NISTIR 7561

OntoSTEP: OWL-DL Ontology for
STEP

Sylvere Krima
Raphael Barbau
Xenia Fiorentini

Rachuri Sudarsan

Ram D. Sriram

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

NISTIR 7561

OntoSTEP: OWL-DL Ontology for
STEP

Sylvere Krima
Raphael Barbau
Xenia Fiorentini

Rachuri Sudarsan

Ram D. Sriram
Manufacturing Systems Integration Division
Manufacturing Engineering Laboratory

May 2009

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Deputy Director

Abstract

The Standard for the Exchange of Product model data (STEP) [1] contains product information
mainly related to geometry. The modeling language used to develop this standard, EXPRESS, does not
have logical formalism that will enable rigorous semantics. In this paper we present an OWL-DL (Web
Ontology Language - Description Logic) [2] verson of STEP (OntoSTEP) that will alow logic
reasoning and inference mechanisms and thus enhancing semantic interoperability. The development of
OntoSTEP requires the conversion of EXPRESS schema to OWL-DL, and the classification of
EXPRESS instances to OWL individuals. Currently we have considered AP203 [3] - the most widely
used Application Protocol (AP) for the exchange of Computer-Aided Design (CAD) files - and STEP
Part 21 [4] CAD files - CAD files conformant to the data exchange format defined in Part 21 - for
schema level conversion and instance level classification respectively. We will describe a web
application to demonstrate OntoSTEP. We are currently extending OntoSTEP to include information
such as function, behavior, and assembly requirements.

Table of Contents

L INTRODUCTION ...ttt sttt ettt et e st et e et et e e be e st et e ebeebesbeenaenbeeneaenee e 1
2 RELATED WORK ...ttt sttt et b et b e e s e b e s et et e e st et e e seebeebeebenraetaentaas 2
S ONTOSTEP ...ttt bt bbbt bt bbbt b e ke b e et e b e b e b et et e e b e b e b e b e e 3
3.1 MaPPING the MAIN CONCEPTS.eeiuteiiitiie ittt ettt ettt e bt e e sttt e be e e aaee e sabe e e be e e ahee e aabeebeeeaabeeabeeeebbeesnbeaanbeeenneeantes 4
K \V = Vo] o[g 1o 1] - L (o= USSP 6
KRS \V F=Tol o[a o r=To [0 [4 (o] = U eTo] dT0d=] o £ JR R PRSP 8
R I DL - 11 0= OO U PP UU PR PPPR 8
KR I Yo [0 (=T = Ui o] oL TR OUPR PRI 10
KR IR 1= =Tt TP TP PP R PR PRI 15
3.3 ENUIMETALION ...ttt stttk h ettt s st h ARk b e bt e Rt 4R e e s b e e b ee e e s e bt e bt et e e b e n e 15
Rl o111 o 1o o I TP PP PO PRT PR URPPR 16
BLBLB INNEIITANCE ...ttt bttt a e a Rt R h £ e bt et E e Rt R et e bbbt ne e r e 16
KR A A 01T 0] oot TP PTPUPPUPRTPI 18
R =TT 0 1= 11 T T T PSPPSR T PO PPT PR PP 18
3.4.1 CONSISLENCY CNECKING. ...ttt ittt ettt ettt ettt ettt etttk et s bt e e eh bt e sa bt e sabe e e skt e e b b e e eh bt e embe e e mbe e e abeeeebeeennbeeanbeaans 19
o (01 (= (=] o [0 o] do 1= LU = TRV R ORI 20
R I O 111= g 1= USROS 20
A IMPLEMENTATION ...ttt e b s e bt e e b et e e st e nbessaeneesbaeneenre s 21
4.1 SCNEIMAS. ...tttk ettt bbbt st s et oo bt e b e ekt eR s e R R e 4R R £ £ R £ 2R e R e e AR £ AR R AR R SRR e R Rt e e bR e e e R R Rt et R e be e e s 21
4.2 INSEANCES. ...ttt ittt ettt bt s bt e e e b e oo e e e o R e e SRR e e ea e e h s e e R e R e AR e e oA e e R et e aR e e R e e nR e n e r et ner e s 22
RN Y o] o] (o= L u (o] o TSRS 22
SIUSE CASE...... ottt b bbb e btk ke b e b e R e R e R e ke b e b e bt e b e b e e b e bt r b 22
6 CONCLUSION AND FUTURE WORKoiiiiiiiiectsie ettt sne e nne e 26

DISCLAMER ..o bbb bbbt 26

Table of Figures

Figure 1. ONtOSTEP ProjECt OVEIVIEWcoiiuiiiiiiiieiiie et eeesitee st e e ssteessee e e sseeesseeesbeeesbeeesnneeeaas 2
FIQUIE 2: ATIITDULES. ...ttt e et e e e bt e e s be e e sbeeesneeenns 9
FIQure 3: Bag (ClaSSIOVED)co ittt et et sn e e nne e neeas 10
Figure 4: Bag (INAIVIAUEH TEVEL) ..o 11
FIQUrE 5: LISt (Class IEVEL)oo ettt 12
Figure 6: List (INdiVIdUal TEVEL) ... 13
Figure 7: List (INAiVIAUal TEVE]) ... 13
Figure 8: List (INAIVIAUEl TEVEL) ... e 14
Figure 9: List (INAiVIAUal TEVEL) ...t 14
Figure 10: SChema translalion PIrOCESS.ccciueiaiierarieearireeeassreeaaseeeasssesssssesasseeesasseessnseeesnseessseessnseens 21
(o[l ViYL oI o 1T 1 o o TR 23
Figure 12: Ontology in Protégé editor: before and after reasoning...........cccvveeeveeeieesiee s 24
Figure 13: Products and assemblieS VISUaIIZAETONccceiiiiiieiiiiee e 25

| ndex of Tables

Table 1: Trandation of the basic concepts from EXPRESS t0 OWL.........coovceiiiiiriiiieeiiiee e 5
Table 2: Trandation of simple datatypes from EXPRESSt0 OWLcccoovieiiiiii e 8
Table 3: Mapping between the namesin short and 10Ng fOrMocei i 11

1 Introduction

Manufacturing organizations spend a considerable amount of resources to understand and apply
the Product Lifecycle Management (PLM) approach. The PLM approach enables organizations to
manage, in an integrated fashion, the product portfolio from conception to disposa [5]. Representation
and management of product information isthe key for a successful implementation of PLM.

To enable the exchange of product data through a product lifecycle, the Internationa
Organization for Standardization (1SO) has developed the Standard for Exchange of Product model
data (STEP) [1] (ISO 10303), which is still evolving to meet the needs of modern Computer-Aided
Design (CAD) and Computer-Aided Engineering (CAE) systems. The implementable data
specification of STEP is represented by the Application Protocols (APs). Examples of the most widely
used APs are the AP203 [3] and AP214 [6] for the exchange of CAD files, and AP239 [7] for the
Product Life Cycle Support (PLCS). These APs mainly focus on product management data and
geometry information. Unfortunately the representation of function and behavior is outside of their
scope. We call concepts such as function and behavior as “beyond geometry information” since they
are most often related to the geometry of the product.

The STEP APs are defined using the EXPRESS language. EXPRESS (1SO 10303-11) [8] isa
data modeling language designed by 1SO to model STEP entities. EXPRESS was devel oped to enhance
product modeling and provides support to describe “the information required for designing, building,
and maintaining products.” Data models (or schemas) are represented in EXPRESS as a network of
concepts. Concepts are called entities and relationships between concepts are called attributes. Entities
and attributes are therefore the basic constructs of EXPRESS. STEP Part 21 [4] defines the syntax for
representing data according to a given EXPRESS schema.

Many tools have been developed to check the syntax of the EXPRESS information models and
the validity of the instances against the information models. Unfortunately, these tools are specifically
developed for STEP implementers and consumers so their usage is restricted to the field of product
modeling in EXPRESS. Moreover, since EXPRESS is not based on formal semantics, it is difficult to
check the quality of these tools.

Our goa is to overcome these issues by trandating STEP in OWL-DL [2] (Web Ontology
Language - Description Logic), which allows the application of mechanisms to check models and data
validity, to check the consistency of the instances, and to infer new knowledge. These mechanisms are
performed by software tools called reasoners. Measuring model quality is easier since they are based on
a forma semantics. We refer to the trandated STEP as OntoSTEP in the remainder of the paper.
OntoSTEP could be used to express and semantically enrich product information available in STEP
files. In our use-case we trandate in OWL the STEP AP 203 data model and Part 21 CAD files. The
methodology followed for the use-case is fully applicable to any other STEP AP and any Part 21 file.

Semantic interoperability between two CAD systems necessitates a framework shown in Figure
1. OntoSTEP is the first mgor step towards developing such a framework. A semantic model supports
the representation not only of product geometry concepts but also of “beyond geometry” concepts. The
top of Figure 1 shows our previous work, while the bottom represents our current focus and how
OntoSTEPfitsin.

