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Abstract. In this paper we propose a new sequential mode of operation – the Fast wide 
pipe or FWP for short – to hash messages of arbitrary length. The mode is shown to be 
(1) preimage-resistance preserving, (2) collision-resistance-preserving and, most importantly, 
(3) indifferentiable from a random oracle up to O(2n/2) compression function invocations. 
In addition, our rigorous investigation suggests that any variants of Joux’s multi-collision, 
Kelsey-Schneier 2nd preimage and Herding attack are also ineffective on this mode. This fact 
leads us to conjecture that the indifferentiability security bound of FWP can be extended 
beyond the birthday barrier. From the point of view of efficiency, this new mode, for example, 
is always faster than the Wide-pipe mode when both modes use an identical compression 
function. In particular, it is nearly twice as fast as the Wide-pipe for a reasonable selection 
of the input and output size of the compression function. We also compare the FWP with 
several other modes of operation. 

1 Introduction 

A hash function H : {0, 1}∗ −→ {0, 1}n is a mathematical function which takes as input a binary 
string of arbitrary length and outputs a binary string of finite length. A secure hash function 
can be applied in many applications such as data authentication, digital signature, commitment 
protocols and password protection. A very popular trend of designing a hash function is executing 
a fixed-input-length (FIL) compression function in a sequential mode as many times as to take the 
whole message as input. Many practical hash functions, such as MD4 [20], MD5 [21], SHA-0 [18], 
SHA-1 [19] follow the aforementioned design paradigm. These hash functions precisely have two 
components: (1) a compression function and (2) a mode of operation. 

This paper is all about design and analysis of a new hash mode of operation, which is named 
the Fast wide pipe or FWP for short. 
Related work. The classical Merkle-Damgärd mode is the most widely used and most studied 
hash mode of operation. [17,8]. The mode is simple and collision-resistance-preserving.1 All the 
practical hash functions mentioned before are based on the Merkle-Damgärd mode. The landscape 

* The large part of the work has been done while working in The George Washington University. 
1	 In a collision-resistance-preserving hash function collision resistance of a compression function implies 
collision resistance of the entire hash function. 
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Table 1. Comparison among several hash modes of operation with respect to indifferentiability 
attacks. All numbers are in bits. By Input and Output in the table, we mean bits into and bits out 
of the compression function. 

Mode Hash-length Input Output Rate Lower Bound Upper Bound Condition 

MD[17] n a b = n a − b 0 0 a > b 
MDP[10] n a b = n a − b n/2 n/2 a > b 

Wide-pipe[15] n a b = 2n a − b ≈ n ≈ n a > b 
Sponge[2] n a b = a a − n n/2 n/2 a > n 
JH[23,4] n a b = a a/2 n/3 n a > 2n 
FWP nnn aaa bbb === 222nnn aaa −−− bbb 

222 n/n/n/222 nnn aaa >>> b/b/b/222 

is no longer the same. A telltale proof of declining interest of the designers in this mode is that 
none of the 51 hash functions competing in the ongoing NIST hash function competition uses the 
classical Merkle-Damgärd mode. The main reasons for discarding this mode by the designers are 
a few influential attacks: Length extension attack, multi-collision attack [11], Kelsey-Schneier 2nd 
preimage attack [14] and Herding attack [12]. On the positive side, the slow and gradual depar­
ture of the classical Merkle-Damgärd hash mode has motivated two new lines of research which go 
nearly hand in hand: (1) design of new modes of operation and (2) development of new security 
frameworks to analyze hash functions. The first line of research has indeed resulted in a number 
of new modes of operation – Wide-pipe [15], HAIFA [5], Sponge [2], EMD [1], JH[23] are some of 
them. One of the major results of the second line of research is the indifferentiability framework 
developed by Maurer et al. [16]. Against this framework, we measure the extent to which a hash 
function is behaving as a random oracle under a suitable assumption on the underlying compression 
function. Informally speaking if a hash function is indifferentiable from a random oracle then, for 
example, it does not come under length extension attack (assuming the underlying compression 
function is a FIL random oracle). It is, therefore, important that a new mode of operation is both 
collision-resistance-preserving and indifferentiable from a random oracle. Another crucial issue is 
to recognize that a hash function indifferentiable from a random oracle does not guarantee that it is 
collision-resistance-preserving (e.g. modes of operation designed in [7] are not collision-resistance­
preserving, although they are indifferentiable from random oracles[1]). These two properties should 
be analyzed separately [1]. 

Our contribution. To make a hash function resistant against Joux’s multi-collision-type attacks, 
Lucks has proposed to make the intermediate chaining values of the Merkle-Damgärd mode twice 
as long as the final hash value; this mode is known as the Wide-pipe mode [15]. Suppose the com­
pression function in a Merkle-Damgärd based hash function is defined as C : {0, 1}m+n → {0, 1}n . 
Lucks has, very rightly, advocated to use a compression function C : {0, 1}m+2n → {0, 1}2n to avoid 
Joux’s multi-collision-type attacks [11,13]. We call this compression function Lucks’ compression 
function. The message and chaining input to the Lucks’ compression function are m and 2n bits. 
Using any Lucks’ compression function C : {0, 1}m+2n → {0, 1}2n we design a hash function FWP, 
where the message and the chaining input to the compression function are m + n and n bits; we, 
thus, speed up the hashing operation by allowing m + n bits of message instead of just m bits 
per compression function invocation . At the same time we prove that the FWP mode is collision­
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resistance preserving and indifferentiable from a random oracle up to O(2n/2) compression function 
invocations. The fact that the FWP does not come under Joux’s multi-collision-type attacks, such 
as Kelsey-Schneier 2nd preimage attack, leaves open the possibility to extend the indifferentiability 
bound beyond the birthday barrier. 

