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REFERENCE MEASUREMENTS OF HYDROGEN’S DIELECTRIC PERMITTIVITY  
 

Eric F. May1,2,*, Michael R. Moldover1, James W. Schmidt1 

 
ABSTRACT 

 

We used a quasi-spherical cavity resonator to measure the relative dielectric permittivity εr of H2 

at frequencies from 2.4 GHz to 7.3 GHz, at pressures up to 6.5 MPa, and at the temperatures 

273 K and 293 K.  The resonator was calibrated using auxiliary measurements of εr(p,T) for 

helium together with the accurate ab initio values of helium’s dielectric permittivity.  The 

measurements determine accurate values of hydrogen’s molecular electric polarizability and its 

temperature dependence.  At 273 K, we obtained H2
eα  = (8.9568 ± 0.0008) × 10−41 F m2 (all 

uncertainties reported here are one standard uncertainty), which agrees with the value 

(8.9566 ± 0.0026) × 10-41 F m2 that was obtained by combining Rychlewski’s ab initio 

calculations with estimates of rotational level populations. Our results yield the temperature 

dependence H2
ed dTα  = H2

eα × (1.1 ± 0.3) × 10–5 K−1, which agrees with the calculated value 

1.0 × 10–5 K−1. Our data also determine hydrogen’s second dielectric virial coefficient, H2
εb  

= (0.03 ± 0.05) cm3 mol−1, a property that has not yet been calculated.   
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1. INTRODUCTION 

The electromagnetic properties of an isotropic medium are characterized by its relative dielectric 

permittivity εr and its relative magnetic permeability μr. These quantities are defined in terms of 

the constitutive relations between the four vector fields present in the conventional form of 

Maxwell’s equations [1].  For gases such as H2, an accurate knowledge of εr and μr and their 

dependence on temperature T and pressure p is useful from both fundamental and applied 

perspectives. For example, measurements of hydrogen’s refractive index rrn με≡  at 

microwave frequencies might be useful for monitoring the quantity of hydrogen in the fuel tank 

of a hydrogen powered vehicle.  Such a monitor might accurately determine the mass of 

hydrogen in a tank even if temperature gradients were present because a microwave field detects 

a weighted average of n2 over the volume of a tank and n2 is a function of the density.  From a 

fundamental standpoint, the uncertainty of many recently calculated properties of molecular 

hydrogen is comparable to the uncertainty achieved in their measurement. [ 2 , 3 ] Thus, a 

stimulating tension now exists between theory and accurate measurements of hydrogen’s 

properties.  In this work we compare accurate calculations of hydrogen’s temperature-dependent 

molecular polarizability αe with our accurate measurements of this property. We also estimate 

normal hydrogen’s second dielectric virial coefficient εb , which contains information about the 

effect of pair interactions on electric polarizability. Dielectric virial coefficients have been 

calculated for atoms such as helium and argon [4, 5] and the CO–Ar van der Waals complex [6]; 

however, we are unaware of any such calculations for pairs of molecules.   

 

In reference 7 we reported measurements of εr(p, T) and n2(p, T) for O2 using a cross capacitor 

and a quasi-spherical resonator. For the present measurements, we used the same apparatus, 

which is shown schematically in Figure 1, to simultaneously determine εr (from measured 

capacitance ratios) and n2 (from measured frequency ratios squared) for normal hydrogen. These 

two instruments were developed at NIST [8, 9] as part of a research program to measure εr(p, T) 

and/or n2(p, T) for helium as accurately as possible for use as a standard of pressure. Today, the 

uncertainty of the measurements of εr(p, T) and n2(p, T) for low-density helium exceeds that of 

recent ab initio calculations  [10]; therefore we have used the calculated values as standards in 



 3

this work.  We determined the compressibility of the capacitor and of the cavity resonator by 

calibration measurements using helium.  Therefore, the present measurements of hydrogen’s 

electric polarizability are made relative to helium’s ab initio properties. 

 

In contrast with paramagnetic O2, both He and H2 are diamagnetic (i.e. μr – 1 ≅ 0, μr < 1) and, for 

these gases, the difference between εr(p, T) and n2(p, T) is smaller than we can measure.  Our 

values of εr(p, T) for H2 measured with the capacitor differed from the values of n2(p, T) 

measured with the quasi-spherical resonator by less than 2 × 10−6, which is within the capacitor’s 

uncertainty. Since the resonator values of n2(p, T) had approximately 1/10th of the uncertainty of 

the capacitor values of εr(p, T), the results for H2 reported below are those obtained by using 

calculated values of μr(p, T) to correct the measured values of n2(p, T). As described in Section 2, 

the magnitude of this correction was at most 1.4×10−7, which is smaller than the estimated 

uncertainty of the n2 values measured for H2 with the resonator (discussed in Section 4). 