Beyond geometry data

Semantic CPM/OAM High level information

Classified according to Adding domain
Flat Classification CPM/OAM Ontology specific properties

| ,Ca\‘\c.“ Reasoner - a9 SWRL Engine L
P e P e

o
»

v
| Part 21 file |

transl Geometry data
—— g ONtoSTEP Detailed information
AP203
EXPRESS Schema

Focus of this project

b

In our previous work [9], we created a semantic model including beyond geometry concepts
from the NIST (National Institute of Standards and Technology) Core Product Model (CPM) [10] and
Open Assembly Model (OAM) [11] (semantic CPM/OAM in Figure 1.) This model was developed in
OWL-DL 1.0 [2] and enriched with Semantic Web Rule Language (SWRL) rules [12]. A third party
reasoner allows reclassifying the input instances and the SWRL rules allow refinement and improve the
model.

Figure 1. OntoSTEP project overview

In the future, we plan to combine OntoSTEP with the semantic model of CPM and OAM: the
instantiation of such a combined model could be, in part, automatically performed from a Part 21 CAD
output file. A plug-in for CAD application will enable the beyond geometry information of the designed
product to be included in the CAD models. Beyond geometry information and geometry information
would then be represented in a unique consistent model.

The paper is organized as follows. We review some works related to OntoSTEP in Section 2.
Then we introduce the OntoSTEP mapping rules in Section 3. We present the details of our
implementation and the tools used to realize it in Section 4. We discuss a use case for OntoSTEP in
Section 5 and, finally, we present our conclusions and future plans in Section 6.

2 Related wor k

This section discusses two related efforts that aim to develop a trandation from EXPRESS to
OWL. The approaches taken by these authors and their main contributions are explained below.

Intelligent Self-describing Technical and Environmental Networks (S-TEN) [13] is a project
funded by the European Community. One of its objectives is to “exploit the Semantic Web for
scientific and engineering applications.” This project describes a bi-directional transation between

2

EXPRESS and OWL.

To understand the approach adopted in the S-TEN project, we briefly trace the development of
STEP APs. Different APs may require common parts. When the first APs were created, these parts
were copied and adapted according to the goa of the AP. Currently APs are being migrated from their
old versions to modular ones. The modularity ensures that the information available from an AP can be
shared among the other APs. S-TEN focuses on trandating modules, so the trandated parts are used
within several APs. Hence in the S-TEN project no AP is covered in full. The STEP modules are also
modified, either to take advantage of the use of OWL, or as an improvement. For instance, some
entities used to express relationships are directly trandated to relationships. Moreover new capabilities
are added, such as a better management of the product identifiers. A manual check is performed after
the trandation of the EXPRESS schemas to ensure that the meaning of the data models is the same in
EXPRESS and in OWL. Thefina ontology is stored in a database.

The deliverables of the S-TEN project include a description of the bi-directional trandation
from EXPRESS to OWL and a list of the EXPRESS features that have not been trandated yet (e.g.,
optional/mandatory attributes, aggregate bounds, lists, and arrays). As parts of the S TEN project, tools
have been developed to manage and access web-based databases, to convert EXPRESS schemas and
instances to OWL, and to convert OWL datato EXPRESS [14].

Zhao and Liu, from the Zhongshan University in China, proposed a methodology to represent
EXPRESS modelsin OWL and SWRL [15], arule-based language for OWL. Their report describes the
approach in two parts. In the first part, the mapping between EXPRESS schemas and OWL and SWRL
is discussed. SWRL adds more capabilities to OWL by permitting rule-based inference over the
ontology. In the second part, the combination of the OWL ontology and the SWRL rules is integrated
into Jess [16], a Rule Engine for Java. As OWL, SWRL and the Jess rules can be described in
EXtensble Markup Language (XML) [17], an EXtensble Stylesheet Language (XSL) [18]
transformation is performed to achieve this integration. The different steps involved in the process are
described. The authors also present a set of tools that can be used to query and reason over the
ontology.

Zhao and Liu also trandated procedural code contained in the EXPRESS schemas. The
procedural code specifies algorithms which can be used to compute derived attributes or to check the
validity of data. Since OWL is not a procedural language, the authors chose to use Jess rules to
represent EXPRESS procedures and functions. However it is not clear whether this mapping between
procedures and Jess rules could work for all the procedures, especially those from AP 203. Moreover,
some aspects of the EXPRESS language are not properly dealt with. For instance, the trandation of
ordered lists in EXPRESS was not proposed. Automated tools doing the entire trandation are planned,
but we are not aware of any software released.

3 OntoSTEP

The goal of our work isimproving interoperability of product data by defining the semantics of
the STEP models in aformal logic. In this paper, we trandate the EXPRESS models in OWL 2 [19].
OWL-DL, a sublanguage of OWL based on Description Logic, provides several features we need to
add semantics:

- consistency checking: this mechanism ensures that no contradictions are present within the model
- inference: this capability allows to extract new knowledge through logic reasoning
- decidability: this characteristic ensures that the reasoning is performed in finite time.

In this section, we present the rules for trandating EXPRESS to OWL. The trandation of the
instance data resulting from the EXPRESS schemas is also introduced.

For our examples, we use the STEP AP 203 datamodel asit is by far the most common EXPRESS
schema used by Computer-aided design (CAD) systems to exchange product geometric information.
The methodology followed for this AP isfully applicable to any other STEP APs.

3.1 Mapping the main concepts

We illustrate our trandation of the main concepts in EXPRESS through the following example
from AP203.

ENTITY product_category;

name : label;
description : OPTIONAL text;
END_ENTITY; -- product_category

ENTITY product_related_product_category
SUBTYPE OF (product_category);
products : SET [1:?] OF product;

END_ENTITY; -- product_related_product_category
ENTITY product;

id : identifier;

name : label;

description I text;

END_ENTITY; -- product

In this example three entities are described: product, product category, and
product_related product_category. A product has an identifier, a name and a
description. A product_category contains a name and may have a description. A
product_related product_category is a product_category that identifies the
products that satisfy the type identified by the category. In order to simplify this example, some parts of
the actual AP203 entity definitions have been removed.

The concept of entity in EXPRESS is similar to the concept of a class in object-oriented
modeling: entities can be seen as abstractions of real-world objects (instances) and can be organized in
hierarchies. These hierarchies conform to the following inheritance principle: sub-entities
(product_related product_category in our example) inherit the attributes of their super-
entities (product_category in our example) and the instances of the former are also instances of
the latter. Attributes specify relationships between entities or between entities and data. An attribute
consists of a name and a type: in our example, the first attribute of the entity product is called id,
and its type is 1dentifier. An attribute may be optional, as in the case of description in
product_category, and its type can be a collection of data, as in the case of products in
product_related product_category.

In our trandation, EXPRESS entities and instances map respectively to OWL classes and
individuals. Attributes correspond to OWL properties -ObjectProperties link classes together, while
DataProperties link classes to data types. The domain of a property defines which classes can have
this property. Without restrictions, properties in OWL are aggregations, so an individual can be linked
severa times to other individuals by using the same property. To define the usage of a property, it is
possible to restrict its cardinality through the “ObjectExactCardinality” construct and its values
through the *“ObjectAllValuesFrom” construct. In the case of an optiona attribute, the

4

“ObjectAllValuesFrom” construct is used to link the entity to the union of the attribute type and the
class owl:Nothing. This solution is adopted to explicitly express the semantics of the OPTIONAL
keyword: avalue is not required for this attribute.

An ontology may contain statements related to both classes (TBox) and individuals (ABox). In
our trandation, a schema is trandated into an ontology that contains mainly classes and property
definitions [20]. The following table summarizes our proposed transation of the basic concepts from
EXPRESS to OWL.

Table 1: Trandation of the basic concepts from EXPRESSto OWL

EXPRESS OWL
Schema Ontology
Entity Class
Subtype of Subclass of

Attribute with an entity type ObjectProperty. The domain of the property isthe class that correspondsto
the entity that contains the attribute. This classisrestricted to have
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the

entity type for that property.

Attribute with a simple data | DataProperty. The domain of the property isthe class that corresponds to

type the entity that contains the attribute. This class restricted to have
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the
datatype for that property.

Optional attribute The range of the property is restricted to have ObjectAllValuesFrom equal

to the union of the attribute type and the class Nothing.
Attribute with an aggregation | The range of the property is restricted to have, for that property, minimum
type and maximum cardinalities corresponding to the aggregation size.