In Table 1, we compare our results with several other competing hash modes with respect to 
indifferentiability attacks. Against other attacks such as collision all the modes perform almost 
identically. It is readily observable that the FWP outperforms all other modes in at least one of the 
three properties, namely Rate, Lower Bound and Upper Bound in Table 1. The important features 
of the FWP are pointed out below. 

1. FWP performs better than the Wide-pipe with respect to the rate of the hash function. For 
example, when the input size of the compression function is three times the output size – which 
is a reasonable choice – FWP is twice faster than the Wide-pipe. 

2. Efficiency-wise, FWP has similar performance as Sponge and JH. However, there is a strong 
evidence that the indifferentiability security bound of FWP can be extended beyond n/2 bits, 
while there already exists an attack on the Sponge with work factor n/2 bits. 

2 Notation and Convention 

Table 2. Notation 

{0, 1}≤l {ε} ∪ {0, 1} ∪ {0, 1}2 ∪ {0, 1}3 ∪ . . . ∪ {0, 1}l 
[x, y] The set of integers x, x + 1, . . . , y 
a||b concatenation of a and b 
|X| Size of set X; Bit-length if X is a string 

pad(M) The sequence of bits after padding M 
fixed-input-length Fixed input length 

variable-input-length Variable input length 
FWP Fast wide-pipe 

In addition to the above notation, we shall use another set of notation in the context of indif­
ferentiability results of the hash function FWP. They are described in Sect. 5.1. 

3 The New Mode Fast Wide Pipe or FWP 

In this section we define a new sequential mode of operation Fast Wide Pipe (or FWP for short) 
for hashing messages of length up to 264 bits. 

Diagrammatic representation of the mode FWP is given in Fig. 1. A four-block example of FWP 
including a comparison of the new mode with several others is given in Appendix A. An algorithmic 
description is in Algorithm 3.1. The padding rule pad(M) is the execution of the following operation: 
append t zero bits and a 64-bit encoding of |M | to the message M . Select the least integer t ≥ 0 
such that |M |+t+n+64 = 0 mod l (see Algorithm 3.1 for the notation). We now make attempts to 
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1 2Fig. 1. The new mode FWP. Message M = m m . . .m£(M ) is hashed by FWPro. The symbols are 
described in Table 3. 

Algorithm 3.1 The FWP mode of operation with the compression function C (i.e., FWPC ) 
Input: Message M 
Output: Hash output h of size n bits 
Initialize: h−1 = h−

'
1 = 0n 

1: M0||M1|| . . . ||Mk−1 =pad(M) where |Mi| = l for all i < k − 1 and |Mk−1| = l − n; 
2: (hk−2, h

'
k−2) =FWPC

t (h−1, h−
'
1,M0,M1, . . . ,Mk−2); /* See subfunction below */ 

3: C(hk−2||h'
k−2||Mk−1) = h''

k−1||h'
k−1; 

4: return hash output h = h'
k−1; 

Subfunction FWPC
t (h−1, h

'
−1,M0,M1, . . . ,Mk−2) 

5: for i = 0 to k − 2 do 
6:	 C(hi−1||Mi) = h''

i ||h'
i;
 

= h''
7:	 hi i ⊕ h'
i−1; 

8: end for 
9: return (hk−2, hk

'
−2); 

analyze the security of the FWP. For the sake of simplicity, we assume l −n ≥ 64 which ensures that 
the length-encoding is completely included in the last block. The entire analysis can be modified 
easily to include the case l − n < 64. 

4	 Security of the FWP: Resistance Against Collision and Preimage 
Attacks 

The main results of this section are two theorems which prove that the collision and the preimage 
attacks on the FWP mode can be reduced to similar attacks on the underlying compression function 
(see Algorithm 3.1 for the definition of the FWP mode). In other words, the theorems show that 
finding collision and preimage on the FWP are at least as hard as finding collision and preimage 
on the compression function. 

Before establishing the security results, we first define the following functions. The functions 
CT , CB : {0, 1}l+n → {0, 1}n are defined as CT (x) = h! and CB (x) = h!! where C(x) = h!!||h! (the 
compression function C of the FWP is defined in Algorithm 3.1). 

Theorem 1. If the compression function CT is preimage resistant so is the FWPC . 

Proof.	 The theorem can be verified easily by observing the last block of FWPC . 
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Glancing at the XOR operations, one may be tempted to conclude that the FWP may be 
vulnerable against the generalized birthday attack [22]. The following theorem drives away such 
fears. 

Theorem 2. If the compression function CT is collision resistant so is the FWPC . 