 

In Section 2, the theory relating εr(p, T) and n2(p, T) to αe and εb is described briefly. Differences 

between the methods described in reference 7 and those used for this work are discussed in 

Section 3. Experimental results and uncertainty estimates are discussed in Section 4, while the 

analysis of the results is presented in Section 5, as are comparisons with the results of ab initio 

calculations.  

  

2. THEORY 

The molar polarizability, ℘, of non-polar or weakly-polar fluids is related to εr and the molar 

density ρ  via the Clausius-Mossotti equation [1]. For many fluids, ℘ is a weak function of 

density, changing by only several percent between the vapor and liquid states; if so, the molar 

polarizability can be represented by the virial-type expansion 
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In Eq. (1), εA   is the fluid’s molar polarizability in the limit of zero density, while εb  and εc are 

the second and third dielectric virial coefficients, respectively. In principle, these three 

macroscopic quantities can be calculated from quantum mechanics and statistical mechanics. For 

example, εb  can be calculated from the intermolecular pair potential and the polarizability 

induced by the pair-wise interaction, while εc  can be calculated by considering the effect of 

three-body interactions on the polarizability. However, the molar polarizability is dominated by 

εA , which is a property of a single molecule. 
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Here, NA is the Avagadro constant, 0ε  is the electric constant, kB is the Boltzmann constant, and 

μe is the molecule’s electric dipole moment, which is zero for H2. Rychlewski [11] calculated ab 

initio the polarizability of the hydrogen molecule and its dependence on rotation and vibration. 

The higher rotational states of H2 are centrifugally stretched and more polarizable than the 

ground state with zero total angular momentum. Therefore, the molecule’s spin affects the value 

of αe; para-hydrogen (p-H2) can access only states with even values of the quantum number J, 

whereas ortho-hydrogen is subject to odd values. For the mixture of para- and ortho-hydrogen 

known as normal hydrogen (n-H2), Rychlewski calculated an effective value of αe by taking an 

average over the rotational states J = 0 to 5 in the ground vibrational state. At 293 K his result is 

αe = 8.958 × 10-41 F m2, corresponding to Aε = 2.0309×10−6 m3 mol−1.  This value is 0.25 % 

larger than the value αe = 8.981 × 10–41 F m2 recommended by Maryott and Buckley [12] for H2 

at 293 K and 1 atm (1 atm = 101.325 kPa) based on measurements at radio, microwave, and 

optical frequencies. The relative uncertainty of Rychelewksi’s values of αe for H2 is estimated to 

be about 0.03 % because the calculation omits so-called nonadiabatic contributions to the 

molecule’s polarizability [11,13]. We are unaware of any subsequent significant improvements 

upon Rychelewksi’s  calculation of αe for an isolated H2 molecule.  

 

Harvey and Lemmon [14] developed correlations for the dielectric constants of n-H2 and p-H2 as 

a function of temperature and density. Due to the scarcity of reliable experimental dielectric data 
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for H2 at low densities, Harvey and Lemmon used Rychlewski’s calculations of αe, together with 

spectroscopic data to estimate the populations of various rotational states as a function of 

temperature, to determine Aε for n-H2 and p-H2. At 273.16 K, by taking a population-weighted 

average over the rotational states J = 0 to 11 in the ground vibrational state [13] they found that 

n-H2 has an effective value of αe = (8.9566 ± 0.0026) × 10-41 F m2, which is about 0.05 % larger 

than the effective value for p-H2. The uncertainty bound represents the small (~0.03 %) non-

adiabatic contributions omitted from Rychelewski’s calculation but estimated in Table 5 of 

reference 11. 

 

The density dependent terms in Harvey and Lemmon’s correlations for the εr(p, T) of n-H2 and 

p-H2 were obtained from the low-temperature, high-density measurements of p-H2 by Stewart 

[15]. (The high-density dielectric constant data of Michels et al [16] for n-H2 were not used to 

develop the correlation in reference 14 because: (1) the data of Stewart lead to values of Aε 

within 0.02 % of the calculated values for p-H2 whereas the data of Michels et al are 

systematically lower by about 1 %, and (2) it can be argued that the higher dielectric virials 

should be largely independent of spin state [13].)    

 

The dielectric permittivity can be deduced from measurements of the refractive index if the 

magnetic permeability is either known or negligibly different from one. The magnetic 

permeability of a gas may be estimated from the properties of a single molecule via the 

expansion 
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Here, μA  is the fluid’s molar magnetizability in the limit of zero density, μ0 ≡ 4π × 10−7 N A−2 is 

the magnetic constant, αm is the molecular magnetizability and μm is the molecule’s magnetic 

dipole moment, which is zero for H2. The molecular magnetizability consists of a diamagnetic 

component and a “high-frequency” component, which accounts for the contribution to the static 

magnetizability from transitions between molecular states which have energies comparable to or 
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larger than kBT. For H2 only the latter has been measured directly [17]; however it is the 

diamagnetic contribution that dominates. Rychlewski and Raynes [ 18 ] calculated both 

components of αm for H2 and their dependence on rotation and vibration. For an H2 molecule at 

its equilibrium internuclear separation of 1.4 Bohr radii (0.74 × 10-10 m), their result is 

μ 0 m / 3AA N μ α= = −1.7 × 10−11 m3 mol−1.  