We aso need to redefine the naming conventions for the properties. Consider, as an example,
the entities product and product_category, both having the name attribute. In EXPRESS
attributes are defined to be within the scope of the entity. In OWL properties have a globa scope, so
the property name would be the same for the product and the product_category. We choose to
prefix the attribute names with the entity names in order to differentiate attributes. As a result, the
entities product and product_category will contain, respectively, the attributes
product _has name and product category has name. The following OWL statements,
expressed in functional syntax, are the trandation of the previous entity definitions:

SubClassOf(product ObjectAllValuesFrom(product_has_description text))
SubClassOf(product ObjectExactCardinality(1 product_has_description))

SubClassOf(product ObjectAllValuesFrom(product_has_name label))
SubClassOf(product ObjectExactCardinality(1 product_has_name))

SubClassOf(product ObjectAllValuesFrom(product_has_id identifier))
SubClassOf(product ObjectExactCardinality(1 product_has_id))
SubClassOf(product_related_product_category
ObjectAllValuesFrom(product_related_product_category_has_products product))
SubClassOf(product_related_product_category product_category)
SubClassOf(product_related_product_category ObjectMinCardinality(1

product_related_product_category_ has products))

SubClassOf(product_category ObjectAllValuesFrom(product_category_has name label))

SubClassOf(product_category ObjectExactCardinality(1 product_category has_name))

SubClassOf(product_category ObjectAllValuesFrom(product_category_has_description
ObjectUnionOf(owl zNothing text)))
SubClassOf(product_category ObjectExactCardinality(1 product_category has_description))

3.2 Mapping instances

An EXPRESS schema is instantiated by creating a file as defined in “Clear Text Encoding of
the Exchange Structure -10303-21,” or Part 21. CAD packages can export data in STEP format that
conform to the AP203 schema and conform to STEP Part 21's constraints. In this paper we refer to
these export files as “Part 21 files.” A Part 21 file that contains instances of the example previously
introduced is depicted below.
1S0-10303-21;

HEADER;

FILE_DESCRIPTION(

/* description */ (“example®),

/* implementation_level */ "2;1%);

FILE_NAME(

/* name */ “gear-”,

/* time_stamp */ "2008-01-01T00:00:00-05:00°,
/* author */ ("Sylvere Krima®),

/* organization */ (°NIST"),

/* preprocessor_version */ * ",

/* originating_system */ * *,

/* authorisation */ = *);

FILE_SCHEMA (("CONFIG_CONTROL_DESIGN™));
ENDSEC;

DATA;
#1=PRODUCT_RELATED_PRODUCT_CATEGORY("part®,$, (#2));
#2=PRODUCT("Gear™,"Gear™,"This is a gear");

ENDSEC:
END-1S0-10303-21"

A Part 21 file includes a header and a data section. The header contains meta-data such as the
file's author and the schema reference. In our example the schema is the AP203: Configuration
Controlled Design. The data section contains objects that are instances of the entities defined in the
schema. The above Part 21 file defines two objects, each is identified by a number. The type of the
instances is supplied together with the value of its attributes. For example, the first object has the
identifier 1 and is an instance of PRODUCT_RELATED_PRODUCT_CATEGORY. Itsfirst two attributes
are related to the super-entity PRODUCT while the third attribute is specific to the
PRODUCT_RELATED_PRODUCT_CATEGORY entity. The string "part” isthe value of the attribute
name while the attribute description, declared as optional in the schema, does not contain any
data ($ symbol). The third attribute type is an aggregation (surrounded by the parenthesis) and contains
only the object 2. Thisobject 2 isdeclared in asimilar manner: it isa product containing a name, an
1d, and adescription.

The trandation to OWL is similar to the process described in the previous section and
summarized in the previous table. In STEP the schema and the instances are declared in different files:

6

the related schema is specified in the Part 21 file in the FILE_SCHEMA section. OWL provides a
similar mechanism of import. Theinstance file contains an import statement that relates instances to the
schema ontology. This import mechanism allows us to maintain the schema ontology separate from the
instance one. By having the final ontology containing both the TBox and the ABox, we are able to
check the consistency of the instances against the schema. The namespace of the elements declared in
the schema ontology indicates the shortened name of the schema: ap203 in our example.

While STEP considers al instances to be different, OWL does not have the unique name
assumption, i.e.,, in OWL a same object can be identified with two different names. The solution to
capture the semantics of EXPRESS is to declare all the created individuals as different. Our OWL
version of the previoudly introduced Part 21 fileis:

ClassAssertion(example:1 ap203:product_related_product_category)
ObjectPropertyAssertion(ap203:product_category has_name example:1 example:_label Name_ 1)
ObjectPropertyAssertion(ap203:product_related_product_category_has_products example:1
example:2)

ClassAssertion(example:_label _Name_1 ap203:label)
DataPropertyAssertion(ap203:to_string example:_ label Name_1 "part"~xsd:string)

ClassAssertion(example:2 ap203:product)
ObjectPropertyAssertion(ap203:product_has_id example:2 example:_identifier_Ild_2)
ObjectPropertyAssertion(ap203:product_has_description example:2

example:_text Description_2)

ObjectPropertyAssertion(ap203:product_has_name example:2 example:_label Name_ 2)

ClassAssertion(example:_identifier_Id_2 ap203:identifier)
DataPropertyAssertion(ap203:to_string example:_identifier_Id_2 "Gear"xsd:string)

ClassAssertion(example:_text Description_2 ap203:text)
DataPropertyAssertion(ap203:to_string example:_ text Description_2 "This is a
gear"Mxsd:string)

ClassAssertion(example:_label _Name_2 ap203:label)
DataPropertyAssertion(ap203:to_string example:_ label Name_2 "Gear"/~xsd:string)

The treatment of an unknown fact is another major difference between EXPRESS and OWL. In
EXPRESS, any unknown fact is supposed to be false. For example, if an instance of product is not
known to be instance of product_category, the system assumes it is not. This behavior is called
the Close World Assumption (CWA), because it supposes that the world is limited to what is stated.
OWL uses the Open World Assumption (OWA): unless a reasoner proves a fact is false, that fact is
unknown. Hence the trandation sometimes requires additional information to capture the semantics of
EXPRESS in OWL. The difference between CWA and OWA causes a trandation problem when an
instance is constrained to have one attribute. The attribute 1d of the entity product is not declared
optional, so it should be instantiated for all the instances of product. In the EXPRESS logic, the lack
of data will raise an error. In OWL, even if we do not define an 1d for an instance of product, the
reasoner does not detect an inconsistency: the instance is still considered to have an unknown id. To
allow the reasoner to detect an inconsistency in case of missing id, it would be required to declare
explicitly that that instance of product hasno i1d.

To fully trandate the STEP APs, the trandation of some additional concepts, such as derived
data types, is required to be introduced. Our proposed trandation from EXPRESS to OWL for these
additional conceptsis presented in the next section.

3.3 Mapping additional concepts

Let us now consider some additional concepts of EXPRESS and, when possible, propose their
trandation in OWL. Unfortunately, some constructs of EXPRESS, such as functions, cannot be
automatically trandated: these constructs usualy define entity constraints and attributes computation
and may rely on complex algorithms (see Section 2) OWL, asiit is based on Description Logic, does
not contain any procedural aspects. This section focuses on the EXPRESS language aspects that can be
automatically trandated to OWL concepts.

3.3.1 Datatypes

In our previous schema example the types label, 1dentifier, and text are derived from
the smple type string. EXPRESS defines other smple data types to cover a wide range of
information. These simple types are presented and the definition of derived typesis explained.

3.3.1.1 Smple data types

EXPRESS includes all the data types required to capture the common product information.
OWL inherits the data types defined in the XML Schema Definition (XSD) language. Table 2 presents
the equivalence between the EXPRESS types and the XSD types.

Table 2: Trandation of simple data types from EXPRESSto OWL

EXPRESS type Example or possible values XSD equivalent
number 2.33 decimal
real 2.33 double
integer 2 integer
logical true, false, or unknown

boolean true or false boolean
string “Hello world” string
binary 101011

In EXPRESS, some types, like boolean and string, have the exact equivalent in OWL,
while other types, like number and real, are represented in a dightly different way in OWL. For
example, we trandate the real datatype in EXPRESS asadouble in OWL, even if the precision of
those two data types is different. This solution should not lead to maor problems since a 32-hbit
approximation of real numbersisusualy sufficient in the product domain.

A few problems arise when trandating the logical and binary data types. In EXPRESS, the
logical type alows the assertion of a true, false or unknown value. XSD does not provide any
similar data type. The binary type is used to store a sequence of 0 and 1. With XSD it is possible to
restrict the data value to allow only Os and 1s, but there is no way to specify that this sequence is a
number in base 2. A possible solution would be to store the binary number using only an unsigned
integer. Fortunately, since these two data types are not present in the AP203, the missing trandation of
them has no influence on our work.

3.3.1.2 Constructed data types
EXPRESS allows the creation of data types derived from the simple types previousy presented.

