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Objectives. To review the history, theory and current applications of Weibull analyses suffi-

cient to make informed decisions regarding practical use of the analysis in dental material

strength testing.

Data. References are made to examples in the engineering and dental literature, but this

paper also includes illustrative analyses of Weibull plots, fractographic interpretations, and

Weibull distribution parameters obtained for a dense alumina, two feldspathic porcelains,

and a zirconia.

Sources. Informational sources include Weibull’s original articles, later articles specific to

applications and theoretical foundations of Weibull analysis, texts on statistics and fracture

mechanics and the international standards literature.

Study selection. The chosen Weibull analyses are used to illustrate technique, the importance

of flaw size distributions, physical meaning of Weibull parameters and concepts of “equiva-

lent volumes” to compare measured strengths obtained from different test configurations.

Conclusions. Weibull analysis has a strong theoretical basis and can be of particular value

in dental applications, primarily because of test specimen size limitations and the use of

different test configurations. Also endemic to dental materials, however, is increased dif-

ficulty in satisfying application requirements, such as confirming fracture origin type and

diligence in obtaining quality strength data.
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1. Introduction

This paper reviews Weibull statistics in order to facilitate
informed decisions regarding practical use of the analysis as it
applies to dental material strength testing. Weibull statistics
are commonly used in the engineering community, but to a
somewhat lesser extent in the dental field where applicability
has been questioned [1,2]. A possible confusing factor is that
Waloddi Weibull originally presented his analyses partially
on empirical grounds; published theoretical confirmation was
not available until many years later. Even as a theoretical basis
was being constructed, Weibull, as an engineer, seemed more
concerned with what worked [3,4]. In order to assess applica-
bility to the specific field of dental material strength testing, it
is helpful to start with a brief history and overview of basic
concepts of extreme value theory, fracture mechanics, and
flaw populations as they pertain to the theoretical foundation
of Weibull analysis.

1.1. Background: brittle failure prediction, fracture
mechanics and flaws

It is often noted that dental restorative ceramics and compos-
ites, while popular in terms of esthetics and biocompatibility,
are susceptible to brittle fracture. This type of failure is partic-
ularly difficult to predict. Imminent brittle fracture is seldom
preceded by warning, such as visible deformation, nor do
seemingly identical brittle components appear to break at
the same applied stress. Ductile materials deform to evenly
distribute stresses throughout a region, but in stiff, brit-
tle materials, stress concentrations at specimen geometry
changes, cracks, surface irregularities, pores and other intrin-
sic flaws are not relieved. Hence the design methodologies and
test methods for ductile materials are unsuitable for brittle

demonstrated the inapplicability of ductile strength testing
analyses to brittle failure prediction. Such disasters spurred
the development of the science of fracture mechanics in order
to understand the conditions of failure through crack growth
rather than by ductile mechanisms [7].

In the early 1920s, Griffith postulated that crack exten-
sion in brittle materials occurs when there is sufficient elastic
strain energy in the vicinity of a growing crack to form two new
surfaces [8]. In the 1950s Irwin built on Griffith’s work to asso-
ciate crack extension with an “energy release rate” [9]. This led
to a new parameter, KIc—fracture toughness, or resistance to
crack growth. Irwin’s approach enabled strength predictions
based on fracture toughness calculations that relate crack
extension to the sizes of preexisting cracks or “flaws” within
a material. For the most common case of a small flaw in a far
field tensile stress field, modern fracture mechanics relates
the applied fracture stress at the fracture origin, �f, to a flaw
size, c [7]:

�f = KIc

Y
√

c
(1)

where Y is a dimensionless, material-independent constant,
related to the flaw shape, location and stress configuration
and is called the stress intensity shape factor. “Flaws” are not
necessarily inadvertent defects or blemishes in a material. No
material is perfectly homogenous, and all contain some sort
of discontinuities on some scale. These discontinuities might
be pores, inclusions, distributed microcracks associated with
grain boundaries or phase changes during processing, regions
of dislocations or slight variations of chemistry, or many other
possible variants and combinations. They could also be sur-
face distributed flaws such as grinding cracks. Flaws in this
sense are intrinsic to the material or the way it was shaped
materials and different test methods and design approaches
are needed.

A series of catastrophic events, often epitomized by the Lib-
erty ship [5] and Comet airplane [6] disasters, spectacularly
or processed, and are distributed in some way throughout the
material surface or volume. It can be seen from the equation
that the smallest strengths are associated with the largest flaw
sizes.
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The idea of failure being associated with a largest flaw,
r “weakest link theory”, is not recent. Leonardo DaVinci is
eputed to have conducted tests circa 1500 involving baskets
uspended by different lengths of wire of nominally identical
iameter [10]. DaVinci gradually filled the baskets with sand
nd noted the baskets suspended by shorter wires could hold
ore sand, an outcome that is expected if it is assumed that

here is a lower probability of encountering a large flaw in a
horter wire. DaVinci did not know exactly where a particular
ire would break, but he recommended that multiple tests be
one for each wire length, suggesting that there was a statis-
ical variation in the strengths and failure locations of wires
f a the same length. Since DaVinci’s time, much progress has
een made both in our ability to identify critical flaw proper-
ies and in refining predictions based on weakest link theory
nd statistical failure probabilities.

.2. Extreme value distributions of “largest flaws”

uppose a material has a flaw size distribution such as the nor-
al, or Gaussian, distribution illustrated in Fig. 1. Although

he flaws have different sizes, suppose they are all of the
ame general type that initiate failure. Finally, suppose that
mall material test specimens are withdrawn from this par-
nt population. Each test specimen will contain a discrete flaw
opulation based on the parent distribution, and the largest
aw within the highly stressed regions of each test specimen
ill precipitate failure if uniform tension is applied.

