
Quantum Resistant Public Key Cryptography: A Survey

Ray A. Perlner David A. Cooper
ray.perlner@nist.gov david.cooper@nist.gov

National Institute of Standards and Technology

100 Bureau Drive

Gaithersburg, Maryland 20899–8930

ABSTRACT
Public key cryptography is widely used to secure transac
tions over the Internet. However, advances in quantum com
puters threaten to undermine the security assumptions upon
which currently used public key cryptographic algorithms
are based. In this paper, we provide a survey of some of
the public key cryptographic algorithms that have been de
veloped that, while not currently in widespread use, are be
lieved to be resistant to quantum computing based attacks
and discuss some of the issues that protocol designers may
need to consider if there is a need to deploy these algorithms
at some point in the future.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms
Algorithms, Security

Keywords
Quantum computers, public key cryptography

1. INTRODUCTION
Since its invention, public key cryptography has evolved

from a mathematical curiosity to an indispensable part of
our IT infrastructure. It has been used to verify the au
thenticity of software and legal records, to protect financial
transactions, and to protect the transactions of millions of
Internet users on a daily basis.

Through most of its history, including present day, public
key cryptography has been dominated by two ma jor families
of cryptographic primitives: primitives whose security is be
lieved to be contingent on the difficulty of the integer factor
ization problem, such as RSA [46] and Rabin-Williams [44,
55], and primitives whose security is believed to be contin
gent on the difficulty of the discrete logarithm problem, such
as the Diffie-Hellman key exchange [14], El Gamal signa
tures [19], and the Digital Signature Algorithm (DSA) [17].
Also included within the second family is elliptic curve cryp
tography (ECC) [32, 40], which includes all known, practi-

This paper is authored by employees of the U.S. Government and is in the
public domain.
IDtrust ’09, April 14-16, 2009, Gaithersburg, MD
ACM 978-1-60558-474-4

cal identity-based encryption schemes [5] as well as pairing-
based short signatures [6].

While both the integer factorization problem and the gen
eral discrete logarithm problem are believed to be hard in
classical computation models, it has been shown that nei
ther problem is hard in the quantum computation model.
It has been suggested by Feynman [16] and demonstrated
by Deutsch and Jozsa [13] that certain computations can be
physically realized by quantum mechanical systems with an
exponentially lower time complexity than would be required
in the classical model of computation. A scalable system ca
pable of reliably performing the extra quantum operations
necessary for these computations is known as a quantum
computer.

The possibility of quantum computation became relevant
to cryptography in 1994, when Shor demonstrated efficient
quantum algorithms for factoring and the computation of
discrete logarithms [51]. It has therefore become clear that
a quantum computer would render all widely used public
key cryptography insecure.

While Shor demonstrated that cryptographic algorithms
whose security relies on the intractability of the integer fac
torization problem or the general discrete logarithm prob
lem could be broken using quantum computers, more recent
research has demonstrated the limitations of quantum com
puters [47]. While Grover developed a quantum search algo
rithm that provides a quadratic speedup relative to search
algorithms designed for classical computers [24], Bennet,
Bernstein, Brassard, and Vazirani demonstrated that quan
tum computers cannot provide an exponential speedup for
search algorithms, suggesting that symmetric encryption al
gorithms, one-way functions, and cryptographic hash algo
rithms should be resistant to attacks based on quantum com
puting [4]. This research also demonstrates that it is unlikely
that efficient quantum algorithms will be found for a class
of problems, known as NP-hard problems, loosely related to
both search problems and certain proposed cryptographic
primitives discussed later in this paper.

The above research suggests that there is no reason, at the
moment, to believe that current symmetric encryption and
hash algorithms will need to be replaced in order to protect
against quantum computing based attacks. Thus, any effort
to ensure the future viability of cryptographic protocols in
the presence of large scale quantum computers needs to con
centrate on public key cryptography. Given how vital public
key trust models are to the security architecture of today’s
Internet, it is imperative that we examine alternatives to the
currently used public key cryptographic primitives.

85

mailto:david.cooper@nist.gov
mailto:ray.perlner@nist.gov

In this paper, we provide an overview of some of the public
key cryptographic algorithms that have been developed that
are believed to be resistant to quantum computing based
attacks. The purported quantum-resistance of these algo
rithms is based on the lack of any known attacks on the
cryptographic primitives in question, or solutions to related
problems, in the quantum computation model. This does
not mean that an attack will never be found, but it does
yield some confidence. The same type of argument is used
to justify the security of all but a handful or cryptographic
primitives in the classical computation model. One-time
pads [50, 53] and universal hash functions [8] are uncondi
tionally secure in any computation model, if used properly,
but they are usually impractical to use in a way that doesn’t
invalidate the proof. Other cryptography often comes with
a “security proof,” but these proofs are generally based on at
least one unproved security assumption—virtually any proof
of security in the classical or quantum computation model
not based on an unproved assumption would resolve one of
the best known unsolved problems in all of mathematics [10].

Section 2 lists some of the issues that should be considered
in comparing public key cryptographic algorithms. Section 3
describes a one-time signature scheme known as Lamport
signatures, and Section 4 describes techniques that have
been developed for creating long-term signature schemes
from one-time signature schemes. Section 5 covers public
key cryptographic algorithms based on lattices. Section 6
describes the McEliece signature and encryption schemes.
Other potential areas of research are mentioned in Section 7
and Section 8 discusses issues that may need to be considered
by protocol designers if one or more of the public key cryp
tographic algorithms described in this paper become widely
used at some point in the future.