 

We combine Eq. (2) and Eq. (3) to estimate n2/ε 
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In Eq. (4), we used ρ(p, T) from equation of state for n-H2 of Leachman et al. [19 ], as 

implemented in the software REFPROP 8.0 [20], to correct the values of n2 measured with the 

resonator to values of εr(p, T). The maximum value of |Aμρ|  was 1.34 × 10-7 and its average 

value was 6.5 × 10-8. This correction was approximately as large as the repeatability of the 

resonator measurements: 1 × 10-7.  (See Section 4.2 and reference 7.)  

3. APPARATUS AND MEASUREMENTS 

Figure 1 is a conceptual diagram of the apparatus.  The capacitor and the microwave cavity were 

surrounded by independent pressure vessels; however, both pressure vessels were immersed in 

the same thermostatted, stirred-liquid bath and both pressure vessels were connected to the same 

gas supply and pressure balance.  This ensured that εr and n were measured at nearly identical 

temperatures and pressures despite small fluctuations of the temperature and the pressure. A 

thorough description of the methods used in this experiment is given in May et al. [7] and in the 

sections below we describe only those features of the current methods that differed from the 

description given previously. 

3.1. The resonator and capacitor 

Capacitances were measured using an automated three-wire bridge at a frequency of 2 kHz, and 

a vector-network analyzer linked to a rubidium clock was used to measure four modes of the 

cavity resonator at frequencies of 2.6, 4.3, 5.8 and 7.2 GHz. The working equations for 
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converting the measured capacitance ratios and frequency ratios to values of εr and n2 require 

knowledge of only two parameters per apparatus: its effective isothermal compressibility kT and 

the vacuum capacitance or frequency. (For the resonator, the vacuum frequency of each mode 

was required.)  As described in reference 7, the apparatus parameters were determined by 

calibration with helium; however, unlike O2, the absorption of microwaves by H2 is negligible. 

Therefore we determined ),(2
He Tpn  and ),(2

H2 Tpn  from the purely real expression [9]: 
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Here, kT,res is the resonator’s isothermal compressibility, the superscript σ  = TM or TE denotes 

the mode type, which are also enumerated by the indices l and n, fvac and gvac are the mode’s 

vacuum resonance frequency and half-width, and the angled brackets denote an average over the 

three components of each l = 1 mode. The apparatus parameters σ

n
gf

1vac+  and kT,res were 

determined from isothermal helium measurements by adjusting their values in Eq. (5) to obtain 

optimal agreement with values of ),(2
He Tpn  calculated from theory, as described in Section 4.1.  

 

The average frequency of any triplet of modes could be determined with a fractional uncertainty 

of approximately 4 × 10–9.  However, at the highest hydrogen density, the average frequency 

typically varied by a factor of 5 × 10–8 during a half hour. This variation corresponds to a 

temperature drift of 1 mK or a pressure drift of 20 Pa.  

3.2. Temperature, Pressure and Gas Purity 

The supplier of the hydrogen used in this work stated that its purity was 99.9999 % by volume. 

The supplier of the helium stated that its purity was 99.9999 % by volume, and that it had a 

water content of less than 0.2 ppm. Typically, data along isotherms were taken in order of 

increasing pressure from around 0.1 MPa to about 6.5 MPa in steps of either 0.5 or 1 MPa, and 

then in decreasing steps of the same size. For both helium and hydrogen, we allowed 2.5 hours 

for equilibration following a change in pressure; after this amount of time, all of the readings 

reached steady values.  
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Under steady state conditions, the temperature of the stirred oil bath, the pressure vessels 

immersed in the bath, and the resonator and the capacitor contained in the pressure vessels were 

all assumed to be equal. The bath temperature was measured with a calibrated standard platinum 

resistance thermometer and we estimate that the temperature uncertainty was 5 mK with respect 

to ITS-90, the international temperature scale of 1990. The helium and the hydrogen 

measurements were made along two isotherms: 273.203 K and 293.213 K.  In the remainder of 

this paper, these isotherms will be referred to by their nearest integer temperatures: 273 K and 

293 K. (Measurements at 323 K were attempted but unfortunately a pressure transducer failure 

prevented us from completing them or from obtaining reliable data at that temperature.) 

 

Gas pressure was monitored by a quartz-crystal pressure transducer located above the oil bath. 

