1(a,0,0) for i = 1,2,3,4, and the form S�1(0,0,0) for
i P 5:

Ri ¼ Rþ S�1ðv; h;/Þ½S�1
i ða; 0;0Þa0

i � A�: ð22Þ

We can stop here if we are willing to work in a center-of-mass axis
system with z parallel to the methyl top axis. Frequently we want to
work in a PAM or RAM system [21], which have z along the principal
a axis or along the q direction, respectively, and which therefore re-
quire introducing an additional direction cosine matrix S�1(0,b,0) to
rotate the whole molecule about the y axis, leading to a final equa-
tion of the form

Ri ¼ Rþ S�1ðv; h;/ÞS�1ð0;b;0Þ½S�1
i ða;0;0Þa0

i � A�: ð23Þ

The angle b is independent of a in this simple example. It is Eq. (23)
that we will use to verify our (up to now tentative) transformation
equations.

Before going on, it is helpful to review the five coordinate sys-
tems involved in Eq. (23). The vectors a0

i are constants and describe
the Cs equilibrium structure in a coordinate system with y perpen-
dicular to the symmetry plane, xz in the molecular symmetry
plane, and z along the methyl top axis. The vectors
½S�1

i ða;0;0Þa0
i � A� describe an internally rotated molecule in a cen-

ter-of-mass coordinate system with y perpendicular to the symme-
try plane and z parallel to the methyl top axis. The vectors
S�1ð0; b;0Þ½S�1

i ða;0;0Þa0
i � A� describe an internally rotated mole-

cule in a center-of-mass coordinate system with y perpendicular
to the symmetry plane and z pointing in some chosen direction
in the molecular symmetry plane. The vectors
S�1ðv; h;/ÞS�1ð0; b;0Þ½S�1

i ða;0;0Þa0
i � A� describe an internally ro-

tated molecule in a center-of-mass coordinate system with X, Y
and Z parallel to a set of laboratory-fixed axes. The vectors
Rþ S�1ðv; h;/ÞS�1ð0; b;0Þ½S�1

i ða;0;0Þa0
i � A� describe an internally

rotated molecule in the laboratory-fixed coordinate system.
By using Eq. (18a) it becomes relatively easy to verify that the

equivalent rotation of the generator (123) is E and the transforma-
tion of a is anew = aold + 2p/3, in the sense of Eqs. (10)–(12). For
i = 1, 2, or 3:

ð123ÞRi ¼ ð123ÞfRþ S�1ðvold; hold;/oldÞS
�1ð0; b;0Þ

� ½S�1
i ðaold;0; 0Þa0

i � A�g

¼ Rþ S�1ðvnew; hnew;/newÞS
�1ð0;b; 0Þ

� ½S�1
i ðanew; 0;0Þa0

i � A�

¼ Rþ S�1ðvold; hold;/oldÞS�1ð0; b;0Þ

� ½S�1
i ðaold þ 2p=3;0; 0Þa0

i � A�

¼ Rþ S�1ðvold; hold;/oldÞS�1ð0; b;0Þ

� ½S�1
i ðaold;0; 0Þa0

iþ1 � A� ¼ Riþ1: ð24Þ

For brevity, an imprecise atom subscript labeling has been used in
the last line of Eq. (24), i.e., i = 4 really means i = 1. This reflects per-
mutation cycle notation, where the atom ‘‘after” 3 in the cycle (123)
is 1. The reader can easily show, by setting S�1

i ða;0; 0Þ ¼ E for i P 5
in Eq. (24), that (123) has no effect on the laboratory-fixed coordi-
nates of all those atoms in the molecule.

Since (23)* will be a point group operation for the equilibrium
configuration if H1 lies in the molecular symmetry plane, we can
determine its equivalent rotation from Section 11 if we require
a0

1 in Eq. (18a) to have no y component. In this case, B = r(xz)
and the equivalent rotation is ir(xz) = C2(y), with {vnew, hnew,
/new} = {p � vold, p � hold, p + /old), from Eq. (A.16). If we take
a = 0 at the equilibrium configuration with H1 in the symmetry
plane, we can guess that a small positive a will turn into a small
negative a upon reflection in the symmetry plane of the equilib-
rium configuration, i.e., anew = �aold. Point-group considerations
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for SAVs of the Cs equilibrium configuration indicate that the tor-
sion is of species A00, which is another way of guessing that
anew = �aold for (23)* (see Section 11). In any case, we are led to try