If one is very unlucky, a randomly withdrawn material test
pecimen will contain an unusually large flaw, at the very end
f the tail at the right of the parent distribution in Fig. 1. The
est specimen will be very weak. If one is very fortunate, how-
ver, the largest flaw in a random material test specimen will
ot be far into the tail. This specimen will be relatively strong.

f many random test specimens are withdrawn, most of them
ill contain a largest flaw that is somewhere within the parent

opulation tail of large flaws. The “largest flaw” distribution
ight look like the shaded portion of Fig. 1.
The distribution of “largest flaws” of many withdrawn test

pecimens from a parent population is an example of an

ig. 1 – Total flaw distribution in a material (curved line).
ithdrawing multiple test pieces from the total flaw

opulation and collecting the largest flaw from each test
iece results in a different distribution of “largest flaws”

shaded area).
( 2 0 1 0 ) 135–147 137

extreme value distribution. The “largest flaw” population is
not expected to be a symmetric distribution, whether or not
the parent population is Gaussian as in Fig. 1 example.

Suppose now that larger-sized test specimens of the same
material are tested. Each of these physically larger test spec-
imens contains more flaws than each of the smaller test
specimens in the previous thought experiment. Since a larger
test specimen contains more flaws, it is more likely to con-
tain a very large flaw corresponding to the far right portion
of the tail in Fig. 1 parent population. If many larger-sized
test specimens are withdrawn, their “largest flaw” distribution
will be weighted further to the right within the parent popula-
tion tail than the previous “largest flaw” distribution of smaller
test specimens. The “largest flaw” distributions “march to the
right” as the physical sizes of the test specimen increase.

One result of “largest flaw” distributions that depend on the
physical size of test specimens is that strength distributions,
which are based on flaw sizes, will similarly depend on test
specimen size. Strength distributions will inversely “march”
left or right in accordance with “largest flaw” distributions in
a mathematically predictable fashion. Also, strength distribu-
tions would not be expected to be symmetric if the “largest
flaw” distributions are not symmetric.

Currently, many data in the dental literature are simply
reported in terms of mean values with standard deviations
calculated by assuming symmetric, normal strength distri-
butions about an average. This assumption can still yield
insight into material strengths and strength ranges. In fact,
the assumed normal strength distribution may not greatly dif-
fer from an extreme value distribution in providing strength
estimates of similarly sized and stressed test pieces. Unfor-
tunately, such predictions only hold for the specific test
specimen size and shape in the particular test configuration
under laboratory conditions. As will be shown, besides more
accurately characterizing material strength, extreme value
statistics are a powerful tool that yield parameters that can
be used to relate test strength data to expected strengths for
different stress configurations, different test specimen sizes,
and different testing conditions.

1.3. The Weibull distribution

Returning to Fig. 1, it can be seen that the parent distribu-
tion tail at the right is much more important than the rest of
the parent distribution containing smaller flaws. Since small
flaws in the test specimens do not precipitate failure, it does
not matter how small these flaws are or how their sizes are
distributed. The left side of the total flaw distribution in Fig. 1
has very little bearing on the “largest flaw” distribution.

The original total flaw population does not have to be nor-
mal or symmetric to result in an extreme value distribution
shaped similar to the shaded portion in the figure. The right
side of the parent flaw distribution, the tail of large flaws,
dominates the shape of the “largest flaw” distribution. This
is because only one very large flaw in a test specimen is neces-
sary to be counted as “the largest flaw”, but if the largest flaw

is relatively small, all the other flaws in the test specimen have
to be smaller. The distribution is thus skewed to the right as
in Fig. 1, following the parent distribution tail. Extreme value
distributions in general “follow the tail” [11]. Focusing only on
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the tails allows simple, generalized parametric functions to be
used in extreme value statistical models. Such models have
been defined to accommodate underlying distribution tails
that deviate considerably from the Gaussian shape in Fig. 1
example.

There are three commonly recognized families of extreme
value distributions [11–13] where G(x) is the probability distri-
butions function for an outcome being less than x for a sample
set of n independent measurements:

Type I. Gumbel G(x) = exp(−exp−(x−�)/� ) for all x

Type II. Fréchet : G(x)

{
= exp(−((x − �)/�)−�) for x ≥ �

= 0 otherwise

Type III. Weibull : G(x)

{
= exp(−((� − x)/�)�) for x ≤ �

= 1 otherwise

where �, �(>0), and �(>0) are the location, scale and shape
parameters, respectively.

Fisher and Tippet [12] are credited [11,13] with defining the
extreme value distributions in 1928, when they showed there
could only be the three types. Some graphical examples of
the probability density functions of the three types of extreme
value distributions are shown in Fig. 2.

All three extreme value distributions have a theoretical
basis for characterizing phenomena founded on weakest link
theory. For strength dependency on an underlying material
flaw distribution, the goodness-of-fit of any of the extreme
value distributions depends on the shape of the flaw distribu-
tion tail. In this regard, Type III, or the Weibull distribution, is
usually considered the best choice because it is bounded (the
lowest possible fracture strength is zero), the parameters allow
comparatively greater shape flexibility, it can provide reason-
ably accurate failure forecasts with small numbers of test

specimens and it provides a simple and useful graphical plot
[4,14]. In what has been hailed as his “hallmark paper” in 1951
[15], Weibull based the wide applicability of the distribution on
functional simplicity, satisfaction of necessary boundary con-

Fig. 2 – Probability density functions for the three extreme
value distributions, arbitrarily placed along the abscissa (x)
axis for easier shape comparison. Both the Weibull and
Gumbel functions have demonstrated good fits for
strengths of brittle materials, but a theoretical basis has
been demonstrated for the Weibull distribution.
6 ( 2 0 1 0 ) 135–147

ditions and, mostly, good empirical fit. The parameter symbols
and form of the extreme value functions are usually writ-
ten differently for reliability analyses. In the specific case of
Weibull fracture strength analysis, the cumulative probabil-
ity function is written such that the probability of failure, Pf,
increases with the fracture stress variable, �:

Pf = 1 − exp
[
−
(

� − �u

��

)m]
(2)

This is known as the Weibull three parameter strength dis-
tribution. The threshold stress parameter, �u, represents a
minimum stress below which a test specimen will not break.
The scale parameter or characteristic strength, �� , is depen-
dent on the stress configuration and test specimen size.
The distribution shape parameter, m, is the Weibull modu-
lus. This is the equation form that Weibull presented in his
original publications, directly derived from weakest link the-
ory [3]. He was conservative and disclaimed any theoretical
basis, not because of misgivings concerning extreme value or
weakest link theory, which was well established by then, but
because he perceived it was “hopeless to expect a theoreti-
cal basis for distribution functions of random variables such
as strength properties”. Since Weibull’s initial publications in
1939 and 1951, however, the science of fracture mechanics
has enabled determinations of quantitative functional rela-
tionships between strength and flaws in brittle materials, as
exemplified in Eq. (1).

