

Surviving Insecure IT: Effective Patch
Management

Simon Liu, US National Library of Medicine

Rick Kuhn, US National Institute of Standards and Technology

Hart Rossman, SAIC

As we discussed in the last issue (“Introducing Insecure IT”), software developers are
beginning to make some headway in reducing IT system vulnerabilities. But just as there
will never be impenetrable armor, there will never be invulnerable software. In the battle
between attackers and defenders, developers still make mistakes, and adversaries invent
new ways to defeat the best safeguards. Consequently, enterprises need an effective patch
management mechanism to survive the insecure IT environment. Effective patch
management is a systematic and repeatable patch distribution process for closing IT
system vulnerabilities in an enterprise. It involves pervasive system updates, including
any or all the following: drivers, operating systems, scripts, applications, or data files.
Patches normally originate from, and are supported by, IT system product and service
provider companies or other organizations. Vendors often use different terminologies for
patches—for example, Microsoft has nine different types of patches (security update,
critical update, feature pack, hotfix, service pack, software update, update, update rollup,
and upgrade; see http://support.microsoft.com/kb/824684).

Patching is necessary for security, but it’s difficult to manage systematically. Multiple,
often conflicting, priorities must be balanced to minimize disruption to mission-critical
systems. In general, an effective patch management involves several steps.

Establish Timely and Practical Alerts

Software vendors routinely announce vulnerabilities as they’re discovered, but many of
these vulnerabilities don’t apply to IT systems in an enterprise. A typical organization
might have software from dozens of vendors, so keeping track of announcements can be
complicated and time-consuming, making it easy for overworked systems administrators
to miss a critical vulnerability notification. To reduce the effort required to keep up with
announcements, administrators can turn to sites such as the Computer Emergency
Response Team (www.us-cert.gov/federal/) and the National Vulnerability Database
(http://nvd.nist.gov). CERT analyzes Internet security vulnerabilities, provides
information and training, and sends consolidated announcements of new vulnerabilities.
The National Vulnerability Database maintains standardized vulnerability data to enable
automated vulnerability management and compliance checking.

Monitoring and paring vulnerabilities down to a list of alerts that relate only to an
enterprise will make the vulnerability reports more focused, easier to follow, and less
likely to be ignored, but this can only be accomplished if a complete and correct
inventory of software applications is available. Periodic auditing of applications is thus
an essential patch management component.

http:http://nvd.nist.gov
www.us-cert.gov/federal
http://support.microsoft.com/kb/824684

Receive Notification of Patches or Discover Them

An organization should maintain solid relationships with key IT technology vendors that
facilitate the timely release and distribution of information on product security issues and
patches. These relationships can range from routine contacts with the account manager to
simple subscriptions to the vendor’s security notification list. Only subscribers to the
notification list receive email notifications. Without a subscription, the organization
would have to monitor each vendor’s Web site for information on the availability and
applicability of new patches. Alternatively, new patch releases could be observed as part
of routine updates.

Download Patches and Documentation

A key patch management component is the intake of the identified patch and any
associated documentation from the vendor, which will include the installation procedure.
Verifying the patch’s source and integrity is important to ensure that it’s valid and hasn’t
been maliciously or accidentally altered. The vetting of information regarding both
security issues and patch release is also critical. Enterprises must know which security
issues and software updates are relevant to their environments.

Assess and Prioritize Vulnerabilities

Effective security patch management involves balancing multiple priorities to minimize
and manage the potential disruption involved in implementing software changes on
mission-critical systems. Any IT vulnerability presents some risk, but enterprises can’t
afford to treat every vulnerability equally. Vulnerabilities must be assessed, classified,
and prioritized just like any other IT projects. In 2006, the Forum of Incident Response
Teams (FIRST, www.first.org/cvss/) published a model known as the Common
Vulnerability Scoring System (CVSS) for structuring vulnerability prioritization.

The CVSS is an open standard designed to provide users with an overall composite
score representing a vulnerability’s severity and risk. The CVSS itself is derived from
metrics in three distinct categories:

•	 Base metrics contain qualities that are intrinsic to a given vulnerability and
don’t change over time or in different environments.

•	 Temporal metrics contain characteristics of a vulnerability that evolve over its
lifetime.

•	 Environmental metrics contain characteristics of a vulnerability that are tied to
an implementation in a specific environment.

The CVSS is a useful approach for enterprises to standardize the impact assessment and
prioritization of IT vulnerabilities.

Perform Testing

Patches must be tested to ensure that they have no conflicts or incompatibilities before

www.first.org/cvss

deployment. Two competing aspects often dictate patch testing: thoroughness and
timeliness. Enterprise patch testing procedures must balance these competing goals so
that testing is thorough enough to essentially rule out any potential issues but not take so
long that it impacts the overall integrity of enterprise security by leaving systems
unpatched.