2. GENERAL CONCERNS
A number of factors can be considered when examining

the practicality of a public key cryptographic algorithm.
Among these are:

• Lengths of public keys, key exchange messages, and
signatures: For public key cryptographic algorithms
commonly in use today, these are all roughly the same
size, ranging from a few hundred to a few thousand
bits, depending on the algorithm. This is not always
the case for candidate quantum-resistant algorithms.
If public keys, key exchange messages, or signatures
are much larger than a few thousand bits, problems
can be created for devices that have limited memory
or bandwidth.

• Private key lifetime: A transcript of signed messages
often reveals information about the signer’s private
key. This effectively limits the number of messages
that can safely be signed with the same key. The
most extreme example of this is the Lamport signa
ture scheme, discussed below, which requires a new
key for each signed message. Methods have been de
veloped for creating a long-term signature scheme from
a short-term or even single-use signature scheme, but
these often require extra memory for managing and
storing temporary keys, and they tend to increase the
effective length of signatures. Private keys used for de
cryption do not generally have limited lifetime, since

encryption does not use and therefore cannot leak in
formation about the private key, and protocols can
almost always be designed to prevent the decryptor
from revealing information about his or her private
key. This can be done by encrypting symmetric keys
rather than the content itself, using integrity protec
tion, and reporting decryption failures in a way that
makes them indistinguishable from message authenti
cation code (MAC) failures. This type of behavior is
currently necessary for secure protocols using old RSA
padding schemes, and is often considered good practice
regardless of the key transfer mechanism.

• Computational cost: There are four basic public key
operations: encryption, decryption, signing, and signa
ture verification. On today’s platforms, with currently
used algorithms, these operations generally take a few
milliseconds, except for RSA encryption and signature
verification, which can be about 100 times faster due to
the use of small public exponents. Key generation time
may also be a concern if it is significantly more expen
sive than the basic cryptographic operations. Factor
ing based schemes such as RSA and Rabin-Williams
tend to have this problem, as generation of the two
high entropy prime factors requires several seconds of
computation.

3. LAMPORT SIGNATURES
The basic idea behind Lamport signatures [33] is fairly

simple. However, there is a wide variety of performance
tradeoffs and optimizations associated with it. It derives its
security strength from the irreversibility of an arbitrary one-
way function, f . f may be a cryptographic hash function,
although the scheme is secure even if f is not collision resis
tant. The Lamport scheme is a one-time signature scheme.
In order for the scheme to be secure, a new public key must
be distributed for each signed message.

In the simplest variant of Lamport signatures, the signer
generates two high-entropy secrets, S0,k and S1,k , for each
bit location, k, in the message digest that will be used for
signatures. These secrets (2n secrets are required if the di
gest is n bits long) comprise the private key. The public key
consists of the images of the secrets under f , i.e., f(S0,k) and
f(S1,k), concatenated together in a prescribed order (lexi
cographically by subscript for example). In order to sign
a message, the signer reveals half of the secrets, chosen as
follows: if bit k is a zero, the secret S0,k is revealed, and if it
is one, S1,k is revealed. The revealed secrets, concatenated
together, comprise the signature. While the act of signing
a message clearly leaks information about the private key,
it does not leak enough information to allow an attacker to
sign additional messages with different digests. Nonetheless,
there is no way in general for the signer to use this type of
public key to safely sign more than one message.

While conceptually the simplest, the above scheme is not
the most efficient way to create a one-time signature scheme
from a one-way function [20]. Firstly, the size of public keys
and signatures can be reduced by nearly a factor of two,
merely by using a more efficient method of choosing which
secrets to reveal from a smaller pool. For each bit location,
k, rather than creating two secrets, S0,k and S1,k , the se
cret key may consist of only S0,k , with the public key being
f(S0,k). In order to sign a message, the signer would reveal

86

/ � / �
/ � / �

/ �
/ �

�	 /
�	 /

�
�

/ �
/ �

Digest	 Counter

Digest 6 3 F 1 E 9 0

Signature f6(S0) f3(S1) f(S3) f14 (S4) f9(S5) S6

Public Key f15 (S0) f15 (S1) f15 (S2) f15 (S3) f15 (S4) f15 (S5) f15 (S6)

H0−3 =

/
/

H01 = h(H0 H1)

H0 = h(K0) H1 = h(K1)

Figure 1: A Sample Lamport Signature with b =

H0−7 = h(H0−3 H4−7)

 	

h(H01 H23)	 H4−7 =

H23 = h(H2 H3) H45 = h(H4 H5)

H2 = h(K2) H3 = h(K3) H4 = h(K4) H5 = h(K5)

Figure 2: Merkle Hash Tree

B 3 D

f11 f13 f3

f15 f15 f15

(S7) (S8) (S9)

(S7) (S8) (S9)

16

h(H45 H67)

H67 = h(H6 H7)

H6 = h(K6) H7 = h(K7)

S0,k for each bit position, k, in the message digest that has
a value of zero. Thus, the signature would be the concate
nation of S0,k for each bit location in the message digest
that has a value of zero. The problem with this scheme is
that an attacker could try to change the value of a signature
by withholding some of the S0,k values, thus changing some
of the zero bits to one. In order to protect against this, a
binary encoding of the total number of zero bits in the mes
sage digest may be appended to the message digest. This
counter would be signed along with the message digest as
described above. Since an attacker could only try to change
zero bits to one, the attacker could not reduce the value of
the counter, which would be necessary to successfully change
some of the zero bits to one in the message digest itself.