ð23Þ�Ri ¼ ð23Þ�fRþ S�1ðvold; hold;/oldÞS�1ð0; b;0Þ

� ½S�1
i ðaold;0; 0Þa0

i � A�g

¼ �Rþ S�1ðvnew; hnew;/newÞS�1ð0;b;0Þ

� ½S�1
i ðanew; 0;0Þa0

i � A�

¼ �Rþ S�1ðp� vold;p� hold;pþ /oldÞS�1ð0;b; 0Þ

� ½S�1
i ð�aold;0; 0Þa0

i � A�

¼ �Rþ S�1ðvold; hold;/oldÞC2ðyÞS�1ð0;b; 0Þ

� ½S�1
i ð�aold;0; 0Þa0

i � A�

¼ �Rþ S�1ðvold; hold;/oldÞS�1ð0;b; 0Þ

� ½S�1
i ðþaold;0; 0ÞC2ðyÞa0

i � C2ðyÞA�

¼ �Rþ S�1ðvold; hold;/oldÞS�1ð0;b; 0Þ

� ½S�1
i ðaold;0; 0ÞC2ðyÞa0

i þ A�; ð25Þ

for hydrogens i = 1, 2, 3. In Eq. (25) we have used the fact that the
center-of-mass position A has no y component, since the xz plane
was originally chosen to coincide with the molecular symmetry
plane. We have also used some of the properties of the direction co-
sine matrix cataloged in Appendix C to move the C2(y) operator to
the right. From Eq. (18a) we find

C2ðyÞa0
i ¼ C2ðyÞS�1½2pði� 1Þ=3;0;0�a0

1

¼ S�1½�2pði� 1Þ=3; 0;0�C2ðyÞa0
1

¼ �S�1½2pð1� iÞ=3; 0;0�a0
1

¼ �S�1½2pð4� iÞ=3; 0;0�a0
1; ð26Þ

i.e., C2ðyÞfa0
1;a

0
2;a

0
3g ¼ f�a0

1;�a0
3;�a0

2g. When these results are
substituted into the last of Eq. (25), we see that (23)* is indeed ob-
tained. The reader can easily show that (23)* simply changes the
sign of the laboratory-fixed coordinates of all other atoms in the
molecule.

Some of the changes required in Eq. (23) when more than one
internally rotating top is present in the molecule are mentioned
in Appendix E.

13.3. –NH2 or >N–H inversions

These ‘‘inversion” motions can be modeled mathematically to a
first approximation as straight-line motions which carry the
hydrogen atom(s) from one side of the local symmetry plane of
the ‘‘transition state” to the other. If the local symmetry plane hap-
pens to be xy, for example, we could try taking c = 0 at the transi-
tion state and requiring for the hydrogen(s) involved in the LAM:
aiðcÞx ¼ ða0

i Þx ¼ constant; aiðcÞy ¼ ða0
i Þy ¼ constant, and ai(-c)z =

�ai(c)z, with the two pyramidal equilibrium configurations corre-
sponding to c = ±c0. If the -NH2 case preserves an additional plane
of symmetry bisecting the H-N-H angle during the LAM, we should
also require, if that plane is yz and the two hydrogens are labeled 1
and 2, for example, that ða0

2Þx ¼ �ða0
1Þx; ða0

2Þy ¼ þða0
1Þy, and a2(c)z =

+a1(c)z.
These ‘‘inversion” motions can also be modeled mathematically

to a first approximation using direction cosine matrices, if they are
considered to be ‘‘internal rotations” of the hydrogens that do not
take place about a chemical bond. For example, if the –NH2 or >NH
functional group preserves a local xz symmetry plane during its
umbrella motion (so the internal rotation is about the y axis),
and if i labels a hydrogen atom bonded to the nitrogen, then the
internal-rotation model leads to replacing the expression in square
brackets in Eq. (21) by ½S�1ð0; c;0Þða0

i � a0
NÞ þ a0

N � A�.
A question that must be decided when treating inversions is the

choice of reference configuration, e.g., should we take the reference
configuration for NH3 to be its C3v equilibrium configuration or
should we take it to be its D3h planar ‘‘transition state” configura-
tion. For ammonia, one often uses the D3h configuration because
D3h is isomorphic with the full PI group for inverting ammonia.
From the author’s experience, the most convenient choice for ref-
erence configuration is the one with highest symmetry. Further-
more, it is convenient to put the zero of an inversion coordinate
c at the transition state, so that symmetry operations take the form
c ? ±c. This choice of zero is in fact convenient for any coordinate
that describes a back-and-forth motion between only two molecu-
lar frameworks.

13.4. Generalized inversions

For lack of a better word, the term ‘‘inversion” is sometimes
used in a generalized sense to mean any motion which takes the
molecular structure back and forth along a single path connecting
two (and only two) energetically equal end-points. Many umbrella
motions, hydrogen transfer motions, ring-puckering motions, etc.
are examples of this, and their LAMs can often be treated mathe-
matically just as described for the amino inversions in Section
13.3 above.

