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We show that the origin of the universal optical conductivity in a normal N -layer graphene
multilayer is an emergent chiral symmetry which guarantees that σ(ω) = Nσuni in both low and
high frequency limits. [σuni = (π/2) e2/h]. We use this physics to relate intermediate frequency
conductivity trends to qualitative characteristics of the multilayer stacking sequence.
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Introduction.—Graphene is an atomically two-
dimensional material which can be viewed either
as a single sheet of graphite or as a large unrolled
nanotube. Experimenters[1–5] have recently made
progress in preparing and measuring the electronic
properties of single and multilayer graphene sheets. One
particularly intriguing property of neutral single-layer
graphene sheets is its interband optical conductivity
which is expected[6–8] to be approximately constant
over a broad range of frequencies with a value close to

σuni =
π

2

e2

h
, (1)

dependent only on fundamental constants of nature.
Experiments[9–12] have demonstrated that corrections to
the constant universal conductivity, which might be ex-
pected to follow from electron-electron interactions[13–
15] or refinements of the Dirac-equation band-structure
model[16] for example, are small. Recently Gaskell et

al.[17] found that for frequencies in the optical range the
conductivity per layer in multilayer graphene sheets is
also surprisingly close to σuni. Separately Kuzmenko et

al.[18] demonstrated experimentally that in bulk graphite
the optical conductivity per layer has a smoother fre-
quency dependence and is even more uniformly close to
σuni than in thin multilayers, and explained the weak fre-
quency dependence they found in terms of the crossover
to three-dimensions. In this Letter we identify the emer-
gent chiral symmetry of multilayers[19, 20] as a key ele-
ment of the physics responsible for the ubiquity of σuni

in multilayer graphene systems.

A single graphene sheet consists of a honeycomb lattice
of carbon atoms. Graphene π-orbitals can be viewed[5] as
possessing a “which sublattice” pseudospin degree of free-
dom. The envelope functions of their electron waves are
described by a two-dimensional massless Dirac equation
which possesses pseudospin chiral symmetry and leads to
eigenspinors in which the phase difference between sub-
lattices φ = ±Jφk where the pseudospin chirality J = 1
and φk = tan−1(ky/kx). The pseudospin chirality is de-
fined by this equation as rate at which pseudospin orien-
tation varies with momentum orientation.

When sheets are stacked to form a multilayer system
there is an energetic preference for an arrangement in
which each layer is rotated by 60◦ with respect to one
of the two sublattices of its neighbors. This prescription
generates three distinct planar projections of the honey-
comb lattice (A, B, and C) and therefore 2N−2 distinct
N -layer sequences. We refer to multilayers in this class
as normal. Repeated AB (Bernal) stacking and repeated
ABC (orthorhombic) stacking should be viewed as ex-
treme cases, as we explain in more detail below. The
emergent chiral symmetry we discuss below applies for
any normal multilayer. AA (hexagonal) stacking (plac-
ing a layer directly on top of another) is energetically
costly[21], does not yield chiral symmetry, and has clear
optical signatures. Our discussion of optical properties
for normal multilayer graphene systems starts from a
model, referred to below as the ideal model, in which
only the dominant interlayer nearest-neighbor hopping
processes couple individual-sheet Dirac-equation waves.

The optical conductivity of an N -layer system is ex-
pected to approach Nσuni for frequencies that exceed
the interlayer-coupling scale but are smaller than the π-
bandwidth scale, since the layers then contribute inde-
pendently and the Dirac model still applies. The ideal
model of normal graphene multilayers has a surprising
property which we have explained previously[19, 20]. In
the low-energy limit its spectrum separates asymptoti-
cally into ND ≤ N decoupled pseudospin doublets, each
of which has chiral symmetry with a chirality J which
can in general be larger than 1. We demonstrate below
that the conductivity of a pseudospin doublet with chi-
rality J is Jσuni. It then follows from the chirality sum
rule[19],