The sizes of signatures and public keys can also be traded
off against computation by using hash chains. In such a
scheme, the message digests would be encoded using digits
with a base b that is greater than two (e.g., using hexadeci
mal digits, which would correspond to b = 16). To sign the
kth digit of the digest, Nk , the private key would be Sk,
the public key would be the result of applying a one-way
function, f , to the secret b − 1 times, fb−1(Sk), and the sig
nature value would be fNk (Sk).1 Thus if b were 4 and Nk

were 1, then public key would be f3(Sk) = f(f(f(Sk))) and
the signature value would be f1(Sk) = f(Sk). As with the
binary scheme, there would be a need to append a “counter”
to the message digest in order to prevent an attacker from
increasing the values of any digits in the message digest. The
value of the counter to be appended to the digest, for an n

Pn−1digit digest, would be k=0 (b − 1 − Nk). The reduction in
signature size is logarithmic in the value of the base, while
the cost of generating a one-time key pair is linear, so this
process reaches diminishing returns fairly quickly, but using
a base of 16 is often better than a base of 2. Figure 1 shows
an example of a Lamport signature for a message digest that

1As with the binary scheme above, the signer would not
need to reveal the signature value for any digit k for which
Nk = b − 1.

consists of eight hexadecimal digits.
Analysis of the performance of Lamport’s one-time signa

tures is somewhat prone to confusion. As discussed above,
the performance is dependent upon the choice of a one-way
function and on the value of the base, b, used in generat
ing the public key. Further, as the scheme is a one-time
signature scheme the distinction between signing time and
key generation time is not terribly useful, although it does
provide a lot of opportunities for a signer to do precompu
tation. Nonetheless, with a fairly reasonable set of assump
tions (e.g., f = SHA-256 with b = 4) one arrives at signa
ture, verification, and key generation times that are similar
to current schemes such as DSA.

4.	 LONG-TERM SIGNING KEYS FOR ONE

TIME SIGNATURE SCHEMES
If the signer can precompute a large number of single-

use, public key - private key pairs, then at little additional
cost, these keys can be used to generate signatures that can
all be verified using the same public key [36]. Moreover,
the long-term public key associated with this scheme need
only be the size of a message digest. To do this, we use hash
trees, a technique invented by Ralph Merkle in 1979 [35]. At
the bottom of the tree, the one-time public keys are hashed
once and then hashed together in pairs. Then those hash
values are hashed together in pairs, and the resulting hash
values are hashed together and so on, until all the public
keys have been used to generate a single hash value, which
will be used as the long-term public key. In this scheme,
the signer can prove that a one-time public key was used in
the computation that generated the long-term public key by
providing just one hash value for each level of the tree—the
overhead is therefore logarithmic in the number of leaves in
the tree.

Figure 2 depicts a hash tree containing eight single-use
public keys. The eight keys are each hashed to form the
leaves of the tree, the eight leaf values are hashed in pairs
to create the next level up in the tree. These four hash

87

values are again hashed in pairs to create H0−3 and H4−7,
which are hashed together to create the long-term public
key, H0−7. In order for an entity to verify a message signed
using K0, the signer would need to provide H1, H23 , and
H4−7 in addition to K0 and a certified copy of H0−7. The

′ ′ ′ verifier would compute H0 = h(K0), H01 = h(H0 H1),
′ ′ ′ ′ H = h(H H23), and H = h(H H4−7). If 0−3 01 0−7 0−3

H0

′

−7 is the same as the certified copy of H0−7, then K0

may be used to verify the message signature.
While the the number of additional hashes that need to be

added to a public key grows logarithmically with the number
of leaves in the tree, the cost of generating a hash tree is
linear in the number of leaves. It may therefore be desirable
to limit the size of hash trees. If the signer wishes to use
a single public key to sign more messages than the number
of single-use key pairs he or she is willing to generate in the
process of generating a public key, then the signer may wish
to use a certificate chain like construction where the longest
term public key is used to sign a large number of shorter-
term keys, which in turn are used to sign even shorter term
keys and so on. The advantage of this is that short-term keys
can be generated as needed, allowing the cost of generating
new one-time keys to be distributed over the lifetime of the
single long-term key. This technique can also be used for
other signature schemes where the key has limited lifetime,
not just those that are based on hash trees. One example is
NTRUSign, which is discussed later in this paper.

One important point to note is that unlike current signa
ture schemes, this scheme is not stateless. The signer needs
to keep track of more than just a single long-term private
key in order to sign messages. If the signer is using hash
trees, the signer can save a lot of memory by using a pseu
dorandom number generator to generate one-time private
keys from a seed and a counter rather than saving all of the
one-time private keys in memory. The one-time private keys
are large and are only used twice: once for the purpose of
generating the hash tree, and again when the one-time pri
vate keys are needed to sign messages, so this makes fairly
good sense. The hashes in the tree, however, are used more
often, and they should therefore be saved in memory. If
these management techniques are used, then the footprint
of a signing module does not suffer terribly from the short
lifetime of the underlying signature scheme, but the dynamic
nature of the stored information does imply that read-only
or write-once memory cannot be used to store it.