By 1977, Jayatilaka and Trustrum [16] used fracture
mechanics to develop a general expression for the failure
probability using several general flaw size distributions sug-
gested by experimental work. They coupled these flaw size
distributions with the fracture mechanics criterion, Eq. (1),
and integrated the risk of breakage over component volumes
and then derived a number of different strength distributions
[16,17]. Their derivations are too lengthy to repeat here and the
reader is encouraged to review their exposition in the original
references. They showed that the right side tail of many par-
ent flaw size distributions such as shown in Fig. 1 often can
be modeled by a simple power law function: f(c) = constant c−n

where c is the flaw size. In such cases, the resulting strength
distribution is the Weibull distribution with m = 2n − 2. Danzer
et al. [18–20] have done similar derivations with more gen-
eralized flaw size distributions and have reached the same
conclusions. Subsequent work, including painstaking mea-
surement of flaw sizes and constructing distributions, has
confirmed the power law function for the distribution of large
crack sizes and hence the theoretical basis for the Weibull
approach [21–23]. In other words, a reasonable power law
distribution for large flaw sizes, classical fracture mechanics
analysis, and weakest link theory lead directly to the Weibull
strength distribution.

Today’s engineers routinely utilize Weibull statistics for
characterizing failure of brittle materials. Numerous and
diverse studies in the engineering literature report data in
terms of Weibull parameters where the strengths are related

to fractographically determined flaw types and sizes [24–26].
Such studies substantiate the existence of flaw distributions
that lead to strength distributions that can be modeled by
Weibull statistics for a wide range of materials. As noted ear-
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ier, fractographic examinations are becoming more common
n relating flaw types and sizes to strengths of dental restora-
ion materials [27–29]. While this shows that characterizing
aw populations in dental materials is possible, this does not
rove it is easy or possible in every case. Many dental mate-
ials have rough microstructures, where it can be particularly
ifficult to identify fractographic features [30,31]. Also, it is not
nusual to have multiple flaw types present which complicate
he Weibull analysis.

Major standards organizations throughout the world have
ublished specific guidelines for reporting ceramic strength in
erms of Weibull parameters, including ASTM (C1239) [32], the
apanese Industrial Standards Organization (JIS R1625) [33],
he European Committee for Standardization (CEN ENV 843)
34], and the International Organization for Standards (ISO
0501) [35]. These standards are very similar and use the iden-
ical Maximum Likelihood Estimation analysis to calculate the

eibull parameters. A newly revised (2008) Ceramic Material
or Dentistry standard (ISO 6872) [36] is the sole exception and
ses a simpler linear regression calculation in an informative
nnex.

Since many brittle materials used in structural engineer-
ng are also used in restorative dentistry, are Weibull analyses
ppropriate for ceramic dental materials? To answer this, the
pecific underlying assumptions and conditions inherent in
pplying Weibull statistics must be examined.

. Considerations for using Weibull
tatistics for dental materials

good data set is required for any credible property determi-
ation, and it can be deduced from the previous paragraphs
hat diligence in test specimen preparation and testing proce-
ures is particularly important when using Weibull statistics.
est specimens breaking from inconsistent machining or han-
ling, or haphazard alignment, are not representative of a
pecific flaw population, and do not contribute to a valid data
et for Weibull analysis. A materials advisory board committee
n 1980 [37] concluded that: “Ceramic strength data must meet
tringent quality demands if they are to be used to determine
he failure probability of a stressed component. Statistical
racture theory is based on the premise that specimen-to-
pecimen variability of strength is an intrinsic property of the
eramic, reflecting its flaw population and not unassignable
easurement errors. Ceramic strength data must be essen-

ially free of experimental error.” Even with meticulous test
mplementation, however, it is the stipulation of a single flaw
opulation that seems to cause the most difficulty in using
eibull statistics in dental material strength testing.
In Eq. (1), the parameter Y distinguishes different types of

aws as well as different test specimen test configurations.
blunt flaw, such as a pore, is more benign than a sharp

aw, such as a microcrack. A material under load may break
rom a sharp flaw but not break from a blunt flaw of a similar
ize. Suppose a material contains the two flaw types, small

icrocracks and large pores. Each flaw type has its own dis-

ribution. If all the test specimens break from microcracks,
r all the test specimens break from pores, then either the
icrocrack size distribution or the pore size distribution will
( 2 0 1 0 ) 135–147 139

govern the strength distribution. If, however, some test speci-
mens break from microcracks, and other test specimens break
from pores, the strength distributions resulting from the dif-
ferent flaw populations overlap and an associated extreme
value distribution cannot be modeled by one single flaw size
distribution tail. In this case, the Weibull strength distribu-
tion would not be expected to appear smoothly continuous.
If many test specimens are tested and enough of them break
from either flaw population, parts of two distinct Weibull dis-
tributions may be discernable. Censored statistical analyses
must be used in such cases [32]. Bends or kinks in a Weibull
distribution function are often indicative of fracture resulting
from multiple flaw types.

Thus, lack of a good Weibull fit is suggestive of an inconsis-
tent underlying flaw population, assuming the material was
tested properly and failed in a brittle manner. Conversely, a
good Weibull fit is sometimes taken as indicative of a sin-
gle, dominant flaw type and confirmation of adequate care
in testing procedures. Unless material familiarity and previ-
ous testing dictates otherwise, it is prudent to verify the cause
of fracture initiation. This is often done fractographically and
is encouraged, and in cases required, by the standards for
Weibull analyses [32–35]. There even are guidelines and formal
standards for fractographic analysis that have been prepared
with Weibull analysis in mind [31,38].