ND
∑

n=1

Jn = N, (2)

that the conductivity of the ideal model unexpectedly
also approaches Nσuni in the ω → 0 limit. Since the
asymptotic pseudospins which emerge at low-energies are
in general spread across a number of different layers and
are qualitatively dependent on the way in which the lay-
ers are stacked, the low-frequency limit of the interband
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conductivity does not result from independent single-
layer contributions but has a completely different origin.
We show below that corrections to the ideal model are
small and therefore use it to analyze correlations between
stacking and deviations from Nσuni at intermediate fre-
quencies.
Chiral doublet conductivity.—The Kubo formula for the
real part of the optical conductivity, σR(ω) ≡ Re[σxx(ω)],
of an M -band two-dimensional electron-gas system is

σR(ω) = − πe2

h

∑

n6=n′

∫

d2k

2π

fn,k − fn′,k

ǫn,k − ǫn′,k

(3)

× |〈n,k| ~vx |n′,k〉|2 δ(~ω + ǫn,k − ǫn′,k),

where ǫn,k and |n,k〉 are eigenvalues and eigenvectors of
the M ×M Hamiltonian matrix H, fn,k is a Fermi occu-
pation factor and va = ∂H/~∂ka is the velocity operator.
The M = 2 Hamiltonian matrix of a doublet with chiral-
ity J is

HJ = γ1

(

0 (ν†
k
)J

(νk)J 0

)

, (4)

where γ1 is the nearest-neighbor interlayer hopping, νk ≡
~vkeiφk/γ1 and v is the effective in-plane Fermi veloc-

ity (for example, v =
√

3

2

aγ0

~
for J = 1 monolayer and

J = 2 bilayer graphene where γ0 is the nearest-neighbor
intralayer hopping and a = 2.46 Å is the graphene lattice
constant).

This chiral-invariant Hamiltonian has negative (s =
−1) and positive (s = 1) energy eigenstates with eigenen-
ergies εs,k = sγ1|νk|J and eigenvectors

|s,k〉 =
1√
2

(

s
eiJφk

)

. (5)

It follows that the interband matrix element of the ve-
locity operator is

〈s,k| v̂x |−s,k〉 = i Jvs|νk|J−1 sin φk. (6)

Inserting these expressions into the Kubo formula, mul-
tiplying the result by a factor of gsgv = 4 to account for
the spin and valley degeneracy of graphene systems, we
obtain

σR(ω) =
Jπ

2

e2

h
= Jσuni. (7)

Since γ1 is the only energy scale in the Hamiltonian, it is
clear prior to calculation, that σR(ω) ∝ (e2/h)(~ω/γ1)

ℓ.
The velocity matrix element, joint density-of-states, and
energy denominator factors combine so that ℓ = 0 for
every value of J and, importantly, so that σR(ω) ∝ J .
Ideal-model conductivity.—It follows from the chiral
doublet conductivity Eq. (7), the emergent chiral
symmetry[19, 20] of the ideal model, and the chiral-
ity sum rule Eq. (2), that the ideal-model conductivity
for normal N -layer graphene satisfies limω→0 σR(ω) =

Nσuni. The numerical calculations necessary to evalu-
ate σR(ω) at intermediate frequencies are also remark-
ably simple. Because the band energies of the ideal
model are dependent only on the magnitude of wavevec-
tor k, the only φ-dependent quantities which appear in
the wavevector integral for the conductivity (Eq. (3)) are
the velocity matrix elements M(φ) = 〈n,k| ~vx |n′,k〉.
In an N -layer stack the fastest possible angle variation
in any matrix element varies as exp(±iNφ). It follows
that all angle integrals are evaluated exactly by summing
over 2N + 1 equally spaced orientations. The wavevec-
tor magnitude integrals are performed by solving for |k|
values at which interband energy differences are equal to
~ω. The ideal-model conductivity of any multilayer stack
can be evaluated very accurately with a relatively small
numerical effort.

FIG. 1: (color online) Conductivity for ideal-model bilayer
graphene (γ3 = 0) and for a more realistic model with distant
neighbor interlayer hopping (γ3 = 0.3 eV). The inset shows
ideal-model band structure of bilayer graphene.