Proof. To prove the theorem we need to prove that, if there exists an adversary who finds a pair of 
messages (M, M !) such that FWPC (M)=FWPC (M !) and M  = M ! then there exists an adversary 
who can find X  = X ! such that CT (X) = CT (X

!). 
Suppose an adversary finds a pair (M, M !) such that FWPC (M)=FWPC (M !) and M  M != . 

Now there are two possible cases. 
Case 1: |M |  |M !|.= Suppose that the number of message-blocks in pad(M) and pad(M !) are a 
and b where a  b. Note, as per our definition of C and FWPC  M ! due to the length = , Ma−1 = b−1 

!padding. Now, FWPC (M)=FWPC (M !) implies CT (ha−2||h! 
a−2||Ma−1) = CT (gb−2||g ||Mb

!
−1).b−2

Therefore, we get a collision on CT . 
Case 2: |M | = |M !|. Suppose that the number of message-blocks in pad(M) is a. Now there are 
two cases. 

!Case 2(a): CT (ha−2||h! 
a−2||Ma−1) = CT (ga−2||ga−2||M ! 

a−1) 
!where ha−2||h! 

a−2||Ma−1  = ga−2||ga−2||Ma
!
−1. Therefore, we obtain a collision on CT . 

!Case 2(b): CT (ha−2||h! 
a−2||Ma−1) = CT (ga−2||ga−2||M ! 

a−1) 
!where ha−2||h! 

a−2||Ma−1 = ga−2||ga−2||Ma
!
−1.
 

The above equation implies that FWPC (0n||0n||M0|| . . . ||Ma−2)=FWPC (0n||0n||M0
! || . . . ||M !
 

t t a−2) 
which in turn implies collision on CT by Lemma 1 (the definition of FWPC is provided in Algo­t 
rithm 3.1). Now the only remaining part needed to complete the proof is the proof of Lemma 1 
which is provided below. 

The following lemma has been used in Theorem 2. It will be further used to obtain some 
indifferentiability results of the FWPC in Sect. 5. 

Lemma 1. If the compression function CT is collision resistant then the FWPt
C is free-start col­

lision resistant for fixed length messages. In other words, if there exists an adversary who finds 
!two triples (h−1, h

!
−1,M)  (g−1, g = |M !| (|M | is a multiple of l) and = −1,M

!) such that |M |
! X !FWPC (h−1, h

! = (g−1, g−1,M
!), then there exists an adversary who finds X−1,M) FWPC = t t 

such that CT (X) = CT (X
!). 

!Proof. Suppose there exists an adversary who finds two triples (h1, h
! 
1,M) = ( g1, g1,M

!) such that 
!|M | = |M !| (the number of message-blocks in M is a) and FWPC (h−1, h

! (g−1, g−1,M
!).−1,M) =FWPC 

t t 
In order to obtain a pair X  = X ! such that CT (X) = CT (X

!) we need to check at most a equations 
whether they are satisfied: 

?
C(hi−1,Mi) = C(gi−1,Mi 

!) where i = a − 1, . . . , 0. 

We claim that the above verification will produce some m with 0 ≤ m ≤ a − 1 such that 
CT (hm−1,Mm) = CT (gm−1,M

! ) and (hm−1,Mm) = (gm−1,M
! ) and thus, the lemma is proved. m m

This claim can be proved by the following crucial observation on FWPC .t 
!Observation: For all i ∈ [0, a − 1], (hi, h

! ) = (gi, g ) implies one of the following two statements: i i

(1) (hi−1,Mi−1)  i−1) which implies collision on CT ,= (gi−1,M
! 

!(2) (hi−1,Mi−1) = (gi−1,M
! ) which implies (hi−1, h

! ) = (gi−1, g ).i−1 i−1 i−1

Next, we move on to analyze the FWP in a different security framework known as the indifferen­
tiability framework. 
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5 Security of the FWP Mode: Indifferentiable From a Random Oracle 

In this section we discuss the indifferentiability property of the FWP mode. In the context of hash 
function, an important use of the indifferentiability framework developed by Maurer et al. [16] is the 
determination of whether a variable-input-length hash function behaves reasonably randomly when 
the underlying compression function is a fixed-input-length random oracle. There is a considerable 
chance for the reader to be lured into believing that the collision resistance preservation (described 
in Sect. 4) and the indifferentiability property of a hash function may be related. In particular, 
one may be inclined to intuiting that one property implies the other. Such intuition is not true [1]. 
These two properties are orthogonal and need to be analyzed separately. 

5.1 Preliminaries: Introduction to Indifferentiability Framework 

We begin with the definition of a random oracle; this useful object will be used frequently in the 
subsequent discussion. 

Definition 1 (Random oracle). A random oracle is a function RO : X → Y chosen uniformly at 
random from the set of all |Y ||X| functions that map X → Y . In other words, a function RO : X → Y 
is a random oracle if and only if, for each x ∈ X, the RO(x) is chosen uniformly at random from 
Y .
 

Corollary 1. If a function RO : X → Y is a random oracle then
 

1 
Pr[RO(x) = y|RO(x1) = y1, RO(x2) = y2, . . . , RO(xq) = yq] = 

|Y | 
where x /∈ {x1, x2, . . . , xq}, y ∈ Y and q ∈ Z. 