14. Application of PI symmetry operations to rotational
operators and basis functions

Task (iv) begins in this section, where we use equivalent rota-
tion ideas to determine symmetry species for functions of the rota-
tional variables (v,h,/). For the total angular momentum operator,
we have by definition

Jx

Jy

Jz

2
64

3
75 ¼ Sðv; h;/Þ

JX

JY

JZ

2
64

3
75; ð27Þ

where Jx, Jy, Jz are molecule-fixed components and JX, JY, JZ are labo-
ratory-fixed components of the total angular momentum operator.
The laboratory-fixed components, e.g.,

JX ¼ �i�hRimi½Yið@=@ZiÞ � Zið@=@YiÞ�; ð28Þ

are immediately seen to be invariant under any PI symmetry oper-
ation. Therefore, if we apply a given pure-permutation symmetry
operation T to the molecule-fixed components on the left of Eq.
(28), we have

T

Jx

Jy

Jz

2
64

3
75 ¼ T Sðv; h;/Þ

JX

JY

JZ

2
64

3
75 ¼ C Sðv; h;/Þ

JX

JY

JZ

2
64

3
75 ¼ C

Jx

Jy

Jz

2
64

3
75; ð29Þ

where C is a proper rotation. A similar equation, with C replaced by
iB (which is again a proper rotation) is obtained for any PI operation
with a *. The form of the matrices C and iB determine the characters
for the basis set {Jx, Jy, Jz} for each symmetry operation in the PI
group, and thus determine also the symmetry species for Jx, Jy,
and Jz in that group.

In general a procedure like that used for methane [18,19] (not
discussed here) is required to determine the transformation prop-
erties of the symmetric top rotational functions, but for many mol-
ecules of interest, the matrices C and iB (see Section 11) take one of
the simple forms E, Cn(z), C2(x) or C2(y), so that the new Eulerian
angles can be written as explicit functions of the old. These explicit
transformations can be used to determine transformations of the
symmetric top rotational basis functions [17],
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CnðzÞjKJMi ¼ expð2piK=nÞjKJMi
C2ðxÞjKJMi ¼ ð�1ÞJj � KJMi
C2ðyÞjKJMi ¼ ð�1ÞJ�K j � KJMi:

ð30Þ

If the z,x,y axes correspond (approximately) to a,b,c, we can write
for the asymmetric-rotor basis functions

C2ðzÞjJKaKci ¼ ð�1ÞKajJKaKci
C2ðxÞjJKaKci ¼ ð�1ÞKaþKcjJKaKci
C2ðyÞjJKaKci ¼ ð�1ÞKcjJKaKci:

ð31Þ

The symmetry species in the PI group for rotational functions can be
determined from these equations and the PI group character table.

15. Application of PI symmetry operations to several LAM basis
set functions

For internal rotation problems it is convenient to use torsional
basis functions of the form exp(ima), where m is a positive or neg-
ative integer. For n-fold barrier problems, it is sometimes more
convenient to represent these as exp[i(nk + r)a], where k is a posi-
tive or negative integer and r is an integer in the range 0 6 r 6 n/2.
The symmetry species of the torsional functions are then partially
determined by the value of r, where ‘‘partially” here means that
the 1 and 2 subscripts on A and B species can be defined only after
taking the linear combinations exp[i(nk + r)a] ± exp[-i(nk + r)a]
when r = 0 or n/2.

For multiple-top problems the basis functions are products of
the individual top basis functions, e.g., for a three-top molecule
[12] one has exp(im1a1) exp(im2a2) exp(im3a3). If some or all of
the tops are equivalent, exchange of the ai variables must be con-
sidered when determining symmetry species (such exchanges may
force one to expand one’s original guess for a small basis set
belonging to a given symmetry species).

Many LAMs, that are not strictly speaking internal rotations, but
that involve passing through n symmetrically equivalent positions
along a ‘‘circular” path which only allows the system point to go
directly from position p to positions p ± 1, can be described by an
angular coordinate with symmetry transformations similar to
those used above for internal rotation [22,23].

For large-amplitude motion between two symmetrically equiv-
alent wells separated by a barrier, one can use a basis set of har-
monic oscillator functions centered at the top of the barrier. In
this case, even v functions are even and odd v functions are odd
with respect to c ? �c. When using a tunneling approach, har-
monic oscillator functions centered at the minimum of each well
are often convenient. This complicates symmetry determinations
a bit, because c ? �c turns LAM functions in one well into those
for the other well. For example, if the equilibrium values for an
inversion coordinate are ±co, where c = 0 at the top of the barrier,
then we can take a basis set of harmonic oscillator vibrational func-
tions in each well, of the form

w1ðcÞ ¼ wHO
v ðcþ coÞ ð32aÞ

w2ðcÞ ¼ wHO
v ðc� coÞ; ð32bÞ

where the functions in Eq. (32a) are centered at the minimum of
well 1, i.e., at c = �co, while the functions in Eq. (32b) are centered
at the minimum of well 2, i.e., at c = +co. Transformations under
c ? �c then become

w1ð�cÞ ¼ wHO
v ð�cþ coÞ ¼ ð�1ÞvwHO

v ðc� coÞ ¼ ð�1Þvw2ðcÞ ð33aÞ
w2ð�cÞ ¼ wHO

v ð�c� coÞ ¼ ð�1ÞvwHO
v ðcþ coÞ ¼ ð�1Þvw1ðcÞ: ð33bÞ

Eq. (33) indicates that w1(c) ± w2(c) transforms into ±(-1)v times it-
self under c ? �c.
16. Application of PI symmetry operations to the electric dipole
moment operator