5.	 LATTICE BASED CRYPTOGRAPHY AND
NTRU

Unlike Lamport signatures, most public key cryptographic
schemes derive their security from the difficulty of specific
mathematical problems. Historically, factorization and the
discrete logarithm problem have been by far the most pro
ductive in this respect, but as previously noted, these prob
lems will not be difficult if full scale quantum computers are
ever built. Therefore, cryptographers have been led to in
vestigate other mathematical problems to see if they can be
equally productive. Among these are lattice problems.

An n-dimensional lattice is the set of vectors that can be
expressed as the sum of integer multiples of a specific set of n
vectors, collectively called the basis of the lattice—note that
there are an infinite number of different bases that will all
generate the same lattice. Two NP-hard problems related

to lattices are the shortest vector problem (SVP) [1] and
the closest vector problem (CVP) [52]. Given an arbitrary
basis for a lattice, SVP and CVP ask the solver to find the
shortest vector in that lattice or to find the closest lattice
vector to an arbitrary non-lattice vector. In both the quan
tum and classical computation models, these problems are
believed to be hard for high dimensional lattices, contain
ing a large number of vectors close in length to the shortest
lattice vector.

Of the various lattice based cryptographic schemes that
have been developed, the NTRU family of cryptographic al
gorithms [25, 26, 27] appears to be the most practical. It
has seen some degree of commercial deployment and effort
has been underway to produce a standards document in the
IEEE P1363 working group. NTRU-based schemes use a
specific class of lattices that have an extra symmetry. While
in the most general case, lattice bases are represented by an
n × n matrix, NTRU bases, due to their symmetry, can be
represented by an n/2 dimensional polynomial whose coeffi
cients are chosen from a field of order approximately n. This
allows NTRU keys to be a few kilobits long rather than a few
megabits. While providing a ma jor performance advantage,
the added symmetry does make the assumptions required
for NTRU-based schemes to be secure somewhat less natu
ral than they would otherwise be, and many in the theory
community tend to prefer schemes whose security follows
more directly from the assumption that lattice problems are
hard. Such schemes include schemes by Ajtai and Dwork [2],
Micciancio [39], and Regev [45].

In all NTRU-based schemes, the private key is a polyno
mial representing a lattice basis consisting of short vectors,
while the public key is a polynomial representing a lattice
basis consisting of longer vectors. A desirable feature of
NTRU and other lattice based schemes is performance. At
equivalent security strengths, schemes like NTRU tend to
be 10 to 100 times faster than conventional public key cryp
tography, with cryptographic operations taking about 100
microseconds on contemporary computing platforms.

A number of minor attacks have been discovered against
NTRUEncrypt throughout its 10+ year history, but it has
for the most part remained unchanged. Improvements in
lattice reduction techniques have resulted in a need to in
crease key sizes somewhat, but they have remained fairly
stable since 2001. NTRUEncrypt has also been found to be
vulnerable to chosen ciphertext attacks based on decryption
failures [18, 21, 31, 38], but a padding scheme [30], which has
provable security against these attacks, has been developed.
In addition to security concerns, the recommended parame
ter sets for NTRUEncrypt have been changed for perfor
mance reasons. In one case, this was done over-aggressively
and this resulted in a security vulnerability that reduced the
security of one of the parameter sets from 80 bits to around
60 [29].

A comparatively greater number of problems have been
found in NTRU-based signature schemes. The first NTRU-
based signature scheme, NSS [28], was broken in 2001 by
Gentry, Jonsson, Stern, and Szydlo a year after its publi
cation [22]. A new scheme called NTRUSign [25] was in
troduced in 2002, based on the Goldreich-Goldwasser-Halevi
signature scheme [23]. In this scheme, the signer maps the
message digest to a vector, and proves knowledge of the pri
vate key by finding the nearest lattice point to that vector.
Since the set of vectors to which a given lattice point is the

88

nearest is non-spherical, it was known that a large number
of messages signed with the same key would leak informa
tion about the private key. Because of this, the original
signature scheme included an option, called perturbation,
that would allow the signer to systematically choose a lat
tice point which was not necessarily the closest lattice point,
but which was still closer than any point that could be found
without knowledge of the private key. In 2006, it was shown
by Nguyen that the unperturbed NTRUSign could be bro
ken given only 400 signed messages [42]. The developers of
NTRUSign estimate that with perturbation, it is safe to
use the same NTRUSign key to sign at least one billion
messages [54], but recommend rolling over to a new signing
key after 10 million signatures [43].

6.	 MCELIECE
An additional hard problem that has been used to con

struct public key schemes is the syndrome decoding prob
lem, which asks the solver to correct errors that have been
introduced to an arbitrary, redundant linear transformation
of a binary vector. There are, of course, easy instances of
this problem, namely error correction codes, but in the gen
eral case, this problem is known to be NP-hard. One of
the oldest of all public key cryptosystems, McEliece encryp
tion [34], works by disguising an easy instance of the decod
ing problem as a hard instance. The security of McEliece
therefore relies upon the presumed fact that it is difficult to
distinguish between the disguised easy code and an arbitrary
hard code.