Now we introduce the indifferentiability framework and briefly discuss its significance. The 
following definition is a slightly modified version of the original definition provided in [16,7]. 

Definition 2 (Indifferentiability framework). [16] A Turing machine T with oracle access to 
an ideal primitive F is said to be (tA, tS , q, σ, ε)-indifferentiable from an ideal primitive G if there 
exists a simulator S such that for any distinguisher A the following equation is satisfied: 

AdvA((T, F), (G, S)) = |Pr[AT,F = 1] − Pr[AG,S = 1]| < ε 

The simulator S is an interactive algorithm which has oracle access to G and runs in time at most 
tS . The distinguisher A runs in time at most tA and makes at most q queries. The total message 
blocks queried by A is at most σ. 

Briefly, the significance of indifferentiability property is described as follows: Suppose, an ideal 
primitive G (e.g. a variable-input-length random oracle) is indifferentiable from an algorithm T 
based on another ideal primitive F (e.g. a fixed-input-length random oracle). In such case, any 
cryptographic system P based on G is as secure as the P based on T F (i.e., T F replaces G in P). 
See [16] for more on that. 

Pictorial Description of Def. 2(Fig. 2). In the figure, five entities involved in Def. 2 are 
shown with an example. Suppose, the oracle Turing machine T , the ideal primitives F , G are, 
respectively, a hash function H, random oracles ro and RO. The exchange of queries and responses 
is also shown in the figure. Note that it is forbidden to issue queries in the opposite directions. For 
example, the hash function H can send a query to ro and receive response, but never the other way 
round. In this setting, Def. 2 addresses the degree to which any computationally bounded adversary 
is unable to distinguish between Option 1 and Option 2. D 
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5.2 Indifferentiability Framework for FWP: Designing a Simulator S 

In this section we describe the entities of Fig. 2 with respect to the hash function FWP: {0, 1}≤264 → 
{0, 1}n . The mode FWP is defined in Fig. 1. In the rest of the paper the H is understood to be 
the FWP hash function. The fixed-input-length random oracle ro : {0, 1}r+n → {0, 1}2n is the 
compression function invoked by the FWP mode. The variable-input-length random oracle RO is 
defined as RO : {0, 1}≤264 → {0, 1}n. The only remaining part to complete the indifferentiability 
framework is designing a simulator S. This section is devoted to that. The fifth entity of Fig. 2, 
which is an arbitrary distinguisher A, is discussed in Sect. 5.3. We kick off with the notation. 
Notation. Table 3 provides the notation useful to follow our indifferentiability results on the new 
hash function FWP. Note that the notation can be very easily adapted to any hash function based 
on a sequential mode of operation. D 

Now we define a few terms – in relation to Fig. 1 and 2 – which will be used to arrive at our 
main indifferentiability results of Sect. 5.3. 
Queries and lists. We now define various types of queries and lists (or arrays) that can potentially 
be used by a distinguisher to separate a hash function from a random oracle. The first assumption 
is that a distinguisher does not resubmit to an oracle a query whose response is already known. 
This is a valid assumption because, in our case, an identical oracle – any of FWP hash function, ro, 
RO and S of Fig. 2 – gives identical response to an identical query (it would be further clear when 
we shall concretely define the simulator S). Our next assumption is that, unless otherwise specified, 
a query is known to be submitted by the distinguisher. In the present case, we are not interested 
in queries submitted by the simulator S or by the hash function FWP. Now we define two special 
types of queries. 

Definition 3 (Short and long query). A query submitted to S or ro is defined as a short query. 
Similarly, a query submitted to FWP or RO is defined as the long query (see Fig. 2). 

At this time it is important to discuss a subclass of short and long queries known as trivial queries. 
For easy understanding, we try to introduce the notion without the rigors of mathematical notation 
as much as possible; however, our treatment is logically sound and foolproof. The motivation behind 
the determination of trivial queries is that their outputs are implied by the previous queries and 
their responses, no matter whether the distinguisher is interacting with Option 1 or Option 2 of 

Fig. 2. The entities and their behavior involved in Fig. 3. Several databases maintained 
the indifferentiability framework of Def. 2; T ≡ H, by the distinguisher 
F ≡ ro, G ≡ RO, S ≡ simulator (see description 
above). In Sect. 5.2, H is the FWP hash function. 
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Table 3. The notation used in the indifferentiability framework for FWP (see Fig. 1) 

Symbol bit-length Description 
Ashort, Along - Current query-response arrays 

Ainter - Array for intermediate query-responses 
A[i, i − 1, . . . j] - Array (or bit-string) A truncated between indices i and j 

A - A distinguisher 
A ' - Modification of the distinguisher A 

e(M) - Number of compression function calls to hash M 
λ 0 Empty String 
M ≤ 264 Message M = m 1 m 2 . . . m£(M) 

m k , m£(M ) r, r − n Messages of kth and e(M)th compression functions (k < m£(M)) 
MesgVer - Message verification algorithm 