8

First, user-defined data types are used to differentiate the kind of information being stored. In our
previous example, both text and label refer to the string type, but are used in a different
context. The following example shows the definition of the type label, which refersto astring.

TYPE label = STRING;
END_TYPE;

Second, user-defined data types can be used to restrict the smple types. For instance, the type
day i1n_week number in AP203 is defined as an integer between 1 and 7.

TYPE day_in_week _number = INTEGER;
WHERE

wrl: ((1 <= SELF) AND (SELF <= 7));
END_TYPE;

4

i D Class

i [:] Datatype
Product | Label | T # |nheritance

—® Property

Figure 2: Attributes

In order to deal with these derived typesin OWL, we build a type hierarchy and we apply the
concept of data wrapping (see Figure 2.) In this example, we define a class String that has a
DataProperty to the string datatype. It is then sufficient to subclass the class String to trandate
al the user-defined data types related to string (Label in this case). This concept organization
allows us to trandate all the user-defined data types related to string only by subclassing the class
String.

Because of the possible use of functions, we cannot guarantee the correctness of an automatic
trandation of datatype restrictions. Using a manual case-by-case trandation, most of the types defined
in AP203 can be trandated. As an example, the following OWL statements show how the type
day i1n_week number istrandated:

SubClassOf(integer attribute)
DataPropertyDomain(to_integer integer)
DataPropertyRange(to_integer xsd:integer)

SubClassOf(day_in_week _number integer)
DatatypeRestriction(dataRange minlnclusive “1”~xsd:integer)
DatatypeRestriction(dataRange maxInclusive “77’~xsd:integer)

SubClassOf(day_in_week number DataSomeValuesFrom(to_integer
DatatypeRestriction(xsd: integer maxinclusive "'7"'~xsd: integer mininclusive
"1 Mxsd:integer)))

3.3.2 Aggregations

EXPRESS provides four different types of aggregations. Each one has a different management
of the content: set, bag, list, and array. Each type of aggregation has order policies and duplication
policies. For the attribute declarations, the type of content and the number of elements of the
aggregation are defined.

3321 St
Set is chosen for ordered aggregation when the duplication of the aggregated elements is not
permitted. This IS the case of our first example, where a

product_related product_category contains a collection of products. ObjectProperty
in OWL isalso an unordered set of unique values.

However, because of the OWA, cardinalities restrictions can rarely be checked. For example, if
aproduct_related product_category islinked to two products, the OWA assumes these
two products could be the same. This case is resolved by explicitly declaring all the individuals as
different. Moreover, the OWA assumes the ontology to be incomplete, so new products could be added
in the future. To get the same behavior in OWL-DL as in EXPRESS we would need to assert that the
relationship involves exactly two individuals. In that case no new individuals can be added in the future
and the cardinality is checked correctly.

3.3.2.2 Bag

Bags are unsorted collection of elements. The only difference between sets and bags is the
duplication policy: the same element can be repeated several timesin a bag. Because object properties
in OWL do not allow duplications, we create the following concepts structure (Figure 3.)

Container Bag
@ objectProperty

Content I:l Class

—® Domain/Range

(F) Functional

Figure 3: Bag (Class level)

A new class, called Bag, is inserted between the Container class and the Content class.
The property hasContent is declared functional in order to associate only one element for each
instance of Bag.

Figure 4 represents the instantiation of the schema presented in Figure 3. An instance of the
container (cont) is linked to two different instances of the new class (b1 and b2). Each of these two
instances is then linked to the same instance of the content class (eleml). The ontology contains the
fact that the eleml1 element is present twice in the aggregation since b1 and b2 are different.

10

bl —# eleml

cont

b2 = eleml

Figure 4: Bag (Individual level)

3.3.2.3 List and Array

Lists and arrays are collections of ordered elements, unlimited in the case of lists and fixed in
Size in case of arrays. The bounds of a list define the minimum and maximum number of e ements,
while the bounds of an array define the range of index that addresses its elements. Since both lists and
arrays refer to ordered collections, we choose the same data structure to trand ate both.

Consider, as an example, the definition of a Cartesian point as alist of one to three coordinates,
depending on the dimension. The order of the coordinate’ s numbersis essentia to identify the point.
ENTITY cartesian_point
SUBTYPE OF (point);

coordinates : LIST [1:3] OF length_measure;
END_ENTITY; -- cartesian_point

Our proposed solution to represent ordered aggregations in the ontology is inspired from [21].
The idea is to build a chained list of elements. To achieve this goal, we create a class List that is
linked to its content and to the next List. The end of the chain is defined by an EmptyList, a
subclassof List.

Figure 5 presents the classes and the properties involved in this solution. Because the names in
our trandation are long, we use a short form in our explanations (see Table 3.)

Table 3: Mapping between the names in short and long forms

Short form Long form

Point cartesian_point

List list_of _length_measure

Coordinate length_measure

isFollowedBy list_of_length_measure_is_followed_by
Enuﬁijg emptylist_of_length_measure
hasContent list_of _length_measure_has_content
hasNext list_of length_measure_has_next
hasElement list_of _length_measure_has_element
hasCoordinate cartesian_point_has_coordinates
hasCoordinate2 cartesian_point_has_coordinates2

11

Point List — isFollowedBy (T)
|
Q objectProperty
Coordinate I:' Class
(F) Functional -— Inheritance
(T) Transitive — Domain/Range

Figure5: list (Class level)

In this example, the class Point is linked to the class List with the ObjectProperty
hasCoordinate. The List has a link to the next List (hasNext) and aso to the content
(hasContent.) hasNext is a sub property of isFollowedBy, so that if hasNext occurs,
isFol lowedBy will do so. Moreover this last property is transitive, so for a given list, hasNext
links the List to its imminent next List, while isFollowedBy to al the following Lists.
EmptyListisdefined asaList that has no next element and no content.

The following statements are used to create the list structuresin OWL.

SubClassOf(cartesian_pointObjectAllValuesFrom(cartesian_point_has_coordinates
list_of length_measure))

SubClassOf(list_of_length_measure
ObjectAllValuesFrom(list_of_length_measure_is_followed_by list_of length_measure))

EquivalentClasses(emptylist_of length_measure

ObjectintersectionOf (ObjectComplementOf (ObjectSomeValuesFrom(list_of_length_measure_is_foll
owed_by owl:Thing)) list_of_length_measure))

SubClassOf(emptylist_of length_measure list_of_length_measure)
SubClassOf(emptylist_of _length_measure ObjectMaxCardinality (O

list_of length_measure_has_content))

SubObjectPropertyOf(1ist_of_length_measure_has_next
list_of length_measure_is_followed_by)

ObjectPropertyDomain(cartesian_point_has_coordinates cartesian_point)
ObjectPropertyDomain(list_of_length_measure_has_content list_of_length_measure)
FunctionalObjectProperty(list_of_length_measure_has_content)
ObjectPropertyRange(list_of_length_measure_has_content length_measure)
ObjectPropertyDomain(list_of_length_measure_is_followed by list _of_length_measure)
TransitiveObjectProperty(list_of_length_measure_is_followed_by)
ObjectPropertyRange(list_of_length_measure_is_followed_by list_of length_measure)

To this pattern we add new axioms to link the content of the Lists directly to the Point.
From the following example in Figure 6, which describes a concrete point, we add some chained

12

properties that achieve this goal.

point ——m listl ——w list2 — list3

Figure 6: List (Individual level)

point, aninstance of cartesian_point, containsalist of coordinates: 0 and 2. It islinked
to listl, which has as content the value 0. 11stl also contains the next list, 11st2. In the same
manner, 11st2 has as content the value 2 and is linked to the EmptyList 1ist3.

| v
point |—m listl |—-»f list2 P list3
0 2

~——--—- |sFollowedBy (T)

Figure 7: List (Individual level)

As 1sFol lowedBy is a super property of hasNext and is tranditive, 1i1stl is linked to
list2 and 11st3 through 1sFol lowedBy (see Figure 7.)

The first property chain, called hasElement, is created as the composition of
isFol lowedBy and hasContent.

SubObjectPropertyOf(SubObjectPropertyChain(list_of_length_measure_is_followed_by
list_of length_measure_has_content) list_of length_measure_has_element)

13

point |——s listl p-—-g list2 - list3
1 - !
v ¥
“4
0 9 | e IsFollowedBy (T)
-------- hasElement

Figure 8: List (Individual level)
Theresultis Fistl being linked to al the coordinates values (see Figure 8.)

Finally the second property chain is created as the composition of hasList and
hasElement.

SubObjectPropertyOf(SubObjectPropertyChain(cartesian_point_has_coordinates
list_of length_measure_has_element) cartesian_point_has_coordinates?)

point |—» listl {——-pw list2 |—-P» list3

T

|

I

| k*\

e e IsFollowedB

- — — -~ 0 2 y(M
| -----—--- hasElement

: ‘ — — - hasCoordinate?2

Figure 9: List (Individual level)

At this point, the two coordinate values are directly linked to the point (see Figure 9.)

