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INTRODUCTION

During the 1960s and 1970s, monitoring the effects of contaminants 
on birds was straightforward. The very visible effects of contaminants 
are seen in the well-known cases of DDT and other chlorinated 
pesticides causing eggshell thinning and subsequent population 
collapse of raptors and pelicans; the Great Lakes Embryo Mortality, 
Edema, and Deformities Syndrome (GLEMEDS), most visibly 
identified with cross-billed cormorants (see Gilbertson et al. 
1991); and even bird deaths from oil pollution. For the most part, 
the production and use of contaminants that cause very visible 
effects have been banned or restricted, and the occurrence of the 
effects have declined. However, other current use pesticides and 
anthropogenic chemicals produce more subtle, sub-lethal effects, 
the significance of which for avian health may be difficult to 
determine. Many papers have been published on sub-lethal effects 
of currently used contaminants in birds, including effects on 
immune, nervous and endocrine systems; hepatic, renal and thyroid 
function; and reproductive and behavioral abnormalities (see Briggs 
et al. 1996, Davis et al. 1997, Brunström and Halldin 2000, Bustnes 
et al. 2000, Gabrielsen & Henriksen 2001, Monteiro & Furness 
2001, de Roode et al. 2002, Kuzyk et al. 2003). Thus the need for 
monitoring contaminant concentrations continues.

An important component of any monitoring program is the relevance 
and accuracy of the measurements. Avoiding the “shifting baseline 
syndrome” (Sheppard 1995) requires historical knowledge that 
may be obtained from literature searches. However, for emerging 
contaminants such as brominated flame retardants (BFRs) and 
perfluorinated compouds (PFCs), little or no historical knowledge 
exists. For polychlorinated biphenyls (PCBs), analytical techniques 
have changed, making comparisons with historical data tenuous. 
Historically, PCBs were measured using Aroclor standards, but now 

individual congeners are measured. Using the sum of congeners as 
a measure of total PCBs results in values that are less than half of 
those historically reported for PCBs, solely because of differences 
in analytic techniques (Turle et al. 1991). Recognition of such 
factors, therefore, emphasizes the importance of having a resource 
of banked samples to investigate changes in contaminant exposure 
and accumulation over time.

The present paper reviews the application of biological specimen 
banking to seabird monitoring and research, and describes the role 
of banking in an ongoing seabird monitoring program in Alaska. It 
also presents some recent results from that program. The Seabird 
Tissue Archival and Monitoring Project (STAMP) began collecting, 
banking and analyzing Alaskan seabird eggs in 1999. STAMP began 
as a collaboration among the US Fish and Wildlife Service–Alaska 
Maritime National Wildlife Refuge (USFWS–AMNWR), the US 
Geological Survey–Biological Resources Division (USGS–BRD), 
and the National Institute of Standards and Technology (NIST). 
The Bureau of Indian Affairs–Alaska Region Subsistence Branch 
(BIA–ARSB) later joined the effort, and the North Pacific Research 
Board recently provided additional funding support.

SELECTING SEABIRDS AND TISSUES FOR MONITORING

As was illustrated by Mallory et al. (2006) and described in the Arctic 
Monitoring and Assessment Programme (AMAP 1998), marine 
birds are useful as indicators of physical change in the environment 
with implication for climate changes and of changes in contaminant 
levels in the environment. Hollamby et al. (2006) evaluated the 
process of selecting an appropriate avian species for biomonitoring. 
Based on Hollamby et al. (2006) and the recommendations of 
Wise and Koster (1995) for the kinds of specimens that should 
be banked for long-term studies, the following criteria should be 
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used to determine the seabird species and tissue types that are most 
appropriate for monitoring and banking:

•	 The species and tissue should bioaccumulate contaminants in 
concentrations that can be measured in relatively small amounts, 
but the tissue should be large enough for multiple analyses for 
future research.

•	 The species and tissue should be easy and relatively inexpensive 
to sample so that multiple-year collections at the same sites and 
times may be obtained.

•	 The tissue samples must be properly collected and stored 
to eliminate extraneous contamination or changes in the 
contaminants of interest.

•	 The species and tissue must be representative of the area to be 
monitored, consistent with the goals of the project.

Several seabird species and tissues have previously been used for 
long-term monitoring and banking programs (Table 1). In 1998, 
AMAP identified eggs from the seabird family Alcidae (murres, 
murrelets, auklets, guillemots, puffins, dovekies, and razorbills—all 
diving species) as key tissues for circumpolar monitoring of 
persistent organic pollutants by all Arctic nations (AMAP Scientific 
Experts Workshop, Girdwood, Alaska, April 1998). Based on 
this information, STAMP selected Common Murre Uria aalge 
and Thick-billed Murre U. lomvia eggs as the priority matrix for 
long-term (100-year) monitoring and banking. Eggs from Black-
legged Kittiwakes Rissa tridactyla were also included to represent 
a surface-feeding species to compare with the deep-diving murres, 
thus obtaining representation from different parts of the food web. 
The banking of Black-legged Kittiwake eggs was later suspended 
because of difficulties in obtaining entire multi-egg clutches and the 
potential complications of contaminant level variations attributable 
to differences in first-laid as compared with second- and third-
laid eggs (see Pastor et al. 1995). Two species were added to the 
project at the request of local Alaskan subsistence harvesters and 
to correlate with other studies (e.g. see Muir et al. 1999, Riget & 
Dietz 2000, Gabrielsen & Henriksen 2001, Verreault et al. 2005). 
Glaucous Gull Larus hyperboreus and Glaucous-winged Gull 
L. glaucescens egg collections began in 2004 with the entire clutch 
banked as one sample.