MesgRecon - Message reconstruction algorithm 
q, σ - Maximum number of queries and blocks used by distinguisher 

ro, RO - Random oracles 
S - Set of reconstructed messages given a short query 
S - The simulator 

tA, tS - Time of A and S 
u k' n Chaining input to kth compression function (k < m£(M )) 

u£(M)'' ||u£(M)' 2n Chaining input to e(M)th compression function 
u k , u£(M) r + n, r + n Total input to kth and e(M)th compression functions 
v k' , v k '' n, n Two halves of output from kth compression function 

v k 2n Total output from kth compression function 
z n Final hash value 
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Fig. 2. Therefore, trivial queries cannot be used to distinguish between two systems, even if they 
satisfy specific ‘bad’ conditions. Before we formally define trivial queries, some discussion on the 
databases maintained by the distinguisher and two special functions MesgVer and MesgRecon are 
necessary. We first discuss them briefly. 
Databases of the distinguisher. Let us assume that a distinguisher uses two arrays: (1) Ashort 

for storing short queries and the responses, and (2) Along for long queries and the responses (see 
Fig. 3). Queries and their responses are indexed by the time they are submitted. Note that the 
simulator S can access Ashort but not Along. 

Algorithm 5.1 Message verification algorithm MesgVer(·, ·) 
Input: Array Ashort, bit-string M (|M | ≤ 264) 
Output: A bit b 
(See Table 3 and Fig. 1 for the notation.) 
1: Set b = 1; 
2: for i = 1 to e(M) do 

i i i−1 i−23: Compute u from m , v , v ; 
4: if �v such that (u i , v) ∈Ashort then 
5: return b = 0; 
6: else 
7: Compute v i using u i and Ashort; 
8: end if 
9: end for 
10: return b; 

Discussion on algorithms MesgVer and MesgRecon. Informally speaking, MesgVer is a function 
which takes two inputs – the current list Ashort, a long query M – to verify whether the long query 
M is a valid message for the hash mode FWP. What it essentially does is compute all compression 

1 2 £(M)function inputs – u , u , . . . , u – sequentially and checks whether they exist in Ashort. The 
MesgVer algorithm has been described in Algorithm 5.1. 

The MesgRecon algorithm, in some sense, works in the opposite direction. It takes the current 
list Ashort and a short query x as inputs and reconstructs a set of messages S such that each message 
M ∈ S is a valid message for FWP mode and, moreover, the input to the last compression function 
is x. The algorithm is described in Algorithm 5.2. D 

Now we are ready to define the trivial queries. 

Definition 4 (Trivial short query). A short query x is a trivial short query if the following 
conditions hold: 

–	 MesgRecon(Ashort, x) = {M}. 
–	 The M has been queried previously as a long query (i.e. ∃v such that (M, v) ∈Along). 

Definition 5 (Trivial long query). A long query M is a trivial long query if the following 
conditions hold: 

–	 MesgVer(Ashort, M)=1. Suppose the final input u£(M) computed in MesgVer(Ashort, M) is the 
ith query in Ashort. 

–	 MesgRecon(Ashort[i − 1, . . . , 2, 1], u£(M )) = {M}. 
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Algorithm 5.2 Message reconstruction algorithm MesgRecon(·, ·) 
Input: Array Ashort, bit-string x (|x| = r + n)
 
Output: A set of reconstructed messages S
 
Assumption: For simplicity we assume r − n ≥ 64. This makes 64-bit length-encoding in the last
 
message block. If r − n < 64 then we need more than one block to determine the length.
 
(See Table 3 and Fig. 1 for the notation.)
 
1: Compute e(M) from x[64, . . . , 2, 1]; 
2: Break x = u £(M )! 

||v £(M)−1' ||m £(M) such that v £(M )−1' = x[r, r − 1, . . . , r − n + 1]; 
3: Construct G = {(u, v) ∈Ashort | v[n, . . . , 2, 1] = v £(M)−1' }; 
4: if |G|  = 1 then 
5: return S = Ø; 
6: end if 
7: for i = e(M) − 1 to 1 do 
8: m i = u[r, . . . , 2, 1];  i−1' i+1' i'' 9: Compute v = u v ; 
10: if i = 1  then 
11: Construct G = {(u, v) ∈Ashort | v[n, . . . , 2, 1] = v i−1' }; 
12: if |G| = 1  then 
13: return S = Ø; 
14: end if 
15: else 
16: if u[r + n, . . . , r + 1] = IV and v i−1' = IV ' then 

1 2 £(M)17: Compute M = m m . . .m ; 
18: return S = {M}; 
19: else 
20: return S = Ø; 
21: end if 
22: end if 
23: end for 
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The nontrivial short and long queries are obvious from the above definitions. 

Definition 6 (Nontrivial queries). A short query x is a nontrivial short query if it is not a 
trivial short query. Similarly, a long query M is a nontrivial long query if it is not a trivial long 
query. 

At this point it is useful to, once more, remember the motivation behind separating the trivial 
queries from all queries. The distinguisher may communicate with (FWP, ro) or (RO, S). Irrespective 
of whether it is communicating with (FWP, ro) or (RO, S), the responses of the trivial queries should 
be implied by the previous query-responses. Therefore, the trivial queries do not help a distinguisher 
to differentiate between (FWP, ro) and (RO, S) (see Fig. 2). We have just concretely defined the 
trivial queries in Def. 4and 5. However, we still cannot say whether the trivial queries indeed 
fulfil the motivation until we prove the existence of a compatible simulator. Such a simulator S is 
described below. 

