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Abstract 
 

We review the progress in acoustic metrology of gases that has occurred since the 1988 
measurement of the universal gas constant R using a spherical acoustic resonator.  The advances 
in understanding resonators and in calculating the thermophysical properties of helium ab initio 
suggest that today one could determine Boltzmann’s constant kB from acoustic measurements 
using either helium or argon with a relative uncertainty less than 10−6.   
 
Résumé 
 

Progrès dans la détermination de la constante de Boltzmann par voie acoustique  
L’article récapitule les avancées effectuées en métrologie acoustique dans les gaz depuis la 
mesure de la constante universelle des gaz R effectuée en 1988 en utilisant un résonateur 
acoustique sphérique. Des progrès substantiels ont été réalisés, tant pour mieux comprendre le 
fonctionnement des résonateurs acoustiques que pour calculer ab initio, avec une fiabilité accrue, 
les caractéristiques thermo-physiques de l’hélium. Ils permettent d’envisager désormais une 
détermination de la constante de Boltzmann kB par voie acoustique avec une incertitude relative 
meilleure que 10-6, en utilisant soit l’argon, soit l’hélium.________________________________ 
 
 
1. Introduction. 
 

The kinetic theory of dilute gases and hydrodynamics relate the average kinetic energy E in 
one degree of freedom, the speed of sound u, and the thermodynamic temperature T: 
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1 33 ;
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E mv k T u vγ
= = =   .    (1) 

Here, vrms is the root mean square speed of a gas molecule, m is the mass of the molecule, kB is 
the Boltzmann constant, and γ ≡ Cp/CV is the ratio of the specific heat capacities, which is 
exactly 5/3 for dilute monatomic gases. The International System of Units assigns the exact 
value 273.16 K to the temperature of the triple point of water TTPW.  Thus, the Boltzmann 
constant can be determined by measuring the zero-density limit of the speed of sound of a 
monatomic gas u0 at TTPW.  (If the monatomic gas is a mixture of isotopes, m is the mole fraction 
average of the mass of the mixture.) 

The speed of sound has the expansion:   
( )( )2 2

B( , ) / 1 ( ) /( ) ( ) /( )a au p T k T m T p RT T p RTγ β γ= + + +K    ,    (2) 
where βa and γa are the temperature-dependent acoustic virial coefficients.  In 1979, Quinn et al. 
measured u2(p,TTPW) using an argon-filled, cylindrical, acoustical interferometer.  [1] In effect, 
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they measured the wavelength of a standing sound wave of known frequency by displacing one 
end of their interferometer through measured distances.  Quinn et al. fitted their data to 
determine βa, γa, and kB and they determined m from a chemical and isotopic analysis of their 
argon.  In 1986, CODATA [2] recommended using a value of kB deduced from the results of 
Quinn et al. and estimated its relative uncertainty as: ur(kB) = 8.5 ppm.  (Here and below, all 
uncertainties are one standard uncertainty and we use “ppm” to denote parts in 106.) 
 In 1988, Moldover et al. measured u2(p,TTPW) using an argon-filled spherical cavity.  [3] 
They varied the acoustic frequency and deduced the wavelength of radially symmetric standing 
waves from the volume of the cavity.  The cavity’s volume was determined by weighing the 
mercury required to fill it and by using literature values for the density of mercury.  Moldover et 
al. also fitted their data to determine βa, γa, and kB.  In 1998, CODATA recommend using a value 
of kB that they deduced from the results of Moldover et al. with the small relative uncertainty 
ur(kB) = 1.8 ppm and this value is still recommended in 2009.  [4]   

This article reviews the advances in both understanding and technique that have occurred 
since the work of Quinn et al. and Moldover et al.  Nearly all of these advances were introduced 
to reduce the uncertainty and complexity of primary acoustic thermometry at temperatures that 
extend well above and well below TTPW. [5,6,7,8,9] Because primary acoustic thermometry 
requires the accurate measurement of the zero-pressure limit of speed-of-sound ratios for pure 
monatomic gases, many thermometry-motivated improvements are applicable to acoustic 
determinations of kB.  Such improvements include: 

 
 (1) flowing pure gas through the acoustic cavity to reduce the effects of out-gassing [10], 
 (2) tuning ducts that allow gas flow through the cavity to reduce the ducts’ perturbations to 

the cavity’s acoustic resonance frequencies [11],   
(3) minimizing gas contamination by using a bakeable gas-handling system and transducers, 
(4) analyzing the gas exiting the resonator via gas chromatography [9], 
(5) measuring microwave resonance frequencies of the cavity to determine its thermal 

expansion and possibly its volume [12], 
(6) using a quasi-spherical cavity to retain the advantages of radially-symmetric acoustic 

modes while splitting the degenerate microwave modes [13], 
(7) using removable thermometers and multiple