The full scale of this transducer was 7 MPa. The transducer was calibrated over the range 0 to 

7 MPa against a piston gage which was in turn calibrated against one of the primary pressure 

standards at NIST. Based on these calibrations, we estimate the uncertainty of the pressure 

measurements reported here to be less than 0.1 kPa.  

4. RESULTS 

Effectively, we determined ),(H2, Tprε  and ),(2
H2 Tpn  from the ab initio properties of helium and 

measurements of the ratios ),(),( He,H2, TpTp rr εε  and ),(),( 2
He

2
H2 TpnTpn . The measurement 

uncertainty for these ratios does not depend directly on the total uncertainties of our pressure and 

temperature measurements. Rather it is the stability of the apparatus calibrations over the 

duration of the hydrogen measurements, together with the repeatability of the hydrogen 

measurements, which determines the uncertainty of the ratios. We checked the stability of the 

resonator and capacitor by making helium measurements before and after the hydrogen 

measurements at 273 K and 293 K.  

4.1. Helium Measurements 

The apparatus parameters were determined at each temperature by regression of the measured 

capacitance and frequency ratios to values of ),(He, Tprε  and ),(2
He Tpn  determined from ab 

initio calculations of He ( , )p Tρ , ),(He, Tr ρε  and )(He, ρμ r  as described by Schmidt et al [10]. 
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The results agree with those reported in reference 7, within the combined statistical uncertainties 

of the best-fit apparatus parameter values. We exploited the more accurate calculations of 

He ( , )p Tρ  that have been completed since the references in [7] and [10].  Specifically, we used 

Hurly and Mehl’s [21] values of the second density virial coefficient B(T) and Garberoglio and 

Harvey’s [ 22 ] values of the third density coefficient C(T).  We obtained the values 

(813 ± 10) cm9 mol−3 at 273 K and (700 ± 20) cm9 mol−3 at 323 K for the fourth virial coefficient 

by reanalyzing the data of Blancett et al [23] using these values of B(T) and C(T) and their 

uncertainties as constraints. (The value of D(293 K) used to analyze the helium data measured at 

that temperature was obtained by linear interpolation.)  The uncertainty of B(T) and some of the 

uncertainty of C(T) result from the uncertainty of the He-He inter-atomic potential; thus, they are 

partially correlated (depending on the relative magnitudes of the three-body potential and the 

pair potential).  We estimated that the fractional uncertainty of He ( , )p Tρ  calculated from B(T), 

C(T), and D(T) is 1.0×10−5 at 2700 mol m-3, the highest density of our measurements.  This 

corresponds to the maximum uncertainty 8
,He[ ( , )] 4 10ru p Tε −= × .    

 

The stability of the apparatus parameters was different at each temperature. We deduced it from 

the values of the vacuum cross-capacitance Cx,vac and the average σ

n
gf

1vacvac +  
 determined 

from the helium measurements before and after the hydrogen measurements. Averaged over all 

modes, the fractional change in σ

n
gf

1vacvac +  at 273 K and 293 K was +2 × 10−8 and 

+1.3 × 10−7, respectively, which is comparable to the drifts observed in reference 7. However, 

the fractional change in Cx,vac at 273 K and 293 K was +6.0 × 10−6 and +1.2 × 10−6, respectively, 

which is significantly larger than observed in reference 7. When the hydrogen data were 

analyzed, we used values of Cx,vac and σ

n
gf

1vacvac +  that were interpolated linearly as a function 

of time between the two values determined from the helium measurements. 

   

The isothermal capacitance and frequency data were also regressed to the polynomial functions  
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Here Cx is the measured cross capacitance, and each of the parameters ai and di were tested for 

statistical significance.  One purpose of these regressions was to estimate the scatter of the data 

for each isotherm about the curve ( ) rnRTp με 2
fitfitr, = . The deviations of our εr data from εr,fit 

for both helium and hydrogen are shown in Figure 2. Another reason for the regression is the 

relation a1 = ε T,cap3( / 9)A k RT− , for the parameter in Eq. (6a) where kT,cap is the isothermal 

compressibility of the capacitor [8]. Thus, the difference between the parameters H2
1a and 

He
1a determined by regression of Eq. (6a) to x ( )C p  data for hydrogen and helium, respectively, 

allows the determination of HeH2
εε AA − without reference to either kT,cap or to an equation of state. 