Another consideration in using Weibull statistics is the
increased number of test specimens that might be needed to
characterize an entire strength distribution rather than sim-
ply estimate a mean strength value. The optimal number of
test specimens depends on many variables, including mate-
rial and testing costs, the values of the distribution parameters
and the desired precision for an intended application. Help-
ful calculations and tables to make such decisions can be
found in the previously cited standards. In the absence of
specific requirements, a general rule-of-thumb is that approx-
imately 30 test specimens provide adequate Weibull strength
distribution parameters, with more test specimens contribut-
ing little towards better uncertainty estimates [39–41]. More
information regarding optimal test specimen numbers, as well
as reasons why Weibull distributions are so often observed
in material testing practice are discussed by Danzer et al.
[19]. They also detail conditions necessary to obtain a Weibull
distribution and suggest alternative statistical approaches
for analyzing strength data for materials that do not satisfy
these conditions, such as materials with unusual or highly
mixed flaw distributions. In this sense, Weibull analysis can
be regarded as a special, simple case of a broader statistical
approach for analyzing strength data [18–20]. Indeed, Danzer
now uses the expression “Weibull material” as one with a sin-
gle flaw type whose size distribution fits a power law function
on the right side tail.

The previous paragraphs highlight some of the assump-
tions and difficulties in utilizing Weibull statistics in
characterizing strength measurements of dental materials.
What are the benefits?

It was initially noted that extreme value statistics can be

used to predict changes in distributions according to the phys-
ical size of the individual test specimens. This is one of the
strongest virtues of the Weibull model and what distinguishes
it from other distributions. In practical terms, this means that
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Fig. 3 – A computer generated simulation showing the
spread in failure locations (the dots) for 50 flexural strength
bars loaded in 3-point loading as a function of Weibull
modulus. The arced lines show loci of constant tensile
stresses. Fracture origins cluster around the highest
stressed areas for materials with large Weibull moduli, but

can occur over a broad region for materials with low
Weibull moduli (from Johnson and Tucker [42]).

strength values for one test specimen size may be “scaled”
to expected strength values for different sized test speci-
mens. This strength scaling permits comparison of strengths
of structures with stress gradients such as bend bars or flexed
disks. Examples of strength scaling are shown later in this
paper. So far we have assumed that all flaws in a body are
exposed to the same tensile stresses, but in bodies with stress
gradients, some large flaws may be in a low tensile stress
or compression region and will not cause fracture. Fracture
occurs where there is a critically loaded flaw that has a size,
c, and shape factor Y, and a local stress, �, combination such
that the critical fracture toughness, KIc, is reached in accor-
dance with eq. (1).1 Fig. 3 by Johnson and Tucker [42] illustrates
how fracture origin sites may be scattered in a 3-point bend
bar. For materials with low Weibull moduli (i.e., the flaw sizes
are quite variable) fracture can occur from a large portion of
the test specimen. On the other hand, the origin sites are con-
centrated to only the highest stressed regions if the Weibull
modulus is large, since the flaw sizes are all similar.

The validity of the Weibull approach can be tested by its
ability to scale strengths for a particular specimen size to
another size or testing configuration. A review of ceramic flex-
ural strength data [43] tabulated a number of studies wherein
ceramic strength scaling by Weibull analysis was successful
over a size range as much as four orders of magnitude in
volume or area! Strength scaling is done by the concept of
an “equivalent” volume or area under stress, discussed in a

following section. Whether equivalent volumes or equivalent
areas are used depends on whether fracture initiates from vol-
ume flaws or surface flaws within the stressed region.2 Using

1 For simplicity, we ignore rising R-curve behavior whereby
fracture resistance changes with crack size and we also ignore
environmentally assisted slow crack growth.

2 In rare instances, strength is controlled by edge origin sites,
and strength scales with the effective edge lengths.
6 ( 2 0 1 0 ) 135–147

Weibull statistics to calculate corresponding strengths for dif-
ferent test specimen sizes, test specimen shapes and stress
configurations is particularly appealing for use in the dental
field where sample sizes and testing configurations are fre-
quently different.

Identification and quantization of different flaw popula-
tions can explain strength differences and ultimately lead to
improved materials. Such approaches can, for example, iso-
late the effects of grinding media and surface treatments, or
determine whether strength might be improved by reducing
porosity. Most important of all, determination of the domi-
nant flaw populations, the effects of stress configurations and
physical size are all necessary for correlations to clinical com-
ponents.

3. Experimental examples and discussion

As noted above in Eq. (2), three parameters were used to define
the previously introduced extreme value functions, but only
two Weibull parameters are generally reported for strengths.
The two-parameter Weibull distribution is obtained by setting
�u = 0, although the three parameter form is not uncommon.
When the three parameter Weibull distribution is used, the
lower strength bound, �u, might represent a lower strength
limit for a data set. This is analogous to a data set that may
have been previously proof-tested or inspected to eliminate
flaws over a certain size. The lower bound strength could
also correspond to a physical limit to a crack size. It is very
risky to assume a finite threshold strength exists without
careful screening or nondestructive evaluation. Hence, the
two-parameter form is most commonly used for simplicity.

Setting �u to zero in Eq. (2) and taking the double logarithm
of the resulting two-parameter Weibull distribution yields:

Pf = 1 − exp
(

−
(

�

��

)m)

ln(1 − Pf ) = −
(

�

��

)m

ln

[
ln

(
1

1 − Pf

)]
= m ln � − m ln �� (3)

The reason the double logarithm of the Weibull equation is
used in strength analysis is the ease of accessing information.
Appendix A shows how Eq. (3) yields the Weibull parameters
in a simple graphical representation of the data with a slope of
the Weibull modulus, m. Fig. 4 shows an example for alumina.
One can perform a simple linear regression analysis to get the
Weibull parameters, but many analysts prefer the maximum
likelihood estimation approach as discussed in Appendix. The
characteristic strength, �� , is a location parameter; a large ��

shifts the data to the right, while a small �� shifts the data
to the left. The characteristic strength is the strength value,
�, at P = 63.2%, when the left side of Eq. (3) = 0. Thus reported
f

Weibull characteristic strength values (Pf = 63.2%) are slightly
greater than the mean strength values (Pf = 50%).