The easy instance of the decoding problem used by McEliece
is a family of error correction codes known as Goppa Codes.
An (n, k) Goppa code takes a k-bit message to an n-bit code
word in such a way that the original message can be recon
structed from any string that differs from the code word at
fewer than t = (n − k)/ log

2
(n) bits. There are approxi

mately n t/t such codes. To disguise the code, it is written
as an n×k matrix, then left-multiplied by an n-bit permuta
tion matrix, and right multiplied by an arbitrary invertible
binary matrix. The resulting n×k binary matrix is the pub
lic key, while the three matrices used to generate it remain
private.

To encrypt a k-bit message, the encryptor treats the mes
sage as a binary vector, left-multiplies the public key, and
randomly changes t of the resulting n bits. The private key
holder can then decode the message stepwise. First the pri
vate key holder undoes the private permutation—this does
not change the number of errors. The errors can now be
corrected using the private Goppa code, allowing the private
key holder to reconstruct the k-bit linear transformation of
the original message. Since the private linear transformation
used to construct the public key is invertible, the private key
holder can now reconstruct the message.

McEliece has remained remarkably resistant to attack dur
ing its 30 year history, and it is very fast, requiring only a
few microseconds for encryption and 100 microseconds for
decryption on contemporary platforms. The primary draw
back is that in order for the scheme to be secure, n and k
need to be on the order of 1000, making the total size of the
public key about a million bits.

It was recently demonstrated by Courtois, Finiasz, and
Sendrier that there was a corresponding signature scheme [11],
but this scheme is less desirable than the encryption scheme.
To sign a message, the signer decrypts a string derived by

padding the message digest. However, since most strings
will not decrypt, the signer will typically have to try thou
sands of different paddings before finding a string that will
decrypt. As a result, signing times are on the order of 10 to
30 seconds. It is, however, possible to make the signatures
reasonably short.

7.	 OTHER AREAS OF RESEARCH
In addition to hash based signatures and lattice based

and code based cryptography, a number of additional ap
proaches have been used as an alternative basis for public
key cryptography [7]. While most of the resulting schemes
are currently poorly understood or have been broken, it is
still possible that breakthroughs in these areas could one
day lead to practical, secure, and quantum-resistant public
key schemes.

One of the first NP-complete problems used in public
key cryptography was the knapsack problem. Merkle and
Hellman first proposed a knapsack based cryptosystem in
1978 [37], but this was soon shown to be vulnerable to
approximate lattice reduction attacks [49]. Many similar
schemes were subsequently broken, with the last, Chor-Rivest
[9], being broken in 1995 [48].

More complex algebraic problems have also been proposed
as successors to the factoring and discrete logarithm prob
lems. These include the conjugacy search problem and re
lated problems in braid groups, and the problem of solving
multivariate systems of polynomials in finite fields. Both
have been active areas of research in recent years in the
mathematical and cryptographic communities. The latter
problem was the basis for the SFLASH signature scheme [12],
which was selected as a standard by the New European
Schemes for Signatures, Integrity and Encryption (NESSIE)
consortium in 2003 but was subsequently broken in 2007 [15].
It remains unclear when these or other algebraic problems
will be well enough understood to produce practical pub
lic key cryptographic primitives with reliable security esti
mates.

8.	 CONSIDERATIONS FOR PROTOCOL DE

SIGNERS
In order to enable a comparison of the costs associated

with various algorithms, Table 1 presents information about
key sizes, message sizes, and the amount of time required
to perform certain operations for several public key crypto
graphic algorithms. The table includes the algorithms that
are described in this paper that are believed to be quantum
resistant (Lamport signatures, McEliece encryption and sig
natures, NTRUEncrypt, and NTRUSign) as well as some
of the public key cryptographic algorithms commonly in use
today that are vulnerable to Shor’s algorithm (RSA, DSA,
Diffie-Hellman, and ECC). The numbers presented in the ta
ble are rough estimates, not benchmark results, but should
be sufficiently accurate to enable comparison of the strengths
and weaknesses of the different algorithms.

Compared to public key cryptographic algorithms com
monly in use today, the algorithms presented in this paper
differ in two ways that may be significant to protocol design
ers: key size and limited lifetime. Of the algorithms listed
in Table 1, limited key lifetime is only an issue for Lam-
port signatures and NTRUSign. In the case of these two
algorithms, the limited lifetimes should not pose significant

89

Table 1: A Comparison of Public Key Cryptographic Algorithms at the 80 Bit Security Level
Estimated Time (PC)

Public Key Private Key Limited Public Private Message
Setup Operation Operation Lifetime? Key Size Key Size Size
(ms) (ms) (ms) (kbits) (kbits) (kbits)

Lamport Signature 1 1 1 1 signature ∼10 ∼10 ∼10

240 Lamport w/Merkle 1 1 1 signatures 0.08 ∼250 ∼50

McEliece Encryption 0.1 0.01 0.1 no 500 1000 1

McEliece Signature 0.1 0.01 20,000 no 4000 4000 0.16

NTRUEncrypt 0.1 0.1 0.1 no 2 2 2

NTRUSign 0.1 0.1 0.1 230 signatures 2 2 4

RSA 2000 0.1 5 no 1 1 1

DSA 2 2 2 no 2 0.16 0.32

Diffie-Hellman 2 2 2 no 2 0.16 1

ECC 2 2 2 no 0.32 0.16 0.32

problems, but more consideration will need to be used in
deploying these algorithms in order to ensure that keys are
not used too many times.