 

 ( ) 3He
1

H2
1

HeH2 aaAA −+= εε     (7)   

 

A similar equation can be derived for the difference between H2
1d and He

1d  

 

 ( ) 32 He
1

H2
1

HeHeH2H2 ddAAAA −−+=+ μεμε    (8)   

 

The magnetic polarizabilities H2
μA  and He

μA  are 8 × 10−6 and 4 × 10−6 times smaller than H2
εA , 

respectively, and can be neglected. Since He
εA  has been calculated ab initio by Lach et al [24] 

with a relative uncertainty of 2 × 10−7, the precision of H2
εA determined with Eq. (8) is limited by 

the relative uncertainty of He
1

H2
1 dd − , which for our data was 4 × 10−5. The results of these 

determinations are discussed in Section 5 

4.2. Hydrogen Measurements 

The 2
H2n  data obtained with the resonator were converted to H2,rε  using values of H2,rμ  as 

described in Section 2. No frequency dependence in H2,rε  was detectable: the standard deviation 
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of the permittivity values from each of the resonator’s four modes had a maximum of 0.5 × 10−7, 

and the standard deviation of the difference between H2,rε  determined by the capacitor and the 

resonator was 8.7 × 10-7.  This last value is smaller than the manufacturer’s specification for the 

non-linearity of the capacitance bridge (1 × 10-6). Thus, the values of H2,rε  listed in Table 1 and 

discussed below are those obtained from measurements with the resonator. 

 

The standard deviations of (εr - εr,fit) for hydrogen were  (0.7 and 0.2) × 10−7 on the isotherms at 

273 K and 293 K, respectively.  The deviations were not random; they resulted almost entirely 

from hysteresis in the frequencies measured with increasing and decreasing pressure. This 

hysteresis in the frequency ratios was approximately five times larger for hydrogen than for 

helium, which is larger than the polarizability ratio (≈ 3.9) of the two gases.  This suggests that 

the long-term temperature drift in the resonator was slightly larger for the hydrogen 

measurements than for the helium measurements.  

 

Based on the standard uncertainties of the polynomial fits to the helium and hydrogen data, the 

estimated average standard uncertainties of the ratio ),(),( He,H2, TpTp rr εε determined with the 

resonator is 1 × 10−7. (This ratio may be determined by first calculating ),(He, Tprε using the 

method described in Schmidt et al. [10] at the each of the pressures and temperatures listed in 

Table 1.) However, the uncertainties of the ),(H2, Tprε  values listed in Table 1 are dominated by 

the temperature and pressure uncertainties. The temperature uncertainty u(T) = 0.005 K 

corresponds to the uncertainty of the dielectric constant of hydrogen ,H2( )ru ε =  

[1.7 + 2.7 × (293 K/T) (p/6 MPa)] × 10−7. The pressure uncertainty u(p) = 0.1 kPa corresponds to 

the uncertainty 7
,H2( ) 2.6 10 (293 K / )ru Tε −= × . Combining these in quadrature, the total 

uncertainty of H2,rε  is 3.4 × 10−7 at 293 K and 3 MPa.  

 

Figure 3 compares the dielectric permittivities listed in Table 1 with values calculated using the 

correlation of Harvey and Lemmon [14] as implemented in the software REFPROP 8.0 [20]. All 
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the deviations have a magnitude less than 0.9 × 10−6; their average is +0.3 × 10−6 and their 

standard deviation is +0.2 × 10−6. 

5. DISCUSSION  

Experimental values for αe , H2
ed dTα  and bε for hydrogen can be extracted from our data. The 

primary purpose of extracting these quantities is to test and stimulate theory; αe  and H2
ed dTα  

have already been calculated ab initio by Rychelwski [11], and Rizzo [25] has suggested a 

method by which the ab initio calculation of bε for hydrogen might proceed. We used two 

methods (referred to as Method 1 and Method 2) to extract these quantities from our data 

because each of the methods has a different problem associated with it, as discussed below. 

Nevertheless, the two methods give similar results and the values of αe , H2
ed dTα  and bε  that 

we ultimately recommend are the weighted averages of the values obtained with the two 

methods. 

 

Method 1 is based on the correlation  
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which Schmidt and Moldover [8] used to describe their measurements of the dielectric 

permittivities of eight gases. Method 1 is optimized for representing our measured εr data as a 

function of pressure and temperature; however the values of αe , H2
ed dTα  and bε  obtained with 

Method 1 are sensitive to the choice of the equation of state used to calculate molar densities 

from the measured temperature and pressure. In Eq. (9), Aε,273K is the value of Aε at 273.16 K, 

and Aτ is a parameter that accounts for the small temperature dependence of Aε associated with 

‘centrifugal stretching’ in diatomic molecules. All the data in Table 1 were fit to Eq. (9) using 

densities from refs. 19 and 20. The parameter cε  was not statistically significant so the fit was 

repeated with cε  ≡ 0. The best-fit parameter values, and their statistical uncertainties, obtained 
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with this fit were Aε, 273K = 2.03075 ± 0.00001 cm3 mol−1, bε = 0.0636 ± 0.0015 cm3 mol−1, and 

Aτ = 0.00599 ± 0.00017 cm3 mol−1.  