To obtain electric-dipole selection rules on the rotational and
LAM quantum numbers it is necessary to express one or more of
the laboratory-fixed components of the dipole moment operator
l in terms of the molecule-fixed coordinates. For the purpose of
determining symmetry species, the laboratory-fixed components
lX, lY, lZ of l can be written symbolically as

lL ¼ RieiRi; ð34Þ

where either the subscript L or the upper-case subscripts X,Y,Z on l
indicate that its vector components are taken along the laboratory-
fixed Cartesian axes. It is quickly seen that all components of lL

transform into themselves under pure permutations and into their
negatives under permutation–inversions, which makes
C(lX) = C(lY) = C(lZ) equal to one of the non-degenerate symmetry
species in the character table for the molecular PI symmetry group.
This PI-group symmetry species of lL can be used to determine
electric-dipole selection rules on the rovibronic (i.e., rotation-
LAM-SAV-electronic) symmetry species of the energy levels.

The symmetry species of the molecule-fixed components lx, ly,
lz of the dipole moment operator (indicated by lM or lower-case
x,y,z subscripts) can be found from the equation

lM ¼ Sðv; h;/ÞlL ð35Þ

together with the previously determined symmetry species for lL

and the previously determined equivalent rotations for each PI
operation in the molecular symmetry group, just as was done for
J in Eqs. (27)–(29). Having determined the symmetry species of
lM, we: (i) turn Eq. (35) around, (ii) keep only the laboratory-fixed
Z component of the dipole moment operator, and (iii) indicate the
dependence of the molecular-fixed components on the LAMs, lead-
ing us to write

lZ ¼ k � S�1ðv; h;/ÞlMðLAMsÞ: ð36Þ

The dipole moment operator lM(LAMs) will only be useful if the
LAM-dependence is expressed explicitly. It is normally convenient
to use Fourier expansions for angular variables (i.e., variables with
periodicity 2p) and Taylor expansions for other variables (e.g.,
inversion or hydrogen-transfer variables). If we consider the exam-
ple of a molecule with one internal rotation LAM a and one hydro-
gen-transfer LAM c [24], then we must determine the species of
products of the type

cp cosðqaÞ ð37aÞ
cp sinðqaÞ ð37bÞ

for various values of the integers p and q. Only products in Eq. (37)
with the same symmetry species as lx can be used in the expansion
of lx(LAMs), etc.

Eq. (36) then takes the more useful form

lZ ¼ S�1ðv; h;/ÞZxlxðc;aÞ þ S�1ðv; h;/ÞZylyðc;aÞ

þ S�1ðv; h;/ÞZzlzðc;aÞ: ð38Þ

If we suppose that the molecule-fixed x, y, z axes correspond (or
nearly correspond) to the principal axes b,c,a, then matrix elements
of the direction cosine components S�1(v,h,/)Zx, S�1(v,h,/)Zy, and
S�1(v,h,/)Zz in the rotational basis set will correspond to traditional
b-type, c-type and a-type transitions, respectively. If the symmetry
species of any of the molecule-fixed dipole moment components is
A1, then the first term in the expansion of this component can take
a non-zero constant value (can correspond to a permanent dipole
moment) and can give rise to a pure rotational transition in the
LAM-rotational basis set. Components of other symmetry species
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will have first terms in their expansions which vanish for some va-
lue(s) of c and/or a. Nonvanishing matrix elements of these com-
ponents will require a change in some quantum number(s) of the
LAM basis set. In tunneling problems, for example, these compo-
nents will often give rotational transitions across some tunneling
splitting.

In discussing matrix elements of the dipole moment operator in
the previous paragraph we focused on selection rules in the basis
set, because basis sets are normally chosen to have ‘‘good” quan-
tum numbers, which then obey well defined selection rules and of-
ten also obey selection rules that are familiar from spectroscopic
experience with rigid molecules. When LAMs are present, however,
LAM-rotation interactions are often large enough to cause the good
quantum numbers of the basis set to be much less good in many of
the heavily mixed final eigenfunctions of the Hamiltonian opera-
tor. One consequence of such a partial destruction of the rotational
quantum numbers Ka and Kc is the extension by many authors of
the rigid-molecule notation for rotational transitions, so that it in-
cludes a-type, b-type, c-type and d-type transitions, where e(ven)
and o(dd) changes in the Ka,Kc quantum numbers are eo, oo, oe,
and ee, respectively. In molecules with LAMs, traditional ideas
associating changes in Ka and Kc with the direction of the dipole
moment component causing the transition must often be aban-
doned (and must certainly be abandoned if d-type transitions are
present).
17. Conclusion