The double logarithm of the reciprocal (1 − Pf) on the left
side of Eq. (3) explains the unusual interval spacing of the
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Fig. 4 – Weibull plots of alumina bars broken in flexure
using 3-point (�) and 4-point (©) test configurations. The
bars broken in 3-point flexure broke at greater stresses. The
parallel shift to the right of the whole distribution is
predicted by Weibull theory. The Weibull parameters and
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flaw mix probably contributed to some of the wriggles in Fig. 4
tted lines are from maximum likelihood analysis.

f labels on the ordinate (y) axis of the Weibull graph. Two
xamples are used in this section to illustrate the previous
oncepts. The example in Appendix A also illustrates some of
hese topics.

.1. Example 1: alumina 3- and 4-point flexure tests

his first example illustrates strength differences in polycrys-
alline alumina bars tested in 3-point and 4-point flexure. The
ar sizes were all 3 mm × 4 mm × 50 mm. The 3-point flexure
est specimens had 40 mm outer spans, and the 4-point flex-
re test specimens had 40 mm outer spans and 20 mm inner
pans. Stresses were calculated by the formulae [44]:

3-pt = 3PL

2bd2
for the 3-point flexure tests

4-pt = 3PL

4bd2
for the 1/4-point, 4-point flexure configuration

here P is the break load, L is the outer span length, b is the
est specimen width, and d is the test specimen height. The
/4-point qualifier for the 4-point configuration means that
he inner loading rollers are located inward by 1/4L from the
uter loading rollers.

For each of the two test configurations, the stress values
ere ranked in ascending order, i = 1, 2, 3, . . ., N, where N is the

otal number of test specimens and i is the ith datum. Thus,
he lowest stress for each configuration represents the first

alue (i = 1), the next lowest stress value is the second datum
i = 2), etc., and the highest stress is represented by the Nth
atum. This enables a ranked probability of failure, Pf (�i), to
( 2 0 1 0 ) 135–147 141

be assigned to each datum according to

Pf (�i) = i − 0.5
N

(4)

Although there are other formulations to assign failure prob-
abilities, the one shown in Eq. (4) is widely used and has
negligible bias as discussed in Appendix.

Since the fracture stress and the associated Pf for each
datum are now known, a graph may be constructed using the
left side of Eq. (3) on the ordinate and ln(�) on the abscissa. This
comprises Fig. 4, where the 3-point flexure bar data (squares)
are at the right, at higher strengths, than the 4-point flexure
bar data (circles). There are two common approaches to fit a
line through the data: linear regression analysis and maxi-
mum likelihood estimation analysis [45–48]. The pros and cons
of each analysis are described in more detail in the Appendix,
but, as mentioned above, most world standards use the latter.
The MLE analysis was used for the Weibull parameter esti-
mates in Fig. 4 and Table 1. The strength difference for the
same material seems large, but this is to be expected accord-
ing to weakest link theory, as more material is under higher
stress in the 4-point configuration, with a higher probability
of containing a larger flaw.

It can be seen from Fig. 4 that the slopes (Weibull moduli)
indicate the strength distribution widths. The similar slopes
suggest that the same flaw types were active in both specimen
sets and this indeed was verified by fractographic analysis.
The wriggles in the curves are not unusual and are common
in small size sample sets. A high modulus, or steep slope, is
associated with a narrow strength distribution. This is usu-
ally desirable, as materials with high Weibull moduli are more
predictable and less likely to break at a stress much lower
than a mean value. The characteristic strength, or Weibull
scale parameter �� , indicates the distribution location along
the abscissa (x) axis, and is expected to move according to
test specimen size or the amount of material that is highly
stressed. Thus, the distributions for 3- and 4-point flexure are
expected to have the same shape (m value), but move to the
right (higher �� value) as test specimen sizes or stressed vol-
umes decrease. This is directly analogous to the “march” of
the “largest flaw” distribution presented in a previous section.
It was also stated in previous sections that such measured
strength changes due to differences in test specimen size and
configuration can be quantitatively predicted using Weibull
parameters. This can be accomplished through the concept of
equivalent areas or volumes.

3.2. 3-Point and 4-point flexural strength comparisons
using equivalent volumes

Fractographic analysis of the flexure test specimens graphed
in Fig. 4 determined the predominant flaw type was volume-
distributed porosity or agglomerates associated with porosity.
Inclusions caused fracture in some test specimens, and the
data. Since the flaws were volume distributed, we will com-
pare the two data sets using an equivalent volume approach.
In the Weibull weakest link model, the size-strength relation-
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Table 1 – Strength tests with different flexural configurations and maximum likelihood estimates of the Weibull
parameters.

Material (number
of specimens)

Flexure test type Mean strength
(std. dev.)

Weibull char. strength,
�� (90% conf. interval)

Weibull modulus, m (90%
conf. interval)

MPa
MPa
.3) M
Pa
Alumina (32) 4-point, 40 mm × 20 mm spans 364(45)
Alumina (30) 3-point, 40 mm span 444(51)
Porcelain 1 (27) 4-point, 20 mm × 40 mm spans 84.7 (5
Porcelain 2 (26) 4-point, 10 mm × 20 mm spans 112(8) M

ship can be expressed [43,46–48]:

�1

�2
=

(
VE2

VE1

)1/m

(5)

where m is the Weibull modulus, �1 and �2 are the mean (or
median or characteristic) strengths of test specimens of type 1
and 2 which may have different sizes and stress distributions,
and VE1 and VE2 are the associated effective volumes. (Effective
areas may be substituted for the effective volumes in Eq. (5)
for surface flaws, such as machining damage.) A unimodal flaw
population that is uniformly distributed throughout the vol-
ume and a Weibull two-parameter distribution are assumed.