 

However, as discussed in reference 7, the best-fit values of the parameters in Eq. (9) are sensitive 

to three choices: (1) the total number of parameters allowed to vary during the regression, (2) the 

choice of the equation of state used to convert the measured p and T  to ρ, and (3) the details of 

the objective function minimized by the regression. For example, if the equation of state is 

changed from that of Leachman et al [19] to that of Kunz et al [26], the resulting values of 

Aε,273K, bε and Aτ are 2.03042 ± 0.00001 cm3 mol−1, 0.0650 ± 0.0019 cm3 mol−1 and 

0.00627 ± 0.00017 cm3 mol−1, respectively. Thus the uncertainty of the values of Aε,273K, bε and 

Aτ  (and the corresponding values of αe  and H2
ed dTα ) obtained with this method are 

dominated by the choices enumerated above. 

 

The second method does not make use of an equation of state and treats each set of isothermal 

data independently before combining the results to obtain average values of αe , H2
ed dTα , and 

bε  for the temperature range 273 K to 293 K. Method 2 uses the best-fit polynomial parameters 

di in Eq. (6b) determined for hydrogen and helium. First, the polynomial parameters d1 

determined for our hydrogen and helium data at each temperature are used in used Eq. (8), 

together with the ab initio value of He
εA = 0.51725419 cm3 mol−1 [24],  to obtain 

0001.00307.2H2
273K, ±=εA cm3 mol−1 and 0001.00311.2H2

293K, ±=εA cm3 mol−1. The difference 

between H2
3K29,εA and H2

273K,εA  provides the estimate Aτ = 0.0061 ± 0.0014 cm3 mol−1. Figure 4 

shows a comparison of several determinations of Aε for normal hydrogen over the temperature 

range 273 K to 323 K. The top panel shows the two values we obtained with Method 2 together 

with the experimental values determined by Orcutt and Cole [27], with a capacitance based 

expansion-type apparatus, and by Newell and Baird [28] with a microwave resonant cavity. The 

solid line represents our recommended values of H2
273K,εA  and Aτ, obtained from the weighted 

average the results from Methods 1 and 2 (discussed below). The lower panel shows deviations 

between our recommended values of Aε and values obtained with Method 1 using different 
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equations of state, with Method 2, and with the literature correlation of Harvey and Lemmon 

[14]. 

 

Estimates of bε at each measured temperature can also be obtained using Method 2 from the 

polynomial parameters di. Ignoring the small magnetic terms, the polynomial coefficient d2 in 

Eq. (6b) is determined by the expression 

           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Δ−=

3
1215

8
resT,

2

RTk
bA

A
d ε

ε . (10) 

 

Here, Δb = bε – B, where B is the second density virial coefficient at the measurement 

temperature, and terms of order (kT RT / 3)2 or smaller have been dropped. Thus, the difference 

between the parameters H2
2d and He

2d determined by regression of Eq. (6b) to σ

n
gf

1
+   data for 

hydrogen and helium, respectively, allows the determination of HeH2 bb Δ−Δ  without reference 

to the apparatus parameter kT,res. 
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where ( )H2
1

He
1

He
1

He
2

H2
22 dddddD −+−=    (11b)  

 

The values of H2
H2 εbB −  calculated from our data, Eq. (6) and Eq. (11) were (13.87 ± 

0.03) cm3 mol-1 at 273 K and (14.31 ± 0.03) cm3 mol-1 at 293 K. The uncertainties listed are 

those arising from the combination in quadrature of the statistical uncertainties of the best-fit 

values of H2
2d and He

2d . They do not include the uncertainties of the ab initio values of BHe from 

Hurly and Mehl [21] or the ab initio values of He
εb  from Rizzo et al. [29].  To obtain H2

εb  at each 

temperature, we used the ab initio values of BH2 from Patkowski et al. [2], who stated that the 

contribution to their uncertainty in their BH2 values resulting from the convergence of their 

calculations was ± 0.03 cm3 mol-1 at 273 K and 300 K. This is consistent with our estimate of  
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± 0.04 cm3 mol-1 based on the agreement between viscosities of n-H2 calculated ab initio by 

Mehl et al. [3] using the potential of Patkowski et al. [2] and the experimental measurements 

reported by May et al. [30]. Importantly, these values of BH2 are independent of the second virial 

coefficients calculated from the equation of state of Leachman et al. [19] or any other equation of 

state for normal hydrogen.  

 

Figure 5 shows the values of H2
εb  obtained at both temperatures with Method 2, together with the 

(temperature-independent) values of H2
εb  obtained using Method 1 using different equations of 

state. Also shown is the value of H2
εb  measured at 322 K by Orcutt and Cole [27] and the 

temperature dependent H2
εb  used in the correlation of Harvey and Lemmon [14]. The weighted 

average and standard deviation of the H2
εb  values obtained from our data with Method 2 was 

0.003 cm3 mol-1 and 0.02 cm3 mol-1, respectively.  