Common and Thick-billed Murre eggs are ideal for monitoring 
contaminants in the Alaskan marine environment. These piscivorous 
species are near the top of the food web and bioaccumulate 
contaminants to levels that are easily measured. Murres lay a single 
large egg, the contents providing on average 88 g of sample with 
only 4 g needed for current analyses; thus, a large banked sample 
can be retained for future research. The single-egg clutch limits the 
effect of laying order on variability in contaminant loads (Pastor et 
al. 1995). Eggs are relatively easily collected from birds breeding 
on cliffs in regions where researchers or subsistence harvesters have 
access. Minimal training and equipment are required for proper 
collection and storage before shipment for processing and banking. 
Each egg represents a complete, distinct unit, and the banked, easily 
homogenized contents are protected from extraneous contamination 
by the eggshell and membrane.

Murres stay in the northern latitudes year-round and arrive on their 
breeding grounds several weeks before egg-laying (e.g. Ehrlich 
et al. 1988, Gaston & Hipfner 2000). Therefore, contaminant 
concentrations in the eggs reflect contaminant conditions in the 
local region and are representative of the adult female at the time 

of laying (Braune et al. 2001). Murres are abundant, and about 
80% of the pairs that lose eggs early in the breeding season re-
lay eggs within about 15 days (e.g. see Tuck 1960, Cramp 1985), 
so that collecting small numbers of eggs early in the season does 
not detrimentally affect nesting populations and as replacement 
eggs may have different contaminant profiles (see Bignert et al. 
1995), the timing of egg collection needs to be early in the egg-
laying season. Finally, monitoring contaminants in murre eggs is 
important, because the eggs are used for human subsistence food in 
Alaska and throughout the Arctic.

SPECIMEN BANKING FOR SEABIRDS

The importance of specimen banking is well established, with 
several past journal issues being devoted to this topic [Science 
of the Total Environment 1993 Vol. 139–140, Chemosphere 1997 
Vol. 34(9–10), and Journal of Environmental Monitoring 2006 
Vol. 8(8)]. Specimen banks are distributed worldwide with samples 
collected from a wide variety of geographic regions, including 
Antarctica (see Riva et al. 2004). The type of biological samples 
maintained in the specimen banks are also quite diverse and include 
materials such as moss and lichen, pine needles, vegetables, rodents, 
tissues of large game animals, krill, mussels, fish, marine mammal 
tissues, and human tissues; a few also include birds.

Not all of the research using banked specimens is focused on 
contaminant monitoring. Some banked materials are stored for 
genetic research, including possible re-introduction of species and 
for medical development, including determining biomarkers and 
development of new drugs. The number of specimen banks with 
seabird materials is relatively small (see Table 1), but the estimated 
large number of private researcher collections—although they may 
not necessarily follow the stringent standardized collection and 
archival protocols of the formal specimen bank—may also provide 
valuable samples for future research. Some current specimen banks 
are actually extensions of museums of the past, and researchers 
have been able to integrate samples stored in museums and 
specimen banks (see Bignert et al. 1995, Dietz et al. 2006).

Museum feather samples have long been used to monitor for mercury, 
and recently, they were determined to be feasible for analysis 
of organic contaminants (Jaspers et al. 2007). However, some 
questions regarding contamination from storage techniques have 
arisen (Hogstad et al. 2003), reinforcing the need for standardized 
procedures that attempt to eliminate extraneous contamination.

Recent applications of banked seabird tissues
As mentioned earlier, specimen banks do far more than just act as 
short-term storage or holding for samples before analyses. Seabird 
samples from specimen banks have been used to retrospectively 
analyze for new contaminants of interest.

Flame-retardant compounds have received much recent attention. 
Analysis of banked specimens have shown that BFRs increased 
in Common Murre eggs collected from the Baltic Sea from 1969 
until the mid-to-late 1980s and then decreased again through 2001 
(Sellström et al. 2003). In Double-crested Cormorant Phalacrocorax 
auritus eggs collected from British Columbia coast in Canada 
between 1979 and 2002, BFR concentrations peaked in 1994 
(Elliott et al. 2005), but BFRs only increased in Herring Gull 
L. argentatus eggs collected from the Great Lakes between 1981 
and 2000 (Norstrom et al. 2002).
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Fig. 1. Temporal comparisons of selected contaminants for Common Murre Uria aalge (CO) and Thick-billed Murre U. lomvia (TB) eggs collected 
as part of Seabird Tissue Archival and Monitoring Project (STAMP) between 1999 and 2002. Concentrations are based on lipid mass, with the 
exception of mercury, which uses wet mass. Stars indicate significant (P < 0.05) differences between years based on analyses of variance.
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TABLE 1
List of seabirds and tissues used in long-term banking and monitoring programs