If this pattern is used correctly, it is possible to check the number of elements. The idea is to
assert the different possibilities for the structure. A point can contain, depending on whether itisin 2D
or 3D space, from two to three coordinates. Therefore, the first two elements are mandatory, the third is
optional and an EmptyList shal end the list. The difference between a List containing an
element and an EmptyList is that the former has “has_next” property while the second has not.
The goal is to force the use of a container for the first n elements, where n is a lower bound. Then, if
the List has an upper bound, force the choice of either a container or an Empty_list up to this
limit. Two expressions are required: one on the existence and one on the universality.

SubClassOf(cartesian_point ObjectAllValuesFrom(cartesian_point_has_coordinates
ObjectAllValuesFrom(list_of_length_measure_has_next

14

ObjectAllValuesFrom(list_of_length_measure_has_next
ObjectUnionOf(ObjectAllValuesFrom(list_of_length_measure_has_next
emptylist_of_length_measure) emptylist_of_length_measure)))))

SubClassOf(cartesian_point ObjectSomeValuesFrom(cartesian_point_has_coordinates
ObjectSomeValuesFrom(list_of_length_measure_has_next
ObjectSomeValuesFrom(list_of_length_measure_has_next
ObjectUnionOf(ObjectSomeValuesFrom(list_of_length_measure_has_next
emptylist_of_length_measure) emptylist_of_length_measure)))))

This pattern has some limitations. in OWL the bounds are specified at the level of the entity, but
in EXPRESS they are defined at the level of the aggregation type. Moreover the formula can be very
long if the bounds are high.

3.3.3 Select

SELECT isakeyword used in EXPRESS to choose from a set of different types.

ENTITY placement

SUPERTYPE OF (ONEOF (axisl_placement,axis2_placement_2d,
axis2_placement_3d))

SUBTYPE OF (geometric_representation_item);

END_ENTITY;

TYPE axis2_placement = SELECT
(axis2_placement_2d,
axis2_placement_3d);
END_TYPE;

In this example, there are three different kinds of placement available in the schema and the
axis2_placement SELECT type chooses between axis2_placement_2d and
axis2_placement_3d. To trandate the keyword SELECT to OWL we create a new class
(axi1s2_placement) corresponding to the SELECT type, and then define this class as the equivalent
of the “selected” entities:

EquivalentClasses(axis2_placement ObjectUnionOf(axis2_placement_2d axis2_placement_3d))

The equivalence asserts that no other classes can be added to thistype in the future.

3.3.4 Enumeration
Enumerations are defined in EXPRESS as a finite set of values. Consider, as an example, this
enumeration:

TYPE ahead_or_behind = ENUMERATION OF
(ahead,

behind);

END TYPE; -- ahead_or_behind

In this example, an attribute having a type ahead_or_behind will only contain either
ahead or behind. The equivaent trandation in OWL is obtained through the OneOf construct: it
enables us to define a class by exhaustively enumerating its individuals.

EquivalentClasses(ahead_or_behind ObjectOneOf(behind ahead))

15

The vaues are represented by the individuals ahead and behind, and the class
ahead_or_behind iscomposed exactly of these individuals.

3.3.5 Abstraction

A supertype in EXPRESS may be declared as abstract. The meaning is the same as in object-
oriented programming: an abstract entity cannot be directly instantiated. Consider, as an example, the
following entities:

ENTITY document_reference

ABSTRACT SUPERTYPE;

assigned_document : document;

source : label;

END_ENTITY;

ENTITY cc_design_specification_reference

SUBTYPE OF (document_reference);

items : SET [1:?] OF specified_item;

END_ENTITY; -- cc_design_specification_reference

The entity document_reference and its subtype
cc_design_specification_reference are defined in the AP203: the subtype not only
contains an assigned_document and source but aso aset of 1tems.

OWL does not provide any feature to trandate the ABSTRACT keyword and, even if it had, it
would not work as expected. Because of the OWA, an ontology is assumed to be incomplete so that the
non-instantiation of a concrete entity does not lead to inconsistency. To overcome this problem, we
could have declared the subtypes classes as the partition of the supertype. A partition forces the
instances of the supertype to belong to at least one subtype. Thisis achieved by declaring that the set of
instances of the supertype is covered by the sets of instances of the subtypes. In that case, if an
individual was declared as an instance of document_reference and not an instance of
cc_design_specifTication_reference, the reasoner would detect an inconsistency.
However this solution only works when both the supertype and al the subtypes are declared within the
same schema. Because of these reasons, we choose to ignore the ABSTRACT keyword. It is then
impossible for the reasoner to check that abstract entities are not directly instantiated.

3.3.6 Inheritance

Because it is intended to meet product data modeling requirements, EXPRESS can represent
complex inheritance relationships. In the interest of brevity we do not give details on advanced
EXPRESS language features in this paper and instead refer readersto [§].

In order to specify the allowed combination of subtypes for an entity, EXPRESS provides three
keywords: ONEOF, ANDOR, and AND. Along with the ABSTRACT keyword, they restrict the usage
of the instantiation mechanism. When the subtype definition occurs in EXPRESS, the involved
subtypes are explicitly enumerated, and no other subtype can be declared. In OWL, defining the super-
entity as equivalent to a specific combination of its sub-entities respects this meaning.

3.3.6.1 ONEOF

The ONEOF keyword takes as parameter a list of entities and it specifies that only one of these
entities can be instantiated. Consider, as an example, the definition of the coni c entity:

ENTITY conic

16

SUPERTYPE OF (ONEOF (circle,ellipse,hyperbola,parabola))
SUBTYPE OF (curve);

position : axis2_placement;

END_ENTITY; -- conic

In this example, an object instance of conic hasto beaso aninstanceof circle, ellipse,
hyperbola, or parabola. No combination is alowed, for example, this object cannot be a
circle andanellipse at the sametime.

An equivaent behavior in OWL is obtained by defining the subclasses as digoint: an
inconsistency is detected when an individual is an instance of more than one of these subclasses. We
mark the set of classes contained in a ONEOF as dl digoint.

EquivalentClasses(conic ObjectUnionOf(circle ellipse hyperbola parabola))
DisjointClasses(circle ellipse hyperbola parabola)

Another solution could be to use the logical definition of XOR. The following example shows
how the formulais obtained for two and three elements:

(Circle or ellipse) and not (circle and ellipse)

((Circle or ellipse) and not (circle and ellipse) or hyperbola) and not ((Circle or
ellipse) and not (circle and ellipse) and hyperbola)

Such a pattern can be trandated in OWL by using the intersection, the union and the
complement to trandate and, or, and not. However this increases the complexity of the ontology, as
the length of the formula increases drastically with the number of elements involved. For this reason
we choose the first solution.

3.3.6.2 ANDOR

When no specific constraints are defined, the default keyword for the instantiation is ANDOR:
the instance can belong to more than one subclass. Consider, as an example, the declaration of the
address entity, supertype of both organizational address and personal_address:

ENTITY address;
END_ENTITY;

ENTITY organizational _address

SUBTYPE OF (address);

organizations : SET [1:?] OF organization;
description I text;

END_ENTITY;

ENTITY personal_address
SUBTYPE OF (address);

people : SET [1:?] OF person;
description : text;
END_ENTITY;

In this example, the entity address could have aso been declared in the following way:

ENTITY address
SUPERTYPE OF (organizational_address ANDOR personal_address);

17

An instance of address can be instance of organizational_address,
personal_address, or both. In OWL aset of entities joined by an ANDOR istrandated by aunion
of the corresponding classesin OWL.

EquivalentClasses(address ObjectUnionOf(organizational_address personal_address))

In this example, we first represent the union of the subclasses by using the ObjectUnionOf construct
and we then declare this union to be equivalent to the parent class.

3.3.6.3AND

The AND operator imposes that the object be an instance of al the subclasses. Consider a
different version of the previous example:

ENTITY address;
SUPERTYPE OF (organizational_address AND personal_address);

END_ENTITY,
In this new example, an address must be both organizational and personal.

In order to respect this constraint in OWL, we use the ObjectintersectionOf to link the
subclasses.

EquivalentClasses(address ObjectintersectionOf(organizational_address personal_address))

ObjectintersectionOf construct restricts the individuals of address to be both organizational and
personal addresses.

3.3.7 Uniqueness

Entities can contain UNIQUE clauses: they are composed of one or more attributes that form a
key. Two different instances with the same key are not allowed. The id property of a product is an
example of a UNIQUE attribute: two product instances with the same id represent the same product.

In aPart 21 file, all the instances are supposed to be different. As previously stated, we declare
OWL individuals having the same specific attribute value to be the same. If two individuals have the
same attributes, this would lead to incoherence. The two possible ways to achieve this goa are either
using SWRL rules, or to using the “key” construct that will be part of the final version of OWL?2 [22].
The unique key is not currently trandated.