Algorithm 5.3 The simulator S(·) 
Input: short query x 
Output: 2n-bit string v 
1: S=MesgRecon(Ashort, x); 
2: if |S| = 1 then 
3: return v = RO(M); /* S = {M} */ 
4: end if 
5: return v = ro(x); 

Our design of indifferentiability framework is now complete, except establishing a property that 
shows, under trivial queries, both (FWP, ro) and (RO, S) behave identically, if they are supplied 
with identical Ashort and Along. We capture this property in the following lemma. 

Lemma 2. Suppose, for a distinguisher A, the lists Ashort and Along are identical for both (FWP, 
ro) and (RO, S) after the ith query. Then the following statements are true. 

1. If M is the (i + 1)th trivial long query then FWPro(M) = RO(M). 
2. If x is the (i + 1)the trivial short query then S(x) = ro(x). 

Proof. The proof is immediate from the construction of the simulator S which is described in 
Algorithm 5.3. 

5.3 Bounding the Advantage of an Arbitrary Distinguisher 

After designing the simulator S in the previous section, now we are left with the most important 
part of the paper: to compute an ε as a function of (tA, tS , q, σ) (see Def. 2). To that end, we first 
design an arbitrary oracle algorithm A (see Algorithm B.1 in Appendix B) that separates (FWP, ro) 
from (RO, S). 

Algorithm B.1 is characterized by two functions: (1) the fquery(·, ·) which computes the next 
query, and (2) the fcond(·, ·) which decides whether the system is (FWP, ro) or (RO, S). Both the 
functions take the arrays Ashort, Along as inputs. To bound the advantage of A, we slightly modify 
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A to design A! which is described in Algorithm B.2 of Appendix B. We now discuss the algorithms 
briefly. 
Discussion on Algorithm B.1 and B.2. Both A and A! have identical query function fquery . We 
only modify fcond of A to design f ! of A!. The additional parts of A! are placed within boxes in cond 
Algorithm B.2. The algorithm A!, in addition to Ashort and Along, uses an extra array Ainter which, 
using a function MesgDecom(Mi), stores all intermediate inputs and outputs for any long query 
Mi applied to FWP. Our main task is to define a suitable f ! such that the following inequality cond 
holds: 

max |Pr[A(FWP, ro) = 1] − Pr[A(RO, S) = 1]| ≤ max Pr[A!(FWP, ro) = 1] (1)
A	 A! 

where the maximum values of the right hand side and the left hand side are based on the suitable 
choices of (1) fquery and fcond, and (2) f ! respectively. It is easy to show that he above inequality cond 
implies AdvA((FWP, ro), (RO, S)) ≤ maxA Pr[A!(FWP, ro) = 1]. We now define a suitable f ! 

cond 
recursively. 

Definition 7 (f ! of Algorithm B.2). The definition is divided into two complementary parts. cond 
(1) Let the ith query computed by fquery of A! be a nontrivial long query denoted by Mi. Then 
f ! = 1 if one or more following conditions are satisfied. cond 

– Collision between the final input for the current long query Mi and the final input for some 
£(Mi) £(Mj )previous long query Mj . That is, u = u for some j < i.i j 

–	 Collision between the final input for the current long query Mi and some intermediate input 
£(Mi) kfor some previous long query Mj . That is, ui = uj for some j ≤ i and k < £(Mj ). 

–	 Collision between some intermediate input for the current long query Mi and the final input 
k £(Mj )for some previous long query Mj . That is, ui = uj for some j < i and k < £(Mi). 

– Collision between the final input for the current long query Mi and some previous short query 
£(Mi)xj . That is, u = xj for some j < i.i 

Otherwise f ! = 0.cond 
(2) Let the ith query computed by fquery of A! be a nontrivial short query denoted by xi. Then 
f ! = 1 if the following condition is satisfied. cond 

– Collision between the current short query xi and the final input for some previous long query 
£(Mj )Mj . That is, xi = u for some j < i.j 

Otherwise f ! = 0.cond 

Now we state the following theorem. 

Theorem 3. Under Def. 7 of f ! the following inequality holds. cond 

AdvA((FWP, ro), (RO, S)) ≤ max Pr[A!(FWP, ro) = 1]. 
A! 

Proof. The theorem has been proved for a general domain extension in [3]. Note that, in the present 
case, the event A!(FWP, ro) = 1 is also an event invoked by A(FWP, ro) according to Def. 7 – exactly 
this event has been termed a Bad event for a GDE in [3]. So by using Theorem 1 of [3] we have our 
result. 
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In the remainder of the section we strive to obtain an upper bound ε on maxA! Pr[A!(FWP, ro) = 1]. 
According to Theorem 3, ε is an upper bound on AdvA((FWP, ro), (RO, S)) too. 

We have two databases Ashort and Ainter which essentially store all invocations to ro. Each 
element of Ashort and Ainter is of the form (u, v) where u ∈ {0, 1}r+n and v ∈ {0, 1}2n. We denote 
the ith pair by Ashort(i) = (Ashort(i, 1), Ashort(i, 2)) and Ainter(i) = (Ainter(i, 1), Ainter(i, 2)). 