In this short article it is not possible to cover all necessary de-
tails for advanced applications of PI group theory. A list of topics
appropriate (and often necessary) for treatment of LAM-rotation
problems, but omitted here (some of which were alluded to earlier)
would include: (i) complex characters and the relation of time
reversal to separable degeneracies; (ii) subtleties associated with
different definitions of molecule-fixed coordinate systems, i.e.,
those that are fixed in one or another part of the floppy molecule
versus those that try to maintain some ‘‘average position” between
the moving parts; (iii) multiple-valued coordinate systems that
arise when two chemically distinct LAMs (or one LAM and one
overall rotation) connect the same pair of equilibrium frameworks,
and the n-fold extended PI groups that they lead to; (iv) ‘‘axis-
switching” effects on energy levels and intensities when one or
more of the LAMs reorients the molecule-fixed principal axis sys-
tem; (v) very loosely bound molecular complexes requiring a sep-
arate ‘‘molecule-fixed axis system” in each constituent molecule;
(vi) derivation of the classical and quantum mechanical kinetic en-
ergy operator for molecule-fixed coordinates containing LAMs; and
(vii) parameterization of multi-dimensional tunneling splittings in
rotating molecules. There is also the whole set of questions associ-
ated with SAVs and molecular orbitals in floppy molecules, which
were ignored here, e.g.: (i) what is the best way to determine what
part of a floppy molecule the SAV displacements of each atom
should be locked to, and how should the associated non-unique-
ness of symmetry species for the SAVs be dealt with, (ii) under
what circumstances do Berry phase effects become important for
LAMs, (iii) what kind of large LAM-electronic interactions result
from defining molecular orbitals as linear combinations of atomic
orbitals, when the mixing coefficients vary rapidly during the
LAMs, or (iv) how should the symmetry of molecular orbitals be
treated when the positions of many atoms are quite delocalized
and fixed-nucleus thinking is no longer a valid zeroth-order
approximation.

As the reader can see, the present article discusses only a por-
tion of the tools necessary to deal with the full range of spectro-
scopic problems arising in molecules with LAMs. Nevertheless, it
is hoped that the material covered will allow those readers with
a relatively simple LAM problem, or with an LAM problem similar
to one already treated in the literature, to deal with the situation
by themselves. For readers with more complicated LAM problems,
it is hoped that this material will take them one step further down
the road, so they can ask for advice with more understanding than
they had before of the ‘‘useful” questions and of the concepts in-
volved in the possible answers.
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Appendix A. Recipe for rapid multiplication of permutation–
inversion operations

Multiplication of an even number of *’s results in no *. Multipli-
cation of an odd number of *’s results in a *. Multiplication of a se-
quence of permutations can be carried out by starting with the
atom subscript 1 and seeing what it is ultimately replaced by when
the permutation is read from the right to the left; then starting
with that replacement subscript and seeing what it is replaced
by; etc. Using ?’s as a shorthand notation for ‘‘is replaced by”
we schematically represent in Eq. (A.1) the steps in computing
the product of four permutations. Note that there are always four
?’s in this example, because we must keep track of what each of
the four permutations does. Mechanically speaking, the four ar-
rows after the first equal sign in Eq. (A.1) correspond to moving
one’s finger from right to left along (1236)(345)(12)(346), accom-
panied by the words: ‘‘1 is replaced by 1 by (346), 1 is replaced
by 2 by (12), 2 is replaced by 2 by (345), 2 is replaced by 3 by
(1236).” The final answer (13564)(2) is thus determined by only
six right-to-left passes of the finger. Note that only the last equal
sign represents a true equality with the first expression on the left,
since the intermediate ‘‘equalities” are not complete.

ð1236Þð345Þð12Þð346Þ ¼ ð1;1! 1! 2! 2! 3 ¼ ð13;3

! 4! 4! 5! 5 ¼ ð135;5! 5

! 5! 3! 6 ¼ ð1356;6! 3! 3

! 4! 4 ¼ ð13564;4! 6! 6! 6

! 1 ¼ ð13564Þð2;2! 2! 1! 1

! 2 ¼ ð13564Þð2Þ ðA:1Þ
Cycles of length 1 are normally not written, so that
(13564)(2) = (13564).

By successively applying the four operations on the left of Eq.
(A.1) to the functions in Eq. (1a) or (1c), starting with the right-
most permutation, one can verify that the result obtained is the
same as that obtained by applying (13564) to these functions
directly.

Appendix B. Reducing the time required to find the class
structure and character table for a PI group by considering only
the generators of the group

B.1. Class structure

For each generator A, B, C, etc. there will be some exponent n
such that

An ¼ E; ðA:2Þ

where E is the identity and n is called the order of A. A pure permu-
tation cycle of length n is of order n, e.g., (123)3 = E and (12567)5 = E,
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etc. This is not true when a * is present on cycles of odd length, e.g.,
[(123)*]3 = E*, but [(123)*]6 = E. For each pair of generating elements
there will be some commutation relation of the form

BA ¼ ApBqCr . . . Ds ðA:3Þ

Most commutation relations will only involve A and B on the right-
hand side of Eq. (A.3). The author has occasionally had to consider
commutation relations where a third element C was required
[25], but has not yet had to deal with relations where a fourth ele-
ment D was also required.