3.4 Benefits

OWL-DL semanticsis based on Description Logic (DL), a family of knowledge representation
languages. These languages are used to define domain concepts according to a predefined and well
understood formalism. Concepts are used to represent the domains objects, while roles are used to
represent relationships between these concepts. Concepts and roles are the main components of the
knowledge base®.

OWL DL provides the “maximum expressiveness while retaining computational completeness
(al conclusions are guaranteed to be computable) and decidability (all computations will finish in finite
time)” [2]. Expressiveness, computational completeness, and decidability enable reasoning
mechanisms, e.g., consistency checking. These mechanisms are applied by reasoners to find implicit

! The terms “knowledge base” and “ontology” are used interchangeably for the purpose of this paper.

18

consequences based on the explicit information provided in a knowledge base.

Many reasoners have aready been developed. For the purpose of our project we choose Pellet
[23].

3.4.1 Consistency checking

The consistency checking procedure can be applied at two different levels. schema level and
instances level. At the schema level, the consistency checking procedure checks whether a concept can
be instantiated at least once. At the instances level, the consistency checking procedure checks whether
an individual declared as an instance of a concept is really instance of that concept.

At the schema level, the reasoner uses the concept definitions to determine whether the schema
is consistent or not. We present here an example of an inconsistent schema:

*» Product, Gear, Category, and MechanicalProduct are classes,
= Gear isasub-classof Product,

= hasCategory isan ObjectProperty,

= Category and MechanicalProduct aredigoints,

= All instances of Gear are connected to only one instance of MechanicalProduct
through hasCategory

= All instances of Product are connected to only one instance of Category through
hasCategory

Category and MechanicalProducts being digoints, an instance of Gear beng
connected to an instance of MechanicalProduct cannot be an instance of Product, which
should be connected to an instance of Category. In this particular situation the reasoner finds an
inconsistency concerning the class Gear.

At the instance level, the reasoner uses the individual values to determine whether an individual
declared as an instance of a class is consistent with the definition of that class. We present here an
example that includes an inconsistent instance:

= Productisaclass,

» hasCategory is a DataProperty, connecting a product with its category id
represented as an integer,

= product#l is an instance of Product, connected through hasCategory to the
value “vehicle”

In this example, since the property hasCategory is wrongly used to link a product with a
string, the reasoner declares product#1 asinconsistent.

Currently, libraries are available to check the consistency of EXPRESS schemas and Part21
files but with OntoSTEP, both kinds of consistency checking are performed by a DL reasoner.
Checking the logical consistency of the OWL classes and individuals resulting from the trandation is
the necessary condition to use an inference procedure.

19

3.4.2 Inference procedure

An inference procedure uses the data evidence in a context and draws conclusions using certain
problem solving strategies [24]. The inference procedure is the process to reach these conclusions and
it isperformed by areasoner. Reasoners use a knowledge base as a source of data: concepts, roles, and
axioms are elaborated by the reasoner to reach the conclusion. The expressivity of the axioms and
concepts definitions is dependant on the logic language used.

OWL2 is based on a SROIQ(D) [19] expressivity. All the operators included in the SROIQ(D)
expressivity e.g., trangitivity, can be used and combined to express axioms. These axioms can be
computed only with areasoner that supports SROIQ(D) expressivity, e.g., Pellet.

In our work, for example, we use inference procedures to represent ordered lists of instances,
i.e., to elaborate functional properties, transitive properties, properties hierarchies, and properties
chains (see Section 3.3.2.3). All the axioms used in this representation are provided by the SROIQ(D)
expressivity.

Once the reasoner has applied al the inferences procedures on our ontology, new knowledge
and data become available. Then one can use a querying mechanism to query these new data, which
represents an enriched version of the original ontology.

3.4.3Queries

Queries are performed to retrieve specific data from alarge amount of information: in our case
we perform queries to retrieve some specific product information from a CAD file. The information
contained in a CAD file is first trandated into OWL representation, then checked for consistency and
inference, and finally queried.

There are two approaches in vogue today to perform queries on OWL ontologies: the first
approach uses a language called SPARQL Protocol and RDF Query Language (SPARQL) [25]. while
the second approach uses the Semantic Query-Enhanced Web Rule Language (SQWRL) [26]. None of
them is used in OntoSTEP for the reasons explained bel ow.

SPARQL was specifically developed for Resource Description Framework (RDF) models, so
we would need to trandate our OWL ontology to RDF before performing SPARQL queries. We do not
adopt this solution because of two reasons. First, the trandation from OWL to RDF increases the
computational time. Second, the Pellet reasoner does not support some SPARQL built-ins functions,
such as DESCRIBE, OPTIONAL, or FILTER [27], or some classical aggregation functions, such as
maximum, minimum, sum, or average.

While SPARQL was developed for RDF, SQWRL was specifically being developed for OWL.
Unlike SPARQL, SQWRL is based on SWRL [12] and does not need any RDF bridge: the
computation of SQWRL queries is then faster. SQWRL provides not only many built-in functions, but
also some classical aggregation functions like maximum, minimum, sum, or average [28], which are
missing in SPARQL. We do not adopt this solution for two reasons. First, only a proprietary engine,
i.e., Jess, iscurrently available to process SQWRL queries. Second, SQWRL does not allow combining
functions together.

To overcome these drawbacks we choose to perform our queries by using the OWL Application
Programming Interface (APl) [29] , which is a Java API. This APl enables us to manipulate our
ontology and to query it. The next section provides more details about this APl and its usage.

20

4 mplementation

The previous section discussed how to generate an ontology from EXPRESS schemas and
instance files. This part presents an implementation of the trandation rules previously described. The
goal is to create tools that perform this generation automatically, and then use these tools to translate
both the AP203 and Part 21 CAD files. Three kinds of technologies are used to achieve the above goal:
1) those related to the EXPRESS schemas trandation, 2) those related to the instances trand ation, and
3) those related to a web application that facilitates the use of our tools. The Java language is used in
our implementation.

4.1 Schemas

The process of trandating an EXPRESS schema file is done in two stages. In the first stage we
retrieve the information contained in the file, and in the second stage we trand ate this information by
applying the rules previously presented.

In order to obtain the structure of EXPRESS schemas, we use an open source EXPRESS Parser
[30]. This parser is implemented using the ANTLR [31] parser generator: from EXPRESS grammar
rules, ANTLR creates a parser that retrieves the structure of any EXPRESS schema. The result is a
syntax tree representing the information contained in the schema

ANTLR aso provides facilities to scan syntax trees and to trigger specific actions depending on
the encountered element. For instance, in our implementation, the detection of the keyword ENTITY
leads to the creation of aclassin OWL.

OWL API for OWL2 isthe open library used to create the ontology.
The following figure sums up the process:

| Expressfle |

ANTLR parser w

v
| Svntax tree |

OntoSTEP code

| owLfie(TBox) |

Figure 10: Schema trandlation process

21

4.2 | nstances

The second part of our work is mapping Part 21 files to OWL. In STEP there is a mechanism
called Standard Data Access Interface (SDAI) [32] to manage data defined in EXPRESS schemas.
Bindings to several popular languages (C, C++, and Java) are specified. We used the SDAI
implementation from STEPTools [33] to trandate instances into OWL individuals and properties
(ABox.) For each instance, an individual is created and for each type of this instance, the attributes are
obtained and trand ated.

The result is a file containing al the assertions on the individuals (ABox.) The T-Box
trandation of the EXPRESS schema is also imported as it contains the definition of the OWL classes.

4.3 Web Application

The last step of our work is the creation of an interface for the tools previoudy described. A
web application is built to allow users to see and manipulate the trandation of their CAD files. This
application can be seen as a product repository, as the user can manage al the files uploaded in
previous sessions. The different services offered to the users are implemented using the Google Web
Toolkit framework [34]. We use this framework to create our Java web application and to compile it
into an optimized JavaScript [35] code. This JavaScript code is compatible with common browsers.

The web application contains basic login capabilities and uploads a CAD file. Once the file is
retrieved, the trandation process is launched, and the resulting file containing the A-Box is created. The
user can view all the files previoudy uploaded, and load them to view their content. The classes and
instances related to a product can be accessed. A query engine selects the products and parts
corresponding to the criteriainput by the user.

5 Use case

In the previous sections we described the concepts and the technologies we used to create a
mapping from STEP to OWL-DL. The expressivity of the language and constructs used in the ontology
allows us to perform reasoning and queries on the STEP models and on their instantiations.