Whenever we add a pair (u, v) to Ainter it corresponds to a pair (M, i) such that when we 
compute FWP ro(M), the ith intermediate input, output are u and v respectively. Note, when 
i = £(M) FWP ro(M) = v[2n, 2n − 1, . . . n + 1]. 

We define the following bad events. It mainly considers one of the following cases: (1) the 
unexpected collisions in the first or last half of the outputs of ro which are stored in one of the two 
databases Ashort and Ainter during query-responses of A! and (2) collision on the least significant n 
bits of inputs of ro stored in Ainter with least significant n bits of inputs of ro stored in one of the 
two lists. 

1. Type-1 bad. Ashort vs. Ashort for output collision: If Ashort(i, 2)[n, n−1, . . . 1] = Ashort(i
! , 2)[n, n− 

1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] = Ashort(i
! , 2)[2n, 2n − 1, . . . n + 1] for some i = i! . 

2. Type-2 bad. Ashort vs. Ainter for output collision: If Ashort(i, 2)[n, n−1, . . . 1] = Ainter(i
! , 2)[n, n− 

1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] = Ainter(i
! , 2)[2n, 2n − 1, . . . n + 1] for some i, i! such 

that the following is not true: 
Ainter(i

! , 2) corresponds to the pair (M, j) and the computation of FWP ro(M) up to j − 1 
intermediate input is already in the list {Ashort(r) : r ≤ j − 1} and the jth intermediate 
input is Ainter(i

! , 2). 
3. Type-3 bad. Ainter vs. Ainter for output collision: If Ashort(i, 2)[n, n− 1, . . . 1] = Ainter(i

! , 2)[n, n − 
1, . . . 1] or Ashort(i, 2)[2n, 2n − 1, . . . n + 1] = Ainter(i

! , 2)[2n, 2n − 1, . . . n + 1] for some i, i! such 
that the pairs corresponding to Ashort(i, 2) and Ainter(i

! , 2) are not identical. 
4. Type-4 bad. Ainter vs. both list for input collision: Ainter(i, 1)[n, n − 1, . . . 1] = Ainter(i

! , 1)[n, n − 
1, . . . 1] or Ainter(i, 1)[n, n − 1, . . . 1] = Ashort(j, 1)[n, n − 1, . . . 1] for some i = i! . 

Lemma 3. If f ! (see definition 7) returns 1 then at least one of the above four types of bad cond 
events occurs. 

Proof. The proof is immediate. 

Note that for a short query we add one element to Ashort and for a long query we add £ = £(M) 
elements to Aint. In total we update σ elements in two databases after q queries, where σ is the 
total number of blocks in all q queries (both short and long). We define badi to be one of the Bad 
events when we add ith element, 1 ≤ i ≤ σ. The complement of the event is denoted by goodi. We 
estimate the following probability for different possible cases: 

Pr[badi| ∧i−1 goodj ].j=1 

We divide Bad events into two cases based on whether the ith update (u, v) is on Ashort or on Ainter. 

–	 Case 1. Bad event on the update of Ashort: It can happen in two ways. Either the adversary 
correctly guesses u which already exists in Ainter or the outputs collide accidentally with one 
of the previous outputs stored in Ashort or Ainter given that the guess is not correct. Note that 
if the guess is not correct then the input u is fresh and its output is uniformly distributed. 
The collision occurs in one of the n-bits with probability at most 2(i − 1)/2n. Moreover, if u 
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appears as jth intermediate input of FWP ro(M) for some M such that (M, j) corresponding 
to an element of Ainter then the type-4 bad event occurs with probability (i − 1)/2n . 
Now, given that good event, all information to A so far, is independent of the internal com­
putation. So the guess is correct with some internal input having the probability bounded by 
(i − 1)/2n. So 

Pr[badi| ∧i−1 goodj ] ≤ 4(i − 1)/2n .j=1 

–	 Case 2. Bad event on the update of Ainter: This probability can be bounded by random oracle 
collision probability as the input u freshly appears due to the good event. The following can be 
shown easily: 

Pr[type-4 badi| ∧i−1 goodj ] ≤ (i − 1)/2n , Pr[type-2 or 3 badi j=1 good
j ] ≤ 2(i − 1)/2n| ∧i−1 

j=1 

and hence Pr[badi| ∧i−1 goodj ] ≤ 3(i − 1)/2n .j=1 

Combining all these cases we obtain that the probability of bad event is at most σ(σ − 1)/2n−1 . 
Now we state our indifferentiability results. 

Theorem 4. The FWP hash is (tA, tS , q, σ, ε∗)-indifferentiable in the random oracle model for the 
compression function, for any tA, with tS = £ · O(q2) and ε∗ = σ2/2n−1 where the simulator S is 
described in Algorithm 5.3. 

6 Resistance of FWP Against Some Recent Attacks 

One of the most significant works in hash function cryptanalysis in recent times is the discov­
ery of the multi-collision attack on the Merkle-Damgärd mode [11]. Using similar technique as 
multi-collision attack, Kelsey and Schneier devised another very influential attack that recovered 
2nd preimage with work lower than the brute-force when long messages were used in the Merkle­
Damgärd mode. These two attacks do not work on the FWP mode. Any variants of these types of 
attacks do not seem to work too on the FWP transform. The above two attacks crucially rely on the 
intermediate collisions on n-bit chaining values which cannot be adjusted by message modification. 
The FWP mode has 2n-bit chaining value which also cannot be adjusted by message modification. 
Therefore, the complexity of such attacks on the FWP mode appears to be no less than the brute-
force. The same argument applies to the FWP’s resistance to Herding attack [12] too. In the full 
version of the paper we shall provide further evidence why the FWP should be able to resist all 
variants of the above attacks. 