Chose a standard order for the generators (the standard order
here is alphabetical) and represent each element of the PI group
in the form (assuming four generators for this example)

ApBqCrDs; ðA:4Þ

where the exponents p, q, r, s vary between 0 and the value n from
Eq. (A.2) for that generator.

Eq. (3) for determining classes can then be written

P ¼ ðD�kC�jB�iA�hÞðApBqCrDsÞðAhBiCjDkÞ; ðA:5Þ

where X and Q from Eq. (3) are given by X = (AhBiCjDk) and
Q = (ApBqCrDs), and where A�h is shorthand for An�h, with n given
by Eq. (A.2), etc. One then makes repeated use of the set of generat-
ing equations analogous to Eq. (A2) and (A3) to bring the non-stan-
dard order of the generators in Eq. (A.5) into an expression like Eq.
(A.4) with standard order.

To be more specific, consider CH3F with a hypothetically chem-
ically feasible inversion carried out by internally rotating an H2

pair against the CHF group. One set of generators of the feasible
PI group G12 is then A = (123), B = (12), and C = E* (but there are
other possibilities as well). The generating equations are

A3 ¼ B2 ¼ C2 ¼ E
BA ¼ A2B
CA ¼ AC
CB ¼ BC

ðA:6Þ

A general element of G12 can be represented by ApBqCr, where
0 6 p 6 2 and 0 6 q, r 6 1. This illustrates the fact that very often
the number of elements of the group will be the product of the or-
ders n of the various generating operations. Thus, for checking pur-
poses, if the factors of the number of elements in one’s PI group
contain large prime numbers, one should be suspicious (e.g., 33,
34, 35, 37, 39 are suspicious values for the number of elements in
a molecular symmetry group, while 32 and 36 are not.)

Now consider

P ¼ ðC2�jB2�iA3�hÞðApBqCrÞðAhBiCjÞ ðA:7Þ

for given p,q,r and all allowed values of h,i,j. The generating equa-
tions show that C commutes with A and B, so we can immediately
collect all C’s at the far right and obtain

P ¼ ðB2�iA3þp�hÞðBqÞðAhBiÞCr ðA:8Þ

In this simple example, it would be relatively fast to just evaluate
the 36 cases explicitly, since 13 of them (i = q = 0 with h, p arbitrary,
and h = p = 0 with i, q arbitrary) lead immediately to P = Q. But for a
more complicated group, it would save time to derive from Eq. (A6)
that BqAp = A(2��q)pBq (using the notation 2��q = 2q to avoid super-
scripts on superscripts), so that one can write

P ¼ ðB2�iA3þp�hÞðAhð2��qÞBiþqÞCr ¼ B2�iA3þp�hþhð2��qÞBiþqCr

¼ A½3þp�hþhð2��qÞ�½2��ð2�iÞ�BqCr ; ðA:9Þ

and then derive A4p = Ap, so that for i = q = 0 and h = p = 0 we recover
P = Q as noted above, giving no new members for the class of Q,
while for the cases of q = 0 and q = 1 with h, i, p arbitrary, we find
Eqs. (A.10a) and (A.10b), respectively:

P ¼ AðpÞ½2��ð2�iÞ�Cr ðA:10aÞ
P ¼ AðpþhÞ½2��ð2�iÞ�BCr: ðA:10bÞ

Thus, from Eq. (A.10a) the class of A (p = 1, q = r = 0) contains A and
A2. The class of AC (p = 1, q = 0, r = 1) contains AC and A2C. From Eq.
(A.10b) The class of B (p = 0, q = 1, r = 0) contains B, AB and A2B,
while the class of BC (p = 0, q = r = 1) contains BC, ABC and A2BC.
Also from Eq. (A.10a) we find that the class of E (p = q = r = 0) con-
tains only E, and that the class of E* � C (p = q = 0, r = 1) contains
only E*. There are thus six classes in the PI group G12 for this exam-
ple, which we choose (somewhat arbitrarily) to list in the order {E},
{A, A2}, {B, AB, A2B}, {C}, {AC, A2C}, {BC, ABC, A2BC}.

A brute force method for finding the character table is given in
Section 4. One can also use group theoretical knowledge to note
that G12 above is the direct product of two groups, one of order 6
and one of order 2, i.e., G12 = G6 � G2, where G6 = {E, A, A2, B, AB,
A2B} and G2 = {E, E*}. Then apply the procedures of Section 4 to
the smaller groups separately, and use the rules for generating
characters of direct-product groups from the characters of the indi-
vidual groups [3–5].