When Lamport signatures are used in conjunction with
Merkle hash trees as described in Section 4, the number of
signatures that may be created from a given long-term pub
lic key is strictly limited, but that limit may be set to any
value that the creator of the key chooses. If public keys have
expiration dates, as they do today, then the maximum can
always be set to a value that will ensure that the long-term
public key will expire before all of the one-time keys have
been used. Even a high volume server creating a few thou
sand signatures a second would take several years to create
240 signatures. For most key holders, the maximum num
ber of signatures per long-term public key could be set at a
much smaller value, which would allow for smaller private
keys and signatures.

The situation with NTRUSign is less clear since there
is no fixed limit on the number of times that a key may
be used. While the developers of NTRUSign recommend
rolling over keys after 10 million signatures in order to be
conservative, they believe that a key may be safely used to
sign at least a billion messages [43]. For most key hold
ers, even a limit of 10 million signatures would not be an
issue. For some high volume servers, however, obtaining a
new key pair and certificate after every 10 million signatures
would be unreasonable, whereas a new certificate could be
obtained after every billion signatures if the process were au
tomated and relatively fast. If NTRUSign is to be used in
the future, and further research indicates a need to impose
key lifetimes that are closer to 10 million signatures than to
1 billion signatures, then high volume servers may need to
employ one of the techniques described in Section 4 in order
to reduce the frequency with which new certificates need to
be obtained.

Table 1 shows the estimated key sizes that would be re
quired to achieve 80-bits of security (i.e., a security level
comparable to that provided by an 80-bit symmetric key).
While 80-bits of security may be considered adequate at the
moment, it is recommended that within the next few years
all such keys be replaced with keys that provide 112 to 128

bits of security [3]. For the McEliece algorithms, this would
imply 1 megabit public encryption keys and 8 megabit public
signature keys. With key sizes this large, the ways in which
public keys are distributed must be carefully considered.

With many protocols in use today, it is common to in
clude a copy of the sender’s certificate(s) in the message.
For example, the server’s encryption certificate is usually
sent to the client during the key establishment phase of the
Transport Layer Security (TLS) protocol. Also, email clients
typically include copies of the sender’s signature and encryp
tion certificates in all digitally signed messages. Since most
public key certificates that have been issued are less than
2 kilobytes, this is a reasonable practice at the moment,
as the amount of bandwidth wasted by sending a copy of
a certificate to a recipient that has previously received a
copy is minimal. However, if the need to switch to quan
tum resistant algorithms were to lead to the use of public
key cryptographic algorithms with key lengths comparable
to those required by the McEliece signature and encryption
schemes, this practice would need to be avoided and other
means would need to be used to ensure that relying parties
could obtain copies of the public keys that they need.

The most straightforward solution to this problem would
be to avoid sending certificates in protocol messages, ex
cept in cases in which the recipient has requested a copy
of the certificate. Instead, the protocol message could in
clude a pointer to the certificate, which could be used by
the recipient to obtain a copy of the certificate if it does not
already have a copy in its local cache. For privacy reasons,
many organizations prefer not to place end user certificates
in publicly accessible directories. However, if the directories
that hold certificates are not searchable and the URLs that
point to the certificates are not easily guessable, this should
provide an adequate amount of privacy protection.

An alternative solution would be to not include a copy
of the public key in the certificate, but instead include a
pointer to the public key along with a hash of the key. In
this case, since the directory would only include the public
key, there would be fewer privacy concerns with respect to
the data in the directory. This would also allow the rely
ing party to validate the certificate before downloading the

90

public key, in which case the relying party could avoid the
cost of downloading a very large public key if the certificate
could not be validated, and thus the public key could not be
used.

With very large public signature keys, the organization of
public key infrastructures (PKI) would also need to be care
fully considered. Today, even a very simple PKI may consist
of a hierarchy of certification authorities (CA), with a root
CA that issues certificates to subordinate CAs that in turn
issue end user certificates. While the relying party would
have already obtained the public key of the root CA through
some secure, out-of-band means, the public key of one of the
subordinate CAs would need to be downloaded in order to
verify the signature on an end user certificate. If responses
from Online Certificate Status Protocol (OCSP) [41] respon
ders were needed to verify that neither the intermediate nor
the end user certificate had been revoked, this could require
the relying party to download two more public keys in order
to verify the responses from the two OCSP responders. So,
validating an end user certificate in a simple two-level hierar
chy could require the relying party to download three public
keys in addition to the end user’s public key. In some PKIs
today, certification paths involving four or more intermedi
ate certificates are not uncommon. While this is reasonable
with the public key algorithms that are in use today, which
use public keys that are smaller than one kilobyte, such PKI
architectures will need to be reconsidered if there is a need
in the future to move to public key algorithms that require
the use of very large public keys.

9.	 CONCLUSION
While factoring and discrete logarithm based cryptogra

phy continue to dominate the market, there are viable alter
natives for both public key encryption and signatures that
are not vulnerable to Shor’s Algorithm. While this is no
guarantee that they will remain impervious to classical or
quantum attack, it is at least a strong indication. When
compared to current schemes, these schemes often have sim
ilar or better computational performance, but usually re
quire more bandwidth or memory. While this should not
be a ma jor problem for PCs, it may pose problems for more
constrained devices. Some protocols may also have problems
with increased packet sizes.