The effective volume approach is illustrated in Fig. 5. In the
simplest case of direct uniform tension, VE is the test speci-
men volume, V. Many test specimens or components such as
flexural loaded rods or bars have stress gradients and VE < V.
Sometimes the relationship between the two is expressed as
VE = KV, where K is called the loading factor and is dimension-
less and V is the total volume within the outer loading points.
As shown in Fig. 5, VE is the volume of a hypothetical tensile
test specimen, which when subjected to the stress �max, has

the same probability of fracture as the flexure test specimen
stressed at �max. In other words, a flexure bar of volume V
is equivalent to a tensile test specimen of size VE. K is 1 for
an ideally loaded tension specimen. K is typically less than 1

Fig. 5 – The concept of equivalent volume. �x shows the
direction of the tensile stresses. Only part of the total
volume, V, of the flexure specimen on the left is in tension.
Only a smaller fraction of this region (depicted by the
shaded area) is exposed to large tension stresses. An
equivalent direct tension specimen with the same effective
volume, VE, is shown on the right. How much of the flexure
specimen volume should be counted depends on the
Weibull modulus.
383(370–396) MPa 9.6 (7.3–11.7)
467(449–485) MPa 8.8 (6.6–10.7)

Pa 87.1 (85.4–88.8) MPa 18.5 (13.6–22.7)
115(113–118) MPa 18.0 (13.1–22.2)

for parts or test specimens that have stress gradients, i.e., the
stress varies with position within the body.

Equations for effective volumes and effective areas may be
determined from knowledge of the stress state, or looked up
in the literature for common configurations, such as flexure of
rectangular bars [49] or round rods [50]. For the flexure bars in
Fig. 4, the effective volumes can be calculated:

VE of the 1/4-point 4-point flexure test specimen

= (Lobd)(m + 2)

[4(m + 1)2]

VE of the 3-point flexure test specimens = (Lobd)

[2(m + 1)2]

where Lo is the outer span length, b is the test specimen width,
d is the test specimen height, and m is the Weibull modulus.
In other words, the effective volumes are equal to the spec-
imen volume (Lobd) within the loading span multiplied by a
dimensionless term including the Weibull modulus. The latter
term takes into account the stress gradient, but also reflects
the influence of the variability in flaw sizes. The portions of
the test specimen that lie beyond the fixture outer span are
unstressed and do not contribute to the effective volumes.
The same is true of the portions stressed in compression. In
our example, the flexure bars all have the same outer span
length of 40 mm, and same height and width of 3 and 4 mm,
respectively. The ratio of effective volumes is thus

VE4−pt

VE3−pt
= m + 2

2

This can be substituted into Eq. (5) to yield a simple expression
for determining the expected strength ratio for the 3- and 4-
point flexure test configurations:

�3-pt = �4-pt

(
VE4−pt

VE3−pt

)1/m

= �4-pt

[
m + 2

2

]1/m

Using an average m of 9.2, the 3-point strengths should be 1.206
times the 4-point strengths, in excellent agreement with the
experimentally determined ratio of 1.216. In other words, the
3-point strengths are 21% stronger than the 4-point strengths,
in good agreement with the prediction. This example demon-
strates how the Weibull function can be utilized to predict the
scaling of strengths to other configurations.

3.3. Example 2: comparison of two porcelains using
different sized flexure bars
In this second example, the strengths of two different porce-
lains, Porcelain 1 and Porcelain 2 are compared. Both are
feldspathic porcelains containing well-dispersed crystallites
of similar sizes. The porcelains differ, however, in crystalline



d e n t a l m a t e r i a l s 2 6

Fig. 6 – Weibull plots of two feldspathic porcelains tested in
different configurations. The Weibull parameters are from
maximum likelihood analysis. The Weibull moduli are
similar, and the specimens tested with the shorter span
broke at higher stresses. Is this difference expected if the
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wo materials have similar strengths?

olume content and crystalline phases, and were obtained
rom different manufacturers. Porcelain 1 and Porcelain 2
oth had cross-sections of 3 mm × 4 mm and both were tested

n 1/4-point, 4-point flexure. The Porcelain 2 test specimens
ere shorter than the Porcelain 1 test specimens, however,
nd were tested using shorter spans. Porcelain 2 was tested
ith a 20 mm outer span and 10 mm inner span. The longer

orcelain 1 test specimens were tested with the same fix-
ure design, but with a 40 mm outer span and 20 mm inner
pan.

As in the previous example, the data were ranked and each
atum was assigned a failure probability and then graphed
sing Eq. (3). The results are shown in Fig. 6 and Table 1.
he slopes are very similar (18.5 and 18.0), and the shorter

est specimens had higher strengths, as would be expected
rom weakest link theory. Are the test specimens truly com-
arable in terms of strength? If Porcelain 2 were tested in
0 mm × 20 mm fixtures instead of the smaller 20 mm × 10 mm
xtures, would the strengths be similar to Porcelain 1?

Fractographic examination of the materials plotted in Fig. 6
ndicated that the two porcelains generally failed from intrin-
ic flaws that were volume distributed. Once again we return
o Eq. (5). In this case we need the effective volume ratio for
onger and shorter test specimens tested in 4-point flexure.
gain using the equation for 1/4 4-point flexure:

E = (Lobd)(m + 2)

[4(m + 1)2]
ince all the quantities in the previous equation are the same
or the two porcelains except the span lengths, the effective
( 2 0 1 0 ) 135–147 143

volume ratio is simply:

VE small span

VE large span
= 20 mm

40 mm
= 0.5

The Weibull modulus of Porcelain 2 is 18.0. Thus, from Eq. (4):

�P2 large span =
(

20
40

)1/18

�P2 small span = 0.96�P2 small span

The expected strength of Porcelain 2, if the test specimens
were longer and tested with 40 mm spans, is only 4% less.
The small difference is due to the large Weibull modulus so
that the effective volumes are not vastly different. Although
Weibull scaling predicts a 4% difference in strength if Porce-
lain 2 was tested with longer spans, the measured difference in
strengths of the two porcelains would be much greater—about
25%. Utilizing the tables in Ref. [41] and ASTM C1239 [32],
the high moduli and adequate numbers of test specimens
for both configurations result in 90% confidence bounds that
are sufficiently narrow to indicate the porcelain strengths are
statistically significantly different. Porcelain 2 has a higher
calculated strength than Porcelain 1 for a similar test configu-
ration.