Appendix C. Catalog of frequently used mathematical properties
of the direction cosine matrix

The concept of a direction cosine matrix is not only used to de-
fine the rotational variables, but it is also often used to rotate from
a temporary molecular-axis system to the principal-axis system, or
to describe LAMs corresponding to internal rotation of some moi-
ety about an atom-atom single bond (e.g., methyl top internal rota-
tion and protein folding). It can even be used to describe other
LAMs when large bond-length changes do not occur, e.g. an –NH2

inversion (rotation of the N–H bonds about an axis passing through
the N and lying in the NH2 plane) or conversion of trans bent acet-
ylene to cis bent (rotation of one C–H bond about an axis passing
through the C and perpendicular to the bent acetylene plane).
Thus, to help in relating transformations of the molecule-fixed
coordinates to the various PI operations, we summarize a number
of useful properties of the direction cosine matrix, which can be
proved by direct calculation using Eq. (6).

S�1ðv; h;/Þ ¼ Strðv; h;/Þ ðA:11aÞ

S�1ðv; h;/Þ ¼ S�1ð0;0;/ÞS�1ð0; h;0ÞS�1ðv; 0;0Þ ðA:11bÞ

S�1ðv;0; 0Þ ¼ S�1ð0;0;vÞ ðA:11cÞ

jS�1ðv; h;/Þj ¼ þ1 ðA:11dÞ

Note that both S�1(0,0,/) and S�1(v,0,0) represent right-handed
rotations about the z axis through an angle of / and v, respectively,
in the sense that a point originally on the positive x axis will move
in the positive y direction for small positive / or v. Similarly,
S�1(0,h,0) represents a right-handed rotation about the y axis, in
the sense that a point originally on the positive z axis will move
in the positive x direction for small positive h. Finally, S�1(+p/2, h,
�p/2) represents a right-handed rotation about the x axis, in the
sense that a point originally on the positive y axis will move in
the positive z direction for small positive h.

The implications of Eqs. (A.11a) and (A.11d) can be rewritten in
terms of components of the S�1(v,h,/) matrix, or for simplicity in
terms of its transpose S(v,h,/), as follows.

Sikðv; h;/ÞSjkðv; h;/Þ ¼ Skiðv; h;/ÞSkjðv; h;/Þ ¼ dij

eijkSimðv; h;/ÞSjnðv; h;/Þ ¼ emnpSkpðv; h;/Þ
eijkSmiðv; h;/ÞSnjðv; h;/Þ ¼ emnpSpkðv; h;/Þ;

ðA:12Þ
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where the repeated-index summation convention and the symbols
dij and eijk (where exxy = 0, exyz = +1, exzy = �1, etc.) have been used.
Eq. (A.12) simply states that rows 1, 2, 3 of S form a right-handed
orthonormal triple of vectors, and that columns 1, 2, 3 of S do also.

Consider next the three diagonal matrices corresponding to a
two-fold rotation about each of the Cartesian axes

C2ðxÞ ¼
þ1 0 0
0 �1 0
0 0 �1

2
64

3
75

C2ðyÞ ¼
�1 0 0
0 þ1 0
0 0 �1

2
64

3
75

C2ðzÞ ¼
�1 0 0
0 �1 0
0 0 þ1

2
64

3
75; ðA:13Þ

which also obey C2(x) C2(y) = C2(y) C2(x) = C2(z) and cyclic permuta-
tions thereof. These matrices obey the following commutation rela-
tions with parts of the S matrix

C2ðxÞSðv;0;0Þ ¼ Sð�v;0; 0ÞC2ðxÞ
C2ðyÞSðv; 0;0Þ ¼ Sð�v; 0;0ÞC2ðyÞ
C2ðzÞSðv; 0;0Þ ¼ Sðv; 0;0ÞC2ðzÞ
C2ðxÞSð0; h;0Þ ¼ Sð0;�h; 0ÞC2ðxÞ
C2ðyÞSð0; h;0Þ ¼ Sð0; h;0ÞC2ðyÞ
C2ðzÞSð0; h;0Þ ¼ Sð0;�h;0ÞC2ðzÞ

ðA:14Þ

It can be seen by taking the transposes of Eq. (A.14) that they also
hold if S is replaced by S�1. It is convenient to introduce two more
definitions

CnðzÞ � Sðþ2p=n; 0;0Þ
i � �E

ðA:15Þ

where E is the 3 � 3 identity matrix. It can be shown by direct cal-
culation using various equations above that

S�1ðvþ 2p=n; h;/Þ ¼ S�1ðv; h;/ÞC�1
n ðzÞ

S�1ðp� v;p� h;pþ /Þ ¼ S�1ðv; h;/ÞC2ðyÞ
S�1ð�v;p� h;pþ /Þ ¼ S�1ðv; h;/ÞC2ðxÞ

ðA:16Þ

Derivatives of the S matrices with respect to each of the three
Eulerian angles can be expressed using equations similar to those
above, but they are needed only for derivations of the kinetic en-
ergy operator and not for symmetry considerations, so we do not
reproduce those results here.