In the use case shown in this section we describe a user interaction to obtain and process the
OWL trandation of three STEP output files generated by CAD systems: 4pinplug.stp, test_step.stp, and
test_step2.stp. Through the web application, the user can trandate and visualize his/her files, create and
manage his/her own repository, and query higher files. Figure 11 represents the main view of the web
application. It is composed of two tabs located at the top, which provide different capabilities. The first
one (Ontology) is used to show information about the ontology, to log in to the system, and to manage
the files while the second one (Visualization) provides the information specific to the file selected on
the first tab.

22

¥ Wrapper HTML for ontostep

@& 2> 6 © Google

Back Forward Refresh Stop Compile/Brawse
| http:iflocalhost:&&88/nist.ontostep/ontostep, html »Go |
| Ontology Visualization (4> |
Log 2
[ame: syhver
Password: eesssee

Login | Logout @

Identification Succeded

File(s) «lf| cMquery#s F Ontology »
Upload File 1 Mame ersion Categaries Owvner Crestor Supplit Status Approval Persor] | 4pinplug.stp.owl loaded

Your file(s) RINGGE RINGGEARPIN_mi dletail; UMSPECIFIED UM UNSPECIFIED UMS UNSPECIFIED UNS not_yet_approved 4 T3 ow¥Thing)

4 5 List of files PLANET PLAMETGEAR_mI detail; UMSPECIFIED UME UNSPECIFIED UME UMSPECIFIED UMS not_yet_approved [=] action_assignment(0}

4pinplug.stp.owl) widget First versian dletail; Unix Bax, lab first lst, unknowy first last, unknow not_yet_spproved b, President, ur] 42 action_reque;
5 itdget First version detail, Unix Box, kb first last, unknowve first last, unknove not_yet_approved My President, urf
B widget First version detail Unix Box, lsb ~ first last, unknow first last, unknow not_yet_spproved Mr. President, ur]
7 widget First version detail Unix Box, lsb ~ first last, unknow first last, unknow not_yet_spproved Mr. Presidert, ur|
1 widiget First version dstail Unix Box, lab first last, unknowe first last, unknow not_yet_spproved Mr_ Presidert, ur|
2 wricget First version cetail, Unix Box, sk first Iast, unknowe first last, unknow not_yet_approved Mr. President, ur] s
3 wricget First version cetail, Unix Box, sk first last, unknowy first last, unknow not_yet_approved Mr. Presidert, ur| | 3 =
A

[=] approval_statusi3)

(=] approved_item(0

=l array_of _array_of cartesian_p
5 array_of_array_of_decimal(0)

[=] array_of_cartesian_pointi0} 45
< | l< .

{ame:

Configuration management Assembly structure Geometry

Jersion name: @ O used

ategories: detail Used
Ferson and organization design [used
wner:

Cused ~

Figure 11: Web application

The user first extracts the Part 21 files from the CAD system and then runs the web application.

The interaction is described below (see Figure 11, where bullet numbers refer to the circled numbers):

1)

2)

The user logs in to the system: the log in mechanism allows us to track the files uploaded by
each user.

The user uploads files, and the application trandates them. The “upload file” button opens afile
diadog that enables the user to upload severa files at the same time. Once uploaded and
trandated, the files appear in atree under the “List of files’ folder. When the user selects afile,
al the displayed information is related to this file except for the query results, which are based
on all uploaded files. Once the reasoner is applied on the trandated version of a file, both
consistency checking and inference are performed. To show the differences between the input
and output files, we upload them in Protégé [36] (see Figure 12.) The two screenshots of
Protégé highlight the result of an inference mechanism executed on a list structure: an instance
(1000 _Direction_ratios 0) of List has more properties after the reasoning procedure (those
properties are shown in the lower part of the screenshot). For more information about the list
structure, please refer to Section 3.3.2.3.

23

instances (http:/fwww.nist.gov/OWLExpress/4pinplug.stpfinstances) - [C:\Documents and Settings\Krimas\Desktop\d pinplug.stp.owl]

File Ecit Ortologies Ressoner Tools Refactor Tabs Wiew Window Help

<a| > | € instances ity e nist goviOWLExpress Hpinplug stanstances) - | @] |

| Active Ortalogy | Enfites | Classes | Object Properties | Deta Properties | Individusls | CVWLYiz | DL Query

onh: 1000_Direction_ratios_0

list_of_decimal mulist_of decimal_has_centent
1000_Direction_raties_0_centent

ED

ame individuals mulist_of decimal_has_next

4 1000 1000 Direction_ratios_1

1000 _Directicn_ratios_0
4 1000_Direction_ratios_0_content
1000_Direction_ratios_1

o Data property assartions
4 1000_Direction_ratios_1_content

Megative objest pro

1000_Direction_ratios_2 R
4 1000_Direction_ratios_2_content
1000_Direction_ratios_end

+ 1001

4 1001_Direction_ratios_0

1001_Direction_ratios_0_content

Before reasoning

1001_Direction_ratios_1
1001_Direction_ratios_1_content

1001 Direction_ratios 2 list_of_decimal mulist_of decimal_has_content

1001_Direction_ratios_2_content == T Dot [Eren) crnrem
1001_Direction_ratios_end = = ==
1002

’ 1003 Different individuals
1003_Coordinates_0

4 1003_Coordinates_0_content

Same individuals mu|ist_of decimal_has_next
1000 _Direction ratios 1

®ulist_of_decimal_has_content
1000_Direction_ratios_0_content

1003 Coordinates 1 mspiasiist_of_tecimal 1000_Direction_ratios_1

1003_Coordinates 1_content m=naslist_of_decimal 1000_Direction_ratios_end

4 1003_Coordinates 2 mshaslist_of_decimal 1000_Direction_ratios_2

1003_Coordinates_2_content wmhzslist_of decimal 1000 Direction_ratios_0_contert
1003_Coordinates_end

®uist_of decimal_has_next 1000_Direction_ratios_1

1004

4 1005 mmlist_of_decimal_is_followed_ly
4 1005_Edge_list_0 1000_Direction_ratios_1

¢+ 1005_Edge_list_end st _of_decimal_is_followed_hy
1008 o 1000_Direction_ratios_end

4 1007 mulist_of_decimal_is_followed_by
4 1003 1000_Direction_ratios_2

4 1003_Directioh_ratios_0

After reagsoning
1008_Direction_ratios_0_content ¢ =

4 1008_Direction_ratios_1
4 1008_Direction_ratios_1_content

4 1008 Direction ratios 2 hd

Figure 12: Ontology in Protégé editor: before and after reasoning

3) To visualize the ontology in the web application, a hierarchical tree is displayed in the main tab.
This tree shows both instances and classes. Tree nodes are displayed in gray or black: gray is
used for classes that do not have either subclasses or instances while black is used for classes
that have subclasses. The number between brackets corresponds to the number of instances
contained in each class. Clicking on a black class transforms it in a folder that the user can
expand and collapse to explore the tree.

4) To obtain more information about the selected file, the user can navigate the second tab (the one
named “Visualization”, see Figure 11.) At the bottom of this tab the ontology is displayed in
two different ways (4A and 4B in Figure 13.) The top of the tab is currently blank: we plan in
the future to fill this area with a graph representing the ontol ogy.

4A) In the first display, atree represents the assembly decomposition contained in the selected
file, where products are represented by their identifiers.

4B) In the second display, atable is used to display the information related to the configuration
management of each component of the assembly. This information includes identifier,
name, version, categories, etc.

24

V" Wrapper HTML for ontostep

—
@ > 6 0 Google
Back Forward Refresh Stop CompilefBrowse Wb Toolik
| http:fflocalhost: 3888/ nist ontostep/ontostep, html = Go
Ontology Visualization
Graph
Information
=5 Assembly
e
=s @
=s
=r
=
=
=k
] Name Categories Owner Creator Supplier Status Approval Person Approval date o level Clas: ation officier Classification dat:
4 widget detail; Unix Box, lab first last, unkno... first last, unkne... n Tl 500:00.00E... unclassified M , unkn... Tue Dec 15 00:01
5 widget detail; Unix Box, lab first last, unkno... first last, unkno... n T S00:00:00E... unclassified M , unkn... Tue Dec 15 00:01
6 widget detail; Unix Box, lab first last, unkno... first last, unk Tue D SO00:00:00E... unclassified W , unkn... Tue Dec 15 00:0/
7 widget detail; Unix Box, lab first last, unkno... first last, unk Tue D 500:00:00E ident, unkn... Tue Dec 15 00:0
1 widget detail; Unix Box, lab firat last, unkno... first last, unkne... n Tue D 500:00:00E unkn... Tue Dec 15 00:0
2 widget detail; Unix Box, lab firat last, unkno... first last, unkno... n Tue O 500:00:00 E ident, unkn... Tue Dec 15 00:0
3 widget detail; Unix Box, lab first last, unkno... first last, unkno.. not_yet_approved Mr President un._. Tue Dec 15 00:00:00 E unclassifisd Mr. President, unkn. . Tue Dec 15 00:01
< >
Done

6)

grouped by category and each category is represented by a tab. The “Configuration
management” tab is the only one currently available. Other categories, such as Geometry and
Assembly structure, will be added later. The current category allows the user to define queries
based on 12 product related criteriac Product name, verson name, categories, person and
organization design owner, person and organization creator, person and organization supplier,
approval status, person and organization approval, approval date, classification level, person
and organization classification officer, and classification date. To select a criterion, the user
needs to check the corresponding checkbox, label the criterion as “used”, and input its value in
the corresponding textbox. In this smple case, the user wants to retrieve the products the
category of which is“detail”.