It does not appear inevitable that quantum computing
will end cryptographic security as we know it. Quantum
computing is, however, a ma jor threat that we probably
will need to deal with in the next few decades, and it would
be unwise to be caught off guard when that happens. Pro
tocol designers should be aware that changes in the under
lying cryptography may and almost certainly will be nec
essary in the future, either due to quantum computing or
other unforeseen advances in cryptanalysis, and they should
be at least passably familiar with the algorithms that are
most likely to replace current ones. Cryptanalysts will also
need to scrutinize these algorithms before they are urgently
needed. While some work has been done already, more work
is needed to convince the cryptographic community that
these algorithms will be as safe, in the future, as factoring
and discrete logarithm based cryptography are today.

10. REFERENCES
[1] M. Ajtai. The shortest vector problem in L2 is

NP-hard for randomized reductions (extended

abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, pages
10–19, 1998.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem

with worst-case/average-case equivalence. In STOC

’97: Proceedings of the twenty-ninth annual ACM

symposium on Theory of computing, pages 284–293,

1997.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. Recommendation for key management – part
1: General. NIST special publication 800-57, National
Institute of Standards and Technology, Mar. 2007.

[4] C. Bennett, E. Bernstein, G. Brassard, and
U. Vazirani. Strengths and weaknesses of quantum
computation. Special Issue on Quantum Computation
of the Siam Journal of Computing, Oct. 1997.

[5] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. SIAM J. of Computing,
32(3):586–615, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the Weil pairing. In Advances in Cryptology –
ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and
Information Security, pages 514–532, 2001.

[7] J. Buchmann, C. Coronado, M. Döring, D. Engelbert,
C. Ludwig, R. Overbeck, A. Schmidt, U. Vollmer, and
R.-P. Weinmann. Post-quantum signatures.
Cryptology ePrint Archive, Report 2004/297, 2004.

[8] J. L. Carter and M. N. Wegman. Universal classes of
hash functions (extended abstract). In STOC ’77:
Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 106–112, 1977.

[9] B. Chor and R. L. Rivest. A knapsack type public key
cryptosystem based on arithmetic in finite fields.
IEEE Transactions on Information Theory,
34(5):901–909, Sept. 1988.

[10] S. Cook. The importance of the P versus NP question.
Journal of the ACM, 50(1):27–29, 2003.

[11]	 N. Courtois, M. Finiasz, and N. Sendrier. How to
achieve a McEliece-based digital signature scheme. In
Advances in Cryptology – ASIACRYPT 2001, 7th
International Conference on the Theory and
Application of Cryptology and Information Security,
pages 157–174, 2001.

[12] N. T. Courtois, L. Goubin, and J. Patarin.
SFLASHv3, a fast asymmetric signature scheme.
Cryptology ePrint Archive, Report 2003/211, 2003.

[13] D. Deutsch and R. Jozsa. Rapid solution of problems
by quantum computation. Proc Roy Soc Lond A,
439:553–558, Oct. 1992.

[14] W. Diffie and M. E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, Nov. 1976.

[15] V. Dubois, P.-A. Fouque, A. Shamir, and J. Stern.
Practical cryptanalysis of SFLASH. In Advances in
Cryptology – CRYPTO 2007, 27th Annual
International Cryptology Conference, pages 1–12, 2007.

[16] R. Feynman. Simulating physics with computers.
International Journal of Theoretical Physics,
21(6&7):467–488, 1982.

[17]	 FIPS 186-2. Digital Signature Standard (DSS).

91

National Institute of Standards and Technology, Jan.
2000.

[18] N. Gama and P. Q. Nguyen. New chosen-ciphertext
attacks on NTRU. In Public Key Cryptography - PKC
2007, 10th International Conference on Practice and
Theory in Public-Key Cryptography, pages 89–106,
2007.

[19] T. E. Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
Advances in Cryptology, Proceedings of CRYPTO ’84,
pages 10–18, 1984.

[20] L. C. C. Garćıa. On the security and the efficiency of
the Merkle signature scheme. Cryptology ePrint
Archive, Report 2005/192, 2005.

[21] C. Gentry. Key recovery and message attacks on
NTRU-composite. In Advances in Cryptology –
EUROCRYPT 2001, International Conference on the
Theory and Application of Cryptographic Techniques,
pages 182–194, 2001.

[22] C. Gentry, J. Jonsson, J. Stern, and M. Szydlo.
Cryptanalysis of the NTRU signature scheme (NSS)
from Eurocrypt 2001. In Advances in Cryptology –
ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and
Information Security, pages 1–20, 2001.

[23]	 O. Goldreich, S. Goldwasser, and S. Halevi. Public-key
cryptosystems from lattice reduction problems. In
Advances in Cryptology – CRYPTO ’97, 17th Annual
International Cryptology Conference, pages 112–131,
1997.

[24] L. K. Grover. A fast quantum mechanical algorithm
for database search. In STOC ’96: Proceedings of the
twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[25] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H.
Silverman, and W. Whyte. NTRUSign: Digital
signatures using the NTRU lattice. In Topics in
Cryptology – CT-RSA 2003, The Cryptographers’
Track at the RSA Conference 2003, pages 122–140,
2003.