We have evaluated σR(ω) curves for many stacking ar-
rangements; all results confirm our claim that for the
ideal model σR(ω) → Nσuni in low and high frequency
limits. In Figs. 1–3 we show representative results for
some 2, 4, and 10 layer stacks which allow us to discuss
corrections to the ideal model and trends in the relation-
ship between stacking and intermediate frequency devia-
tions from Nσuni.
Discussion.— The optical conductivity of bilayers
(Fig. 1) has been studied both theoretically[22, 23] and
experimentally[10, 24–26] in previous work. The elec-
tronic structure consists[19] of a J = 2 chiral doublet
at the Fermi energy (the simplest example of emergent
chiral symmetry) and a two-site chain split-off band.
The low-frequency conductivity originates from transi-
tions within the J = 2 doublet. Because the correspond-
ing transition matrix elements are finite at k = 0, the
strongest infrared (IR) feature occurs at the onset en-
ergy, ~ω = γ1, of transitions between the chiral doublet
and the split-off bands. (γ1 = 0.3 eV[5] in all our cal-
culations.) The feature associated with transitions from
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split-off valence to split-off conduction bands at 2γ1 is
weaker because in this case the velocity matrix elements
vanish at the k = 0 onset. Inclusion of remote interlayer
hopping γ3, or of any other corrections to the ideal model
has little influence on the optical conductivity.

FIG. 2: (color online) Ideal-model band structure and real
part of the conductivity for all tetralayer graphene stacks,
ABCA (top), ABCB, ABAC (middle) and ABAB (bottom).
The insets show stacking diagrams where shaded ovals link
sublattices α and β to the nearest interlayer neighbors.

The same patterns continue in thicker multilayers.
The low-frequency conductivity Nσuni comes entirely
from transitions within asymptotically free chiral dou-
blets, each of which is dispersed across the multilayer.
The high-frequency conductivity, also Nσuni, comes from
transitions within decoupled single-layers. The crossover
at intermediate frequencies is punctuated by the onset
of a series of interband transitions, with the strongest
features coming from transitions between the low-energy
chiral doublets and split-off bands. The N = 4 case, il-
lustrated in Fig. 2, has four distinct stacking sequences,
two of which are related by inversion symmetry. The
three inequivalent cases are orthorhombic ABCA stack-
ing which yields[19] a J = 4 low-energy chiral doublet
and three two-site-chain split-off bands, Bernal ABAB
stacking which yields[19] two J = 2 chiral doublets and
four-site-chain split-off bands, and intermediate ABCB
stacking which yields[19] J = 3 and J = 1 chiral doublets
and both three and two-site-chain split-off bands. The
optical conductivity of the orthorhombic ABCA stack
has a divergent IR feature associated with J = 4 chi-
ral doublet to two-site chain transitions. The onset of
this absorption band is below γ1 because one of the

three two-site-chain split-off bands disperses toward the
Dirac point and has an extremum at finite ka ≈ 0.1, im-
plying a divergent joint density of states. The Bernal
ABAB stack has two jump-discontinuity IR features as-
sociated with k = 0 transitions between the J = 2 dou-
blets and Er = ±2γ1 cos(rπ/5) four-site-chain[19] split-
off bands with r = 1, 2. Similarly the ABCB stack has
strong IR features associated with transitions between
the chiral doublets and both E = ±γ1 two-site chain and
E = ±

√
2γ1 three-site chain bands.

Normal graphene stacks can always be organized into
Bernal and orthorhombic segments. In general stacks
with more orthorhombic segments have fewer[19] low-
energy chiral doublet bands (which must therefore have
higher chirality because of the chirality sum rule) and
shorter[19] chain split-off bands. Level repulsion among
the short-chain bands tends to cause some to disperse to-
ward the Dirac point and have finite k extrema. Stacks
with more Bernal segments will have more chiral doublets
with lower chirality and longer-chain split-off bands. In
all cases the strongest IR features are associated with
transitions between chiral doublets and split-off bands.