The results of the query are displayed in a table. The table used to present these results is
organized in the same way as the one in the “Visualization” tab: the rows contain the products
that match the query while the columns contain the configuration management information of
the products. The results of the query are shown at the center of the screen of the web
application. Nine products match the query: one from the test_step.stp file, one from the
test_step2.stp file and seven from the 4pinplug.stp file.

25

Our web application allows users to obtain OWL-DL trandations of their CAD files. These
versions have an enriched expressivity that alows for checking the consistency of the files and
inferring new knowledge (an example is provided in Figure 12). These ontologies present rea benefits:
the inferred ontologies contain more information than the directly converted one and can be queried.
The currently implemented queries provide only an overview of the capabilities of OntoSTEP. We plan
in the future to enrich this set of queries and to implement an interactive visualization system to
represent the ontology as a graph.

6 Conclusion and futur e work

Semantic interoperability between the applications that exchange product information is
required to achieve systems integration. STEP is the most known and accepted standard for the
exchange of product geometry information: its aim is enabling interoperability between engineering
applications.

The main benefits of the semantically enriched STEP information presented in this paper are the
ability to check the consistency of EXPRESS schemas, the ability to check the validity of the Part 21
files against their schemas and the opportunity of performing queries on those files. In this paper we
presented a mapping to OWL-DL from the STEP AP203 and Part 21 CAD files and we showed the
principles we followed to create it. These same principles could be used to create OWL mappings of
other STEP APs.

We also presented a web application to allow users to upload their CAD files, to trandate them,
and to manage and query their product ontologies.

In the future, we plan to combine OntoSTEP with the OWL-DL versions of the CPM/OAM,
which are information models to support beyond geometry information. We aso plan to develop a
plug-in to CAD applications to allow the insertion of this information, which would then be checked
for consistency along with the geometry information.

We also plan to strengthen OntoSTEP by formalizing at the MetaObject Facility (MOF) [37]
level the trandation between EXPRESS and OWL. For both these languages, a MOF-compliant
metamodel has been developed [38] [39]. A trandation between these metamodels would allow a bi-
directional robust transformation between EXPRESS and OWL.

Disclamer

No approval or endorsement of any commercial product by NIST isintended or implied. Certain commercia software are
identified in this report to facilitate better understanding. Such identification does not imply recommendations or
endorsement by NIST nor does it imply the software identified are necessarily the best available for the purpose.

26

10.

11.

12.

13.

14.

References
International Organization for Standardization. 1SO 10303-11: Industrial automation systems and
integration -- Product data representation and exchange -- Part 1: Overview and fundamental
principles, 1994.

W3C. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/ . 2004.

International Organization for Standardization. 1SO 10303-203: Industrial automation systems
and integration -- Product data representation and exchange -- Part 203: Application Protocol:
Configuration controlled 3D design of mechanical parts and assemblies, 1994.

International Organization for Standardization. 1SO 10303-21: Industrial automation systems and
integration -- Product data representation and exchange -- Part 21: Implementation methods:
Clear text encoding of the exchange structure, 2002.

Subrahmanian, E., Rachuri, S., Fenves, S., Foufou, S., and Sriram, R. D., "Product lifecycle
management support: A Challenge in supporting product design and manufacturing in a
networked economy,"” Int.J.Product Lifecycle Management, Vol. 1, No. 1, pp. 4-25, 2005.

International Organization for Standardization. 1SO 10303-214: Industrial automation systems
and integration -- Product data representation and exchange -- Part 214: Application protocol:
Core data for automotive mechanical design processes, 2003.

International Organization for Standardization. 1SO 10303-239: Industrial automation systems
and integration -- Product data representation and exchange -- Part 239: Application protocol:
Product life cycle support, 2005.

International Organization for Standardization. 1SO 10303-11: Industrial automation systems and
integration - Product data representation andexchange - Part 11: Description methods. The
EXPRESS language reference manual, 1994..

Fiorentini, X., Gambino, I., Liang, V., Rachuri, S., Mahesh, M., and Bock, C., "An ontology for
assembly representation,” National Ingtitute of Standards and Technology, NISTIR 7436,
Gaithersburg, MD 20899, USA, 2007.

Fenves, S, Foufou, S., Bock, C., Bouillon, N., and Sriram, R. D., "CPM2: A Revised Core
Product Model for Representing Design Information ," National Institute of Standards and
Technology, NISTIR 7185, Gaithersburg, MD 20899, USA, 2004.

Baysa, M. M., Roy, U., Sudarsan, R., Sriram, R. D., and Lyons, K. W., "The Open Assembly
Model for the Exchange of assembly and tolerance information: overview and example,”
Proceedings of the ASME DETC/CIE'04 Conference, 2004.

SWRL, W3C Member Submission. http://www.w3.org/Submission/SWRL/ . 2004.

Klein, L., Liutkus, G., Nargelas, V., Silekis, P., Batramaitis, T., Schowe-von der Brelie, B.,
Alfter, A., and Wesbuer, C., "Ontologies derived from STEP data models,” S-TEN, Deliverable
D3.3, 2008.

S-Ten SemanticSTEP. http://www.s-ten.net/ . 2009.

27

15.

16.
17.
18.

19.

20.

21.

22.

23.

24,

25.
26.
27.

28.

29.
30.
31
32.

33.

Zhao, W. and Liu, J K., "OWL/SWRL representation methodology for EXPRESS-driven
product information model,” Computersin Industry, Vol. 59, pp. 580-600, 2008.

Sandia National Laboratories. Jess Engine. http://herzberg.ca.sandia.gov/ . 2008.

W3C. Extensible Markup Language (XML). http://www.w3.org/XML/ . 2005.

W3C. eXtensible Stylesheet Language. http://www.w3.org/TR/xdt . 1999.

W3C. OWL 2 Web Ontology Language: Model-Theoretic Semantics.
http://www.w3.org/TR/2008/WD-owl 2-semantics-20080411/ . 2008.

Fiorentini, X., Rachuri, S., Mahesh, M., Fenves, S., and Sriram, R. D., "Description logic for
product information models,” Proceedings of the ASME International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference, 2008.

Drummond, N., Rector, A., Stevens, R., Moulton, G., Horridge, M., Wang, H., and Seidenberg,
J.,, "Putting OWL in order: Patterns for Sequences in OWL," Proceedings of the OWLED '06
OWL : Experiences and Directions, 2006.

W3C. OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax.
http://www.w3.0rg/TR/2008/WD-owl 2-syntax-20081202/ . 2008.

LLC. Pdllet. http://clarkparsia.com/pellet/ . 2008.

Sriram, R. D., Intelligent Systems for Engineering: A Knowledge-Based Approach, Springer,
1997.

W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-spargl-query/ . 2008.

SQWRL. http://protege.cim3.net/cqi-bin/wiki.pl ?ZSQWRL . 2009.

LLC. Pdllet Features. http://clarkparsia.com/pellet/features/ . 2008.

SQWRL - Aggregation functions. http://protege.cim3.net/cgi-bin/wiki.pl ?SQWRL#nidA20 .
20009.

University of Manchester. OWL API. http://owlapi.sourceforge.net/index.html . 2008.

Open Source EXPRESS Parser. http://sourceforge.net/projects/osexpress/ . 2001.

ANTLR Parser generator. http://www.antlr.org/ . 2008.

International Organization for Standardization. 1SO 10303-22: 1998. Industrial automation
systems and integration -- Product data representation and exchange -- Part 22: Implementation
methods. Standard data access interface.

STEP Tool, Inc. STEP and STEP-NC Software for e-manufacturing. http://www.steptools.com/ .
20009.

Google. Google Web Toolkit. http://code.google.com/webtoolkit/ . 2008.

28

35.

36.

37.
38.

39.

ECMA international. ECMA 262 - ECMAScript Language Specification. http://www.ecma-
international .org/publications/standards/Ecma-262.htm . 1999.

Standford Center for Biomedical Informatics Research. Protégé-Owl.
http://protege.stanford.edu/overview/protege-owl.html . 2009.

Object Management Group. Meta Object Facility (MOF) Specification, 2002.

Object Management Group. Reference Metamodel for the EXPRESS Information Modeling
Language RFC, 2008.

Object Management Group. Ontology definition metamodel (ODM), 2008.

29