 

Method 2 has problems resulting from the correlations among the best-fit values of di. Since εr is 

naturally a function of density, not pressure, the same data can be described by using fewer free 

parameters with Eq. (9) than with Eq. (8). Although the values of d3 are statistically different 

from zero, there are insufficient high-density data to determine them reliably and specific values 

of each di are significantly correlated. Given that both Method 1 and Method 2 suffer from 

problems associated with correlation between regression parameters but that the correlations 

between the parameters used in Method 1 are independent of those in Method 2, the values of 

αe , H2
ed dTα  and bε   we recommend were obtained from a weighted average of the results 

from the two methods. The uncertainty bound we assign to these recommended values 

encompasses the standard uncertainties obtained by each method. (Note: for the purpose of 

representing the ),(H2, Tprε  data listed in Table 1, we recommend the parameters obtained with 

Method 1 using the equation of state of Leachman et al [19].) 

 

Thus, for the purpose of estimating the molecular properties of H2, we recommend 
H2

273K,εA  = 2.03065 ± 0.00017 cm3 mol−1 and Aτ = 0.0061 ± 0.0014 cm3 mol−1. Since hydrogen has 

no electric dipole moment, converting this recommended value of H2
273K,εA  to an effective 
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H2
eα  using Eq. (2) gives H2

eα =  (8.9568 ± 0.0008) × 10–41 F m2.  Within the experimental 

uncertainty, this agrees with the value αe = (8.9566 ± 0.0026) × 10–41 F m2 calculated by Harvey 

and Lemmon [14] using Rychlewski’s ab initio results [11], as described in Section 2. The 

measured value of Aτ also agrees with the value Aτ = 0.0056 cm3 mol−1 calculated by Harvey and 

Lemmon using Rychlewski’s ab initio results, within the experimental uncertainty.  

 

Combining the bε results obtained with Methods 1 and 2 leads us to recommended the value 
H2
εb = 0.03 ± 0.05 cm3 mol−1 over the temperature range 273 to 293 K.  Orcutt and Cole [27] used 

an expansion-type apparatus at 322 K to measure bε for several gases including H2 and He 

without reference to the gas’s equation of state or second density virial coefficient. Their 

measurement of He
εb  is in excellent agreement with the value calculated ab initio by Rizzo et al. 

[29], and their value of H2
εb = 0.03 ± 0.10 cm3 mol−1 is in remarkable agreement with ours. These 

two values of H2
εb were obtained from measurements of n-H2; they are slightly smaller than the 

value 0.09 cm3 mol−1 obtained by Harvey and Lemmon [14] from Stewart’s [15] measurements 

of p-H2 at 15 times higher densities than those used here and at much lower temperatures (24 K 

to 100 K).  
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TABLES 

Table 1.  Measured values of the relative dielectric permittivity of normal hydrogen. 

 

T p 104(εr −1) T p 104(εr −1) 
(K) (MPa)  (K) (MPa)  

273.203 0.14308 3.836 273.203 2.97775 78.628 
273.203 0.50469 13.500 273.203 2.48108 65.684 
273.203 1.01268 27.016 273.203 1.99505 52.952 
273.203 1.50098 39.940 273.203 1.48246 39.454 
273.203 2.00864 53.307 273.203 0.99251 26.483 
273.203 2.50760 66.374 273.203 0.49393 13.216 
273.203 2.99499 79.074 273.203 0.14833 3.979 
273.203 3.49657 92.068 293.213 0.10278 2.564 
273.203 4.00584 105.196 293.213 1.50175 37.249 
273.203 4.49358 117.701 293.213 2.50700 61.869 
273.203 4.98987 130.357 293.213 3.49981 85.938 
273.204 5.48993 143.040 293.213 4.49224 109.754 
273.203 5.98846 155.615 293.213 5.49163 133.491 
273.204 6.24354 162.024 293.213 6.48849 156.925 
273.203 5.98362 155.494 293.213 5.48687 133.380 
273.203 5.50901 143.523 293.213 4.48967 109.695 
273.203 4.98637 130.268 293.213 3.49671 85.865 
273.203 4.50468 117.985 293.213 2.47428 61.073 
273.203 3.98847 104.751 293.213 1.47972 36.706 
273.203 3.49679 92.076 293.213 0.10867 2.711 
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FIGURES 

Figure 1.  Schematic diagram of the apparatus.   
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Figure 2. Deviations of our εr(p,T) data for hydrogen (top panel) and helium (bottom panel) from 
the best-fit polynomials εr,fit obtained by regression of Eq. (6b) to the measured isothermal 
frequency ratios. For each isotherm, data measured as the pressure was increased are shown 
together with data measured as the pressure was decreased.  
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Figure 3.  Differences between measured values of the dielectric permittivity of hydrogen, εmeas, 
and values εlit calculated using literature references 14, 19 and 20. For each isotherm, data 
measured as the pressure was increased are shown together with data measured as the pressure 
was decreased. 
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Figure 4. Temperature dependence of the molar polarizability of normal hydrogen in the limit of 
zero density Aε. (a) Results from this work (Method 2 and the average of Methods 1 and 2), 
together with the Aε values obtained from the measurements of Orcutt and Cole [27] and Newell 
and Baird [28]. (b) Deviations from the values of H2

273K,εA  and Aτ recommended in this work. The 
symbols show the deviations obtained using Method 1 (with either [19] or [26]) or using Method 
2. The dashed line shows the deviation of the correlation reported in ref. 14. 
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Figure 5. Estimates of the second dielectric virial coefficient of normal hydrogen. 
 