3.4. Example 3: Deviations from a unimodal strength
distribution in a zirconia

Fig. 7 shows an example where a single Weibull distribution is
a poor fit. Thirty nine commercial 3Y-TZP zirconia bend bars
of size 3 mm × 4 mm × 45 mm were tested on 20 mm × 40 mm
4-point fixtures. Fractographic analysis was done on every test
specimen and revealed that most of the strength limiting flaws
were volume-distributed pores between 10 and 20 �m in diam-
eter. The six weakest specimens broke from unusually large
flaws such as compositional inhomogeneities, inclusions, and
gross pores, so it is not surprising that the strength trend
is irregular. A proper analysis of this data set would require
the use of censored statistical analyses as described in [32].
In this example, the low strength tail of the distribution was
readily apparent since a large number of test specimens were
available. Had only 10 or 15 specimens been broken, then it
is possible that only one or two weak specimens would have
been revealed and the low strength problem not detected.

3.5. Additional considerations and assumptions

The previous examples demonstrate some of the problems
and advantages of using Weibull statistics. A single flaw
population is assumed and should be verified, test speci-
men numbers should be sufficient to determine the Weibull
parameters within acceptable confidence bounds, and the
calculations and results are more cumbersome than simple
determination of a mean stress value. On the other hand, it
was possible to quantitatively compare expected strengths
for the different materials and test configurations, as well as
peruse the plots for an idea of the comparative distribution
As a final note, it should be mentioned that all the test
specimens were tested using self-aligning fixtures with rollers,
such as shown in Fig. 8. The elastic bands in the figure apply
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Fig. 7 – Flexural strength of 3Y-TZP zirconia bend bars. The
maximum likelihood fitted line is a poor fit to the
distribution. Although most specimens had pore origins
like the one shown on the upper insert, the six weakest

test specimens had atypical flaws such as the one shown
on the lower left.

enough force to keep the rollers in place while allowing them
to rotate when a flexure load is applied. The allowed rotation
is quite important, for the supports and load points will be
subject to a frictional force if the rollers are not free to roll.
The errors due to friction are significant, but almost always
ignored in the dental literature, where frictionless load points
are assumed in the calculations. Experimental differences in
failure stress using rigid knife edges as compared to roller-type
contact points have been measured higher than 11% [51–53].

The frictional force prevents the load points from rolling apart,
and superimposes a compressive force on the tensile face
of the test specimen. Thus, the error results in apparently
“stronger” test specimens than would result from rolling sup-

Fig. 8 – The elastic bands in this 3-point semi-articulating
fixture enable the outer rollers to turn in order to alleviate
frictional forces, which can be a significant source of error
in flexural tests.
6 ( 2 0 1 0 ) 135–147

ports. Significant errors can also result from misalignment,
especially if the bars are not of constant geometry or flat and
parallel [43,54,55]. No amount of statistical manipulation can
compensate for indiscriminate test procedures.

4. Conclusion

There is a strong theoretical foundation for Weibull statisti-
cal analysis of strength data based on extreme value theory,
fracture mechanics, and demonstrated flaw size distributions.
However, awareness of the conditions and limitations inher-
ent in Weibull analyses, especially those pertaining to existing
flaw populations and quality of data, is important for mean-
ingful application and interpretation. A great deal of useful
information is available through Weibull analysis. Among
the most useful applications are comparisons of strength
values and ranges for different stress configurations, which
were demonstrated in Section 3 for several dental materi-
als.
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Appendix A.

How to prepare a Weibull strength distribution graph
The following example utilizes fictitious data in order to

demonstrate how a Weibull strength distribution graph is
prepared. Suppose that five test specimens produce strength
outcomes of: 255, 300, 330, 295, and 315 MPa. More than 5 data
are advisable for most conditions and this small sample set
is for illustrative purposes only. The first step is to order the
data from lowest to highest strengths as shown in the second
column of Table A1.

The natural logarithms of the stresses are computed and
shown in the third column. These values will be plotted along
the horizontal axis of a Weibull graph.

Next, a cumulative probability of fracture, Pf, is estimated
and assigned to each datum. A commonly used estimator that
has low bias when used with linear regression analyses is
Pf = (i − 0.5)/n, where i is the ith datum and n is the total num-
ber of data points. This is the estimator used in the main text.
Many studies (e.g. [A1–A4,45]) have shown that for n > 20, this
estimator produces the least biased estimates of the Weibull
parameters. Using the estimator for the first (i = 1) data point
out of n = 5 total points, Pf is estimated to be 0.10% or 10% as
shown in the fourth column of Table A1. This means that if
many test specimens were broken, it is estimated that 10% of
all outcomes would be weaker than the specimen that broke

at a stress of 255 MPa. 90% would be stronger.

The next step is to compute the double natural logarithm
of [1/(1 − Pf)] in accordance with Eq. (3) in the main body of the
paper. This is listed in the last column of the table.
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Table A1 – Example data set for 5 test specimens.

i Strength (MPa) X = ln(strength) Pf = (i − 0.5)/n Y = ln ln [1/(1 − Pf)]

1 255 5.5413 0.10 −2.2504
2 295 5.6870 0.30 −1.0309
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3 300 5.7038
4 315 5.7526
5 330 5.7991

A graph is prepared with X = ln(strength) plotted on the hor-
zontal axis, and Y = ln ln[1/(1 − Pf)] on the vertical axis. Fig. A1
hows a graph with these two axes shown on the right and
op sides. For convenience, the axes are often labeled with
he values of fracture stress and Pf, as shown along the left
nd bottom sides of the graph. Note how the values of these
arameters are not simply and evenly distributed along the
xes, but stretched according to the logarithmic and double
ogarithmic functions.