FIG. 3: (color online) Real part of the ideal-model conduc-
tivity for Bernal (AB), orthorhombic (ABC), and hexagonal
(AA) 10 layer graphene stacks.

Since long-chain states are spread over a broader range
of energies, stacks with more Bernal character tend to
have IR features that are weaker and spread over a wider
energy range. This trend is clear in Fig. 3, which com-
pares the optical conductivities of 10-layer Bernal and
orthorhombic stacks. In the Bernal case[27] transitions
from chiral doublets to 10-site-chain split off bands lead
to jump discontinuities in σR(ω) at ~ω = 2γ1 cos(rπ/11)
for r = 1, 2, 3, 4, 5. In the orthorhombic case, the first IR
feature appears at a larger frequency but the deviations
from 10σuni are larger.

Figure 3 also shows conductivity results for a 10 layer
hexagonal stack, in which honeycomb layers are placed
one on top of the other. Stacks of this type do not satisfy
the chirality sum rule[20] and invariably lead to σR(ω)
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curves which are suppressed at low frequencies. As illus-
trated in Fig. 3, even N hexagonal stacks do not have a
low-energy chiral doublet, thus σR(ω) vanishes at small
ω and then increases toward Nσuni in steps of 2σuni.
For odd N the stack has a single J = 1 chiral doublet
at low-energies so that σR(ω) starts at σuni in the low-
frequency limit and then increases in 2σuni steps toward
Nσuni. More generally, stacks with AA segments always
have σR(ω) in the low-frequency limit smaller than Nσuni

and approach this limit only at high-frequencies.
The full electronic structure of graphene multilayers is

usually discussed in terms of an appropriate adaptation
of the Slonczewski-Weiss-McClure (SWM)[5, 28] param-
eterization of graphite’s bands. A SWM-type model im-
proves the ideal model by accounting for small differences
between the energies of π-orbitals on inequivalent carbon
atoms and for various distant neighbor hopping ampli-
tudes. In the bilayer case the only important additional
parameter is the distant neighbor interlayer hopping am-
plitude γ3, and as noted earlier this process has negligible
influence on σR(ω). These refinements of the electronic
structure model lead in general to two-dimensional (2D)
electron and hole Fermi surfaces with Fermi energies that
are much smaller than the dominant interlayer coupling
energy γ1. The appearance of 2D Fermi surfaces there-
fore has little influence on the IR conductivity. The pres-
ence of 2D Fermi surfaces (and in the limit of graphite
of 3D Fermi surfaces) does imply that σR(ω) will in gen-
eral have a small amplitude Drude peak, not accounted
for in the present discussion. The Drude peak will take
a small amount of spectral weight[29] from the IR inter-

band transitions. More realistic models also do in general
break particle-hole symmetry. This refinement will cause
an IR feature associated with a particular split-off va-
lence band to chiral doublet transition to appear at a
slightly different frequency than the corresponding tran-
sition in the ideal model. These caveats notwithstand-
ing, the origin of the generic σR(ω) ≈ Nσuni behavior
in graphene multilayers is explained most succinctly by
the ideal model, and in particular by its emergent chiral
symmetry.

The ideal model is also able to capture the stack-
ing structure implications of measured IR conductiv-
ity features: the high-frequency decoupled layer Nσuni

limit is approached for ~ω & 2γ1 ≈ 0.6 eV for nor-
mal stacks, but only at higher frequencies ≈ 4γ1 ≈
1.2 eV when AA stacking faults are present. AA
stacking is also indicated by suppressed conductivity
at lower frequencies, as discussed previously by Kuz-
menko et al. for the bulk graphite case[18]. In nor-
mal stacks, more pronounced IR features are an indica-
tor for orthorhombically stacked sub-units. We conclude
that the optical conductivity or corresponding transmit-

tance T (ω) =
[

1 + 2π
c

σR(ω)
]−2

[18] spectrum can pro-
vide a convenient qualitative characterization of multi-
layer graphene stacks.
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