Species Tissue Location Banking
started

Reference

Common name Scientific name

Common Murre Uria aalge Eggs Sweden 1969 Bignert et al. 1995

Herring Gull Larus argentatus Eggs Great Lakes, Canada 1974 Hebert et al. 1999

Northern Fulmar Fulmarus  
glacialis

Eggs and liver Prince Leopold Island, 
Canada

1975 Braune et al. 2001 and 
Butt et al. 2007

Black-legged Kittiwake Rissa tridactyla Eggs Prince Leopold Island, 
Canada

1975 Braune et al. 2001

Thick-billed Murre Uria lomvia Eggs and liver Prince Leopold Island, 
Canada

1975 Braune et al. 2001 and 
Butt et al. 2007

Black Guillemot Cepphus grylle Breast muscle  
and liver

Iceland 1976 Ólafsdóttir et al. 2005

Double-crested  
Cormorant

Phalacrocorax  
auritus

Eggs British Columbia,  
Canada

1979 Elliott et al. 2005

Herring Gull Larus argentatus Eggs Germany 1988 Marth et al. 2000

Another new contaminant of interest is PFCs used in Teflon 
(DuPont, Wilmington, Delaware, USA) and Scotchguard (3M, 
St. Paul, Minnesota, USA). Butt et al. (2007) demonstrated an 
overall increase in PFCs using archived livers of Thick-billed 
Murres and Northern Fulmars Fulmarus glacialis collected from 
Prince Leopold Island, Canada, between 1975 and 2004.

Herring Gull eggs banked in Germany were used to retrospectively 
monitor for synthetic musk compounds (Rüdel et al. 2006) and 
organotins (Rüdel et al. 2003).

The use of banked seabird samples has also been used to re-examine 
the effects of changing analytical techniques (Turle et al. 1991) 
and earlier conclusions regarding concentrations and temporal 
changes. For example, Norstrom and Hebert (2006) used banked 
Herring Gull eggs to reanalyze older samples for direct comparison 
with current samples for PCBs, the insecticide hexachlorobenzene 
(which had poor recoveries using earlier analytical techniques), and 
contaminants that were not routinely measured during 1971–1982, 
such as dioxins, furans, photomirex, and octachlorostyrene. Their 
retrospective analysis provided data for modeling trends and effects 
during that highly contaminated period.

Retrospective analyses of banked seabird specimens for contaminants 
may also provide new insights into issues such as global fractionation 
and effects of control measures (Bignert et al. 1998) and dietary 
influences (Hebert et al. 1997). The influence of climate change 
on the global patterns of contaminant transport, deposition and 
bioaccumulation is another factor that will increase interest in banked 
environmental and biological specimens for retrospective analysis. 
Mercury research has already revealed some interesting differences 
in contamination patterns. Koster et al. (1996) showed declining 
mercury concentrations in Herring Gull eggs from the Great Lakes 
between 1972 and 1992. Levels in eggs of Northern Fulmars and 
Thick-billed Murres increased between 1975 and 1998 in the 
eastern Canadian Arctic, but eggs of Black-legged Kittiwakes were 
unchanged during that period (Braune et al. 2001). Common Murre 
eggs from the Baltic showed a declining mercury trend between 1969 
and 1993 (Odsjö et al. 1997). Recent research from STAMP indicates 

patterns that are changing with time for mercury and several organic 
contaminants (Fig. 1). These trends appear to be related to study 
location, species and sampling year.

One benefit of specimen banks is that they can provide all specimens 
for analysis by a single laboratory, thus eliminating the differences 
arising from inter-laboratory quality assurance. However, another 
important aspect of specimen banks has been the development 
of matrix-matched reference materials for the analysis of banked 
tissues to ensure inter-laboratory comparability (Reddy et al. 
1993). Researchers in Germany have developed internal reference 
material for contaminant analyses of Herring Gull eggs (Emons et 
al. 1998). Likewise, Canadian researchers have developed control 
materials for Herring Gull egg and Double-crested Cormorant egg 
analyses (Wakeford & Turle 1997, B. Wakeford pers. comm.). The 
development of a murre egg control material for use in conjunction 
with STAMP has been previously described (Vander Pol et al. 2007) 
and is available on request for use by analytical laboratories.

Recommendations
If researchers are to be able to access banked specimens, they need 
to know what is available and where it is stored. Specimen bank 
inventories and analytical results from banked specimens have to 
be readily available to interested researchers. A published policy 
for accessing specimens should also be established by the banks 
maintaining the specimens. Banked specimens should be carefully 
chosen to monitor the ecosystem of interest and should contain all 
information about collection conditions. Ideally, the collection and 
processing conditions of banked samples should be consistent over 
time and should eliminate extraneous contamination. If relevant 
information and specimen bank inventories are available, carefully 
chosen, collected, and banked seabird tissues will allow future 
researchers a method to determine past changes in the global 
environment.
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