[26] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H.
Silverman, and W. Whyte. NTRUEncrypt and
NTRUSign: efficient public key algorithms for a
post-quantum world. In PQCrypto 2006: International
Workshop on Post-Quantum Cryptography, pages
141–158, May 2006.

[27] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A
ring-based public key cryptosystem. In Algorithmic
Number Theory (ANTS-III): Proceedings of the Third
International Symposium on Algorithmic Number
Theory, pages 267–288, June 1998.

[28] J. Hoffstein, J. Pipher, and J. H. Silverman. NSS: An
NTRU lattice-based signature scheme. In Advances in
Cryptology – EUROCRYPT 2001, International
Conference on the Theory and Application of
Cryptographic Techniques, pages 211–228, 2001.

[29] N. Howgrave-Graham. A hybrid lattice-reduction and
meet-in-the-middle attack against NTRU. In Advances
in Cryptology – CRYPTO 2007, 27th Annual
International Cryptology Conference, pages 150–169,
2007.

[30]	 N. Howgrave-Graham, J. H. Silverman, A. Singer, and

W. Whyte. NAEP: Provable security in the presence
of decryption failures.

´
 [31] E. Jaulmes and A. Joux. A chosen-ciphertext attack
against NTRU. In Advances in Cryptology – CRYPTO
2000, 20th Annual International Cryptology
Conference, pages 20–35, 2000.

[32] N. Koblitz. Elliptic curve cryptosystems. Mathematics
of Computation, 48(177):203–209, 1987.

[33] L. Lamport. Constructing digital signatures from a
one-way function. Technical Report CSL-98, SRI
International, Oct. 1979.

[34] R. J. McEliece. A public-key cryptosystem based on
algebraic coding theory. Deep Space Network Progress
Report 42–44, Jet Propulsion Laboratory, California
Institute of Technology, pages 114–116, 1978.

[35] R. C. Merkle. Security, Authentication, and Public
Key Systems. PhD thesis, Stanford University, June
1979.

[36]	 R. C. Merkle. A certified digital signature. In
Advances in Cryptology – CRYPTO ’89, 9th Annual
International Cryptology Conference, pages 218–238,
1989.

[37] R. C. Merkle and M. E. Hellman. Hiding information
and signatures in trapdoor knapsacks. IEEE
Transactions on Information Theory, 24(5):525–530,
Sept. 1978.

[38] T. Meskanen and A. Renvall. A wrap error attack
against NTRUEncrypt. Discrete Applied Mathematics,
154(2):382–391, Feb. 2006.

[39] D. Micciancio. Improving lattice based cryptosystems
using the Hermite normal form. In Cryptography and
Lattices Conference — CaLC 2001, pages 126–145,
Mar. 2001.

[40] V. S. Miller. Use of elliptic curves in cryptography. In
Advances in Cryptology – CRYPTO ’85, pages
417–426, 1986.

[41]	 M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol – OCSP. RFC 2560
(Proposed Standard), June 1999.

[42] P. Q. Nguyen. A note on the security of NTRUsign.
Cryptology ePrint Archive, Report 2006/387, 2006.

[43] NTRU Announces Signature Algorithm, NTRUSign,
viewed November 12, 2008,
(http://www.ntru.com/cryptolab/intro ntrusign.htm).

[44] M. O. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Technical
Report MIT/LCS/TR-212, MIT Laboratory for
Computer Science, Jan. 1979.

[45] O. Regev. New lattice-based cryptographic
constructions. Journal of the ACM, 51(6):899–942,
Nov. 2004.

[46] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120–126, Feb. 1978.

[47] S. Robinson. Emerging insights on limitations of
quantum computing shape quest for fast algorithms.
SIAM News, 36(1), January/February 2003.

[48] C.-P. Schnorr and H. H. Hörner. Attacking the
Chor-Rivest cryptosystem by improved lattice

92

http://www.ntru.com/cryptolab/intro

reduction. In Advances in Cryptology – EUROCRYPT
’95, International Conference on the Theory and
Application of Cryptographic Techniques, pages 1–12,
1995.

[49] A. Shamir. A polynomial time algorithm for breaking
the basic Merkle-Hellman cryptosystem. In Advances
in Cryptology: Proceedings of CRYPTO ’82, pages
279–288, 1982.

[50] C. Shannon. Communication theory of secrecy
systems. Bell System Technical Journal,
28(4):656–715, 1949.

[51] P. W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In Proceedings of
the 35th Symposium on Foundations of Computer

Science, pages 124–134, 1994.

[52] P. van Emde Boas. Another NP-complete problem and
the complexity of computing short vectors in a lattice.
Technical Report 81-04, University of Amsterdam,
Department of Mathematics, Netherlands, 1981.

[53] G. S. Vernam. US patent #1,310,719: Secret signaling
system, July 1919.

[54] W. Whyte. NTRUSign and P1363.1, Apr. 2006.
http://grouper.ieee.org/groups/1363/WorkingGroup/
presentations/P1363.1-2006-04.ppt.

[55] H. C. Williams. A modification of the RSA public-key
encryption procedure. IEEE Transactions on
Information Theory, IT-26(6):726–729, Nov. 1980.

93

http://grouper.ieee.org/groups/1363/WorkingGroup