Appendix D. Constraint equations needed to begin a
consideration of SAVs

It is well known that a molecule with N atoms requires 3N
Cartesian coordinates to specify the positions of all the atoms in
a laboratory-fixed axis system. These coordinates also represent
3N degrees of freedom on the left side of Eq. (8) or 3N variables
in the quantum mechanical problem. The infinitesimal vibrational
displacement vectors di likewise represent 3N Cartesian coordi-
nates, so the total number of degrees of freedom on the right side
of Eq. (8) is 3N displacement components plus 3 center-of-mass
coordinates plus 3 rotational angles plus n LAMs. Constraint equa-
tions are essentially schemes to reduce the number of independent
di vector components (or equivalently the number of SAVs) to 3N -
6 - n, so that the number of degrees of freedom on the left of Eq. (8)
matches the number on the right. These constraint equations often
take the forms:
Rimidi ¼ 0 ðA:17aÞ
RimiaiðcjÞ � di ¼ 0 ðA:17bÞ
Rimi½@aiðcÞ=@cj� � di ¼ 0; ðA:17cÞ

where i runs over all the atoms in the molecule. Eq. (A.17a) is called
the center-of-mass constraint. It forces the mass-weighted infini-
tesimal displacement vectors midi to be orthogonal to a translation
of the molecule, and thus removes translation from the SAVs. Eq.
(A.17b) is called the Eckart condition [13] when the ai are all con-
stant. It forces the mass-weighted displacement vectors to be
orthogonal to an overall rotation of the molecule, and thus removes
overall rotation from the SAVs. Eq. (A.17c), one for each LAM cj, are
called the Sayvetz conditions [14]. They force the mass-weighted
displacement vectors to be orthogonal to all the LAMs, and thus re-
move the LAMs from the SAVs.

By ignoring the SAVs we avoid a lengthy discussion of all the
physical and mathematical implications of Eq. (A.17).

Appendix E. Changes to Eq. (23) required for multi-top
molecules

When more than one top is present in a molecule with a plane
of symmetry (again chosen as the xz plane, and again under the
simplifying assumption that all top axes lie in this plane), it will
in general not be possible to start from an equilibrium configura-
tion a0

i with all top axes simultaneously lying along the z axis.
But it is still possible to start from an (often highly) artificial
non-equilibrium configuration a0

i that satisfies this criterion
[10,12], and perform the internal rotation of each top j through
an angle aj about z. After that, each of the CH3–X moieties can be
rotated by a constant matrix about an axis parallel to y and passing
through X, to bring it to its true orientation in the molecule. Sym-
bolically, we start with jtop1i0 + jtop2i0+jframei0, then perform the
internal rotations of the tops to obtain R(a1)jtop1i0 +
R(a2)jtop2i0 + jframei0, then orient each top correctly in the mole-
cule using constant matrices Ti to obtain T1R(a1)jtop1i0 +
T2R(a2)jtop2i0 + jframei0, and finally rotate the whole molecule to
its correct orientation in our chosen molecule-fixed axis stem to
obtain Q[T1R(a1)jtop1i0 + T2R(a2)jtop2i0 + jframei0].

This procedure can be expressed in mathematically more pre-
cise algebra by replacing S�1

i ða;0;0Þa0
i in Eq. (23) by a more com-

plicated expression to obtain

Ri ¼ Rþ S�1ðv; h;/ÞS�1ð0; b;0Þ½S�1ð0; bjðiÞ;0ÞS�1ðajðiÞ;0; 0Þ
� ða0

i � a0
XjÞ þ a0

Xj � A�: ðA:18Þ

The subscript notation here is awkward, but is meant to indi-
cate that aj(i) = bj(i) � 0 for all atoms i not in some methyl top j,
while bjðiÞ ¼ b0

j ¼ constant and aj(i) = aj = the internal rotation angu-
lar variable for top j when i denotes one of the CH3 atoms in top j.
Consider the internal rotation operations (123), (456), (789) for the
hydrogen atoms in a three-top molecule (j = 1,2,3). It can be shown
rather quickly, using the same techniques as for the one-top mol-
ecule in Section 13, that (456), for example, corresponds to trans-
formations of the internal rotation angles given by
aj,new = aj,old + 2p/3 for j = 2 and by aj,new = aj,old for j – 2, with the
equivalent rotation E, while (23)(56)(89)* corresponds to aj,-

new = �aj,old for all j, with the equivalent rotation C2(y), just as for
the one-top example.

If some of the tops are equivalent, it will be necessary to con-
sider exchanging the angles aj to achieve some of the PI operations
[12,26,27].

Just as in Section 13, an alternative approach to that outlined
above would be to start from constant reference positions a0TQ

i that
already describe the molecule in its equilibrium structure and
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correctly oriented in our chosen molecule-fixed axis system, i.e., to
start symbolically with jtop1i0TQ + jtop2i0TQ + jframei0Q. It is then
fairly obvious that we need to apply the rotation matrix
QT1Rða1ÞT�1

1 Q�1 to jtop1i0TQ and QT2Rða2ÞT�1
2 Q�1 to jtop2i0TQ to ar-

rive at our internally rotated and correctly oriented structure
QT1Rða1ÞT�1

1 Q�1jtop1i0TQ þ QT2Rða2ÞT�1
2 Q�1jtop2i0TQ þ jframei0Q .
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