6.1 Comparison of the FWP with Other Modes 

The highlight of the FWP mode is that the compression function takes n bits of previous chaining 
value while produces 2n bits of ouput. With the emergence of new types of attacks on the Merkle­
Damgärd mode (see Sect. 6), it has been found necessary that the compression function output 
should be at least 2n bits to generate n bits of hash output. This type of constructions is known 
as the Wide-pipe mode propounded by Lucks [15] (see Fig. 4 (c)). Many modern hash functions 
use this type of mode [9] to defend against multi-collision type attacks. The main problem with 
that mode is that the 2n bits of chaining value, which are fed into the next compression function, 
reduce the bandwidth of the message-block and, thereby, impede the speed of the hash function. To 
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skirt this difficulty the Sponge construction with 2n bits of compression function output has been 
proposed [2] (see Fig. 4(d)). Unfortunately this construction collapses as easily as Merkle-Damgärd 
mode against all the attacks of Sect. 6. Another competing proposal is the HAIFA [5] mode. The 
HAIFA mode can be viewed as a special Merkle-Damgärd mode with an additional counter injected 
into each compression function call. This extra counter is very useful to thwart the attacks described 
in [13,12]. However, the price to pay is the reduction of bandwidth for message in each compression 
function call, resulting in slower performance. In addition, the HAIFA mode is still as weak against 
Joux’s multi-collision attack as the old Merkle-Damgärd mode. 

7 Conclusion and Open Problems 

This paper proposes a new sequential mode of operation, known as FWP, to hash messages of 
arbitrary length. The mode is collision-resistance-preserving, preimage-resistance-preserving and 
indifferentiable from a random oracle up to O(2n/2) compression function invocations. The mode 
is also shown to be more efficient than the Wide-pipe mode. Comparison of the FWP with other 
proposals has been outlined. No known attacks have so far been found in this mode, indicating that 
it may be possible to stretch the indifferentiable security bound of the mode beyond the birthday 
barrier of 2n/2. We leave this as an open problem. 
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Algorithm B.1 An arbitrary distinguisher A(·, ·) telling apart (FWP, ro) and (RO, S) 

Input: An oracle Osmall : {0, 1}r+n → {0, 1}2n /* Osmall is either ro or S */ 

An oracle Obig : {0, 1}≤264 
→ {0, 1}n /* Obig is either FWP or RO */ 

Output: A bit b 
1: Initialize: Ashort, Along= Ø; 
2: for i = 1 to q do 
3: (Xi, tag) = fquery (Ashort, Along); /* tag = 0, 1 implies long, short queries */ 
4: if tag = 0 then 
5: Mi = Xi, zi ←− Obig (Mi); 
6: Along=Along∪{(Mi, zi)}; /* Updating Along */ 
7: b = fcond(Ashort, Along); 
8: if b = 1 then 
9: return b; /* The system is (FWP, ro) */ 
10: end if 
11: end if 
12: if tag = 1 then 
13: xi = Xi, yi ←− Osmall(xi); 
14: Ashort =Ashort∪{(xi, yi)}; /* Updating Ashort */ 
15: b = fcond(Ashort, Along); 
16: if b = 1 then 
17: return b; /* The system is (FWP, ro) */ 
18: end if 
19: end if 
20: end for 
21: return b = 0; /* The system is (RO, S) */ 
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Algorithm B.2 Algorithm A!(·, ·) computing Bad events 

Input: An oracle Osmall : {0, 1}r+n → {0, 1}2n, /* Osmall is ro */ 

An oracle Obig : {0, 1}≤264 
→ {0, 1}n /* Obig is FWP */ 

Output: A bit b 

1: Initialize: Ashort, Along= Ø, Bad=0;Ainter = Ø, 
2: for i = 1 to q do 
3: (Xi, tag) = fquery (Ashort, Along); /* tag = 0, 1 implies long, short queries */ 
4: if tag = 0 then 
5: Mi = Xi, zi ←− Obig (Mi); 
6: Along=Along∪{(Mi, zi)}; /* Updating Along */ 

7: Ainter = Ainter ∪ MesgDecom(Mi); /* Updating Ainter */ 

' 8: b = fcond(Ashort, Along, Ainter ); /* Checking condition for Bad event */ 

9: if b = 1 then 
10: return b; /* Bad event */ 
11: end if 
12: end if 
13: if tag = 1 then 
14: xi = Xi, yi ←− Osmall(xi); 
15: Ashort =Ashort∪{(xi, yi)}; /* Updating Ashort */ 

16: b = f ' /* Checking condition for Bad event */ cond(Ashort, Along, Ainter ); 

17: if b = 1 then 
18: return b; /* Bad event */ 
19: end if 
20: end if 
21: end for 
22: return b = 0; /* Good event */ 
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