The actual mechanics of testing a patch vary widely by organization. Patch testing
could be as simple as installing a patch and making sure the system reboots, or as
complex as executing a battery of detailed and elaborate test scripts that validate
continued system and application functionality. In general, a suitable approach for patch
testing is dictated by system criticality and availability requirements, available resources,
and patch severity.

Patches should be tested on nonproduction systems because remediation can easily
produce unintended consequences. Although the perfect test environment will mirror
production as closely as possible, it’s important to at least account for the majority of
critical applications and supported operating platforms in the patch testing infrastructure.

However, no matter how well the testing environment is configured, minor differences
in the production systems could present challenges or problems when actually applying
the patch. Therefore, rather than unleashing the patch on the entire enterprise, it’s wise to
conduct pilot testing. Organizations often use a subset of production systems as an ad hoc
test environment; department-level servers and IT employee systems are typically used in
these cases. Regardless of the available test equipment and systems, exposing the update
to as many variations of production-like systems as possible will help ensure a smooth
and predictable rollout.

Deploy Patches

Patch deployment is where the real work of applying patches and updates to production
systems occurs. The most important technical factor affecting deployment is likely the
choice of methods and tools used. The patching process can be fully automated,
semiautomated, or manual, for example, but the degree of automation will depend
primarily on the target environment. Automated and semiautomated tools are sometimes
free or vendor-specific. For standard Windows desktop operating systems, for instance,
Microsoft’s free Windows Server Update Services tool can manage and automate the
patching process (http://technet.microsoft.com/en-us/wsus/default.aspx). Vendor-specific
tools can manage and automate third-party software patches (such as the Firefox browser
and many other common desktop applications).

Patching for other desktop operating systems occurs mostly on an ad hoc basis.
Macintosh computers have an automated system update check turned on by default that
prompts users to update. Linux desktops often have a manual trigger but can be
automated through scheduled jobs. Patching for network devices, servers, Web
applications, databases, and other packaged applications is often performed manually and
follows a strict change control and testing process due to the potential impact for all
users.

It’s logical to strive for a consolidated tool strategy wherever possible, but it’s
important to recognize that only a few vendors offer best-of-breed patching. Although
support for multiplatform platform patching is an emerging requirement for cross­

http://technet.microsoft.com/en-us/wsus/default.aspx

platform patches, it’s still challenging to implement. Many vendors offer support for
Windows and Linux, as well as some Unix platforms, but enterprises must check
references for required platforms, multiplatform compliance reports, and support for
scalable environments for PCs and server infrastructures.

Automated updating is an important component of patch management, but automation
brings its own set of issues for administrators. Updates during business hours can
obviously introduce problems by creating performance loads on PCs when they might be
needed most. However, scheduling all updates for 2:00 a.m. isn’t a solution either
because thousands of machines simultaneously downloading large patches could
overload the organization’s network connections. Distributing update times across
nonbusiness hours seems like a simple solution, but not all applications have the same
volume or size of updates: some might have large, frequently released patches, whereas
others might require occasional updates. Allocating update times to minimize system load
and reduce the risk of disrupting operations requires a careful review of patch frequency,
plus knowledge about patch size averages and distributions for enterprise applications.
This schedule should also factor in the needs to reboot after patch deployment.

Fortunately, planning and scheduling are familiar problems for successful enterprises,
but management must ensure that planning skills are applied just as carefully to software
patches as they are to core business operations. A variety of firms now offer automated
update scheduling software to assist in this process.

Audit and Assessment

Systematic audit and assessment is critical to gauge the success and extent of patch
management efforts. After patch deployment, organizations should verify that they have
fixed or mitigated vulnerabilities as intended. They can accomplish this by reviewing
patch logs to verify whether the recommended patchers were installed properly,
conducting follow-up scans, and conducting penetration tests to make sure their systems
aren’t vulnerable to the exploit code the patch is designed to thwart.

Despite some progress, the volume of vulnerabilities in most enterprises remains high,
yet the amount of time that enterprises have in which to protect their systems against
potential vulnerability continues to shrink. Effective patch management is more essential
than ever to shore up security vulnerabilities, protect system functionalities, and maintain
the stability of the enterprise production environment.

Acknowledgments: We thank Karen Scarfone and Peter Mell for many helpful
comments on an early draft of this article.

Disclaimer: We identify certain software products in this document, but such
identification doesn’t imply recommendation by the US National Institute for Standards
and Technology or other agencies of the US government, nor does it imply that the
products identified are necessarily the best available for the purpose.