Finally, a line is fitted through the data. Linear regres-
ion (LR) analysis is commonly used since it is the easiest to
nderstand and can be done with a hand calculator, a simple
preadsheet, or many common graphics software programs.
he usual procedure is to regress the ln ln[1/(1 − Pf)] values
nto ln(fracture stress), or in other words, to minimize the
ertical deviations in the graph. The slope of the line is the
eibull modulus, m. The characteristic strength, �� , is the

alue of stress for which ln ln[1/(1 − Pf)] is zero, or Pf = 63.2%. It
s analogous to the median strength, except that the latter is
t Pf = 50%. The Weibull modulus and characteristic strength
rom the linear regression analysis are shown on the right

f the line in Fig. A1. (Users should be cautioned that some
lgorithms and computer programs regress the opposite way,
o that horizontal deviations are minimized. Different Weibull
arameter estimates are obtained.)

ig. A1 – Weibull graph for the Table A1 data set. The linear
egression and maximum likelihood estimator lines and

eibull parameter estimates are shown for comparison.
0.50 −0.3665
0.70 0.1856
0.90 0.8240

The Weibull modulus and characteristic strength from lin-
ear regression analysis are adequate for many cases, but it
should be borne in mind that these are estimates. The con-
fidence bounds or uncertainties on these estimates may be
obtained from the literature. In general, estimates of the char-
acteristic strength quickly converge to population values as
the number of specimens is increased to ten or more. On the
other hand, Weibull modulus estimates can be quite variable
for a sample set with only a small number of test specimens or
if the data do not fall on a single line. Therefore, it is common
to require no fewer than ten test specimens and preferably 30
to obtain good estimates of the Weibull modulus.

The literature includes many papers suggesting new and
improved Pf estimators for linear regression analyses. There
are far too many to list here. Usually Monte Carlo simula-
tions with an assumed Weibull distribution generate many
small data sets which are analyzed in turn by the chosen
linear regression scheme. Scatter in the computed Weibull
parameters as well as bias trends (the parameters on average
do not match the assumed parent distribution) are analyzed
and compared to results when using the usual Pf = (i − 0.5)/n
estimator. Ideally, the results should have low scatter (tight
confidence bounds) and negligible bias. Some of the proposed
estimators are quite implausible, however. For example, one
study suggested the use of Pf = (i − 0.999)/(n + 1000) [A5]. So
for a set of 30 specimens, this estimator suggests the first
strength datum corresponds to a Pf = 1.0 × 10−4%, and, for the
last datum, a Pf = 28%. It is unreasonable to assume that the
weakest data point of a set of 30 specimens gives useful infor-
mation about a probability of fracture of one part in 10,000.
With the traditional Pf = (i − .5)/n, one obtains far more plausi-
ble estimates of 1.7% and 98.3%. These numbers mean that one
might expect only 1.7% of additional test strengths would be
weaker than the first datum and 98.3% would be weaker than
the strongest recorded test outcome. Two subsequent papers
showed that dramatic correction factors for bias had to be used
when using the Pf = (i − 0.999)/(n + 1000) estimator [A6,A7]. For
most Weibull analyses, it is not necessary to resort to such
exotic probability estimators and, as stated above, leading
researchers [45–48,A1–A4] have concluded that for n > 20, the
Pf = (i − .5)/n estimator gives parameters estimates with small
bias and reasonable confidence limits. Users should be cau-
tious with smaller sample sets than 10, however, since bias in
the Weibull modulus can be 5% or more [45,A1–A4,A8,A9].

An important and common alternative analysis to fit the
data is the Maximum Likelihood Estimation (MLE) approach.
It is a more advanced analysis that is preferred by many

statisticians since the 90% or 95% confidence intervals on the
estimates of the Weibull parameters are appreciably tighter
than those from linear regression [42,45,A4,A5,A9]. Further-
more, it is not necessary to use a probability estimator for Pf.



l s 2

r

146 d e n t a l m a t e r i a

For these reasons, MLE is incorporated into the comprehensive
Weibull standards for analysis of strength data [32–35] which
all give identical Weibull parameter estimates and confidence
bounds for a particular data set. MLE analysis is strongly pre-
ferred for design. MLE analysis, which is explained well in
Ref. [46], estimates the Weibull parameters by maximizing
a likelihood function. The MLE analysis is usually described
in mathematical terms (e.g. [45–48]), but a simplified descrip-
tion of how it works is as follows. A first estimate, or “guess”
is made of the Weibull parameters and, for each actual test
strength outcome, a probability of occurrence is calculated.
For a given test set of say n = 30 strengths, the probabilities are
summed. Another slightly different Weibull distribution, with
different modulus and characteristic strength, is then tried
and the probabilities are also summed. The Weibull param-
eters are iteratively adjusted until the optimum, or “most
likely,” parameters are found to fit the actual test data. This
iterative analysis is typically done with a computer program.3

The MLE estimate for the characteristic strength has negli-
gible bias, but a small correction factor is usually applied to
correct or “unbias” the Weibull modulus estimate [32–35,41].
Users of MLE programs should check whether or not the cal-
culated moduli are corrected for bias. A MLE fitted line is also
shown in Fig. A1. In this example, the Weibull MLE and LR
parameter estimates are similar. This is commonly the case
for the characteristic strength, but MLE and LR estimates of
the Weibull modulus usually differ. Linear regression analy-
ses usually “chase the lowest strength data points” whereas
MLE seems to “chase the highest strength data points” [48].
One might ask: which is better? The answer is that each gives
reasonable estimates of the Weibull modulus, but, since the
confidence intervals for the MLE estimates are tighter, statis-
ticians and designers prefer MLE. For more details on the MLE
analysis, the reader should consult Refs. [41,46] or the Weibull
strength standards [32–35]. With the sole exception of the
short annex in the Dental Standard ISO 6782:2008 [36] (which
has no information on confidence bounds), all other standards
specify strength data analysis by MLE and include instructions
on how to determine the confidence bounds.

There are many reasons why strength data may deviate
from a straight line when plotted as shown above. A non-zero
threshold strength may cause the trend to curve downward
at lower strengths. Bends or wriggles in the trend may be a
consequence of small sample sizes (e.g. for n ≤ 10) or may be
manifestations of multiple flaw populations. More advanced
analyses for bimodal strength distributions are available (e.g.

censored statistical analysis as specified in ASTM C 1239 [32]
or ISO 20501 [35]). Fractographic analysis may help determine
the cause of bends or wriggles in a data set.

3 The actual calculation used by most programs uses a more
efficient scheme. The likelihood function is the mathematical
product of the probability density function values for a series of
experimental strength values. This product (actually the natural
logarithm of the product for mathematical convenience) is
differentiated twice, once with respect to m, and once with
respect to �� . The two differential equations are set equal to zero
to find the maximum, i.e., the maximum likelihood. The two
nonlinear equations are then are solved iteratively to obtain the
maximum likelihood parameter estimates.
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