 
   
 



 23

REFERENCES 

                                                 

1. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University 

Press, London 1932).  

2. K Patkowski, W. Ceneck, P. Jankowski, K. Szalewicz, J.B. Mehl, G. Garberoglio and 

A.H. Harvey, J. Chem. Phys. 129, 094304 (2008). 

3. J.B. Mehl, M.L. Huber, and A.H. Harvey, To be submitted to Int. J. Thermophys (2009).  

4. H. Koch, C. Hattig, H. Larsen, J. Olsen, P. Jorgensen, B. Fernandez and A. Rizzo, J. 

Chem. Phys. 111, 10099 (1999); A. Rizzo, C. Hattig, B. Fernandez, H. Koch, J. Chem. 

Phys. 117, 2609 (2002). 

5. D. F. Heller and W. M. Gelbart, Chem. Phys. Lett. 27, 359 (1974). 
 
6. J.L. Cacheiro, B. Fernando, A. Rizzo, B. Jansik and T.B. Pedersen, Mol. Phys. 106, 881 

(2008).  

7. E. F. May, M.R. Moldover and J.W. Schmidt, Phys. Rev. A 78, 032522 (2008).  

8. J. W. Schmidt and M. R. Moldover, Int. J. Thermophys. 24, 375 (2003). 

9. E. F. May, L. Pitre, J. B. Mehl, M. R. Moldover and J. W. Schmidt, Rev. Sci. Instrum. 

75, 3307 (2004). 

10. J. W. Schmidt, R. Gavioso, E. F. May and M. R. Moldover, Phys. Rev. Lett. 98, 254504 

(2007).   

11. J. Rychlewski, Mol. Phys. 41 833 (1980).  

12. A.A. Maryott and F. Buckley, Tables of Dielectric Constants and Electric Diploe 

Moments of Substances in the Gaseous State (National Bureau of Standards Circular 537, 

Washington 1953). 

13. A. H. Harvey, private communication, 18 July 2008 

14. A.H. Harvey and E. W. Lemmon, Int. J. Thermophys. 26, 31 (2005). 

15. J.W. Stewart, J. Chem. Phys. 40, 3297 (1967)  

16. A. Michels, P. Sanders and A. Schipper, Physica 2, 753 (1935).  

17. N.F. Ramsey,  Molecular Beams, (Oxford University Press, New York, 1956.) 

18. J. Rychlewski and W.T. Raynes, Mol. Phys. 41, 843 (1980).  



 24

                                                                                                                                                             

19. J.W. Leachman, R.T Jacobsen, S.G. Penoncello, and E.W. Lemmon, "Fundamental 

Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen," Submitted 

to J. Phys. Chem. Ref. Data (2009).  

20. E. W. Lemmon, M. O. McLinden and M. L. Huber, Reference Fluid Thermodynamic and 

Transport Properties, NIST Standard Reference Database 23, Version 8.0 (Nat. Inst. 

Stands. Technol., Gaithersburg, Maryland, 2007). 

21. J.J. Hurly and J.B. Mehl, J. Res. NIST 112, 75 (2007).  

22. G. Garberoglio and A.H. Harvey, "First-Principles Calculation of the Third Virial 

Coefficient of Helium," J. Res. NIST., In preparation.  

23. A.L. Blancett, K.R. Hall and F.B. Canfield, Physica 47, 75 (1970). 

24. G. Lach, J. Bogumil and K. Szalewicz, Phys. Rev. Lett. 92, 233001 (2004). 

25. A. Rizzo, private communication, 22 July 2008.  

26. O. Kunz, R. Klimeck, W. Wagner and M. Jaeschke, The GERG-2004 Wide-Range 

Equation of State for Natural Gases and Other Mixtures (GERG Technical Monograph 

15, Dusseldorf, 2007.)  

27. R.H. Orcutt and R.H. Cole, J. Chem. Phys. 46 697 (1967).  

28. A.C. Newell and R.C. Baird, J. App. Phys. 36, 3751 (1965).  

29. A. Rizzo, C. Hattig, B. Fernandez and H. Koch, J. Chem. Phys. 117, 2609 (2002).    

30. E. F. May, R. F. Berg, and M. R. Moldover, Int. J. Thermophys. 28, 1085 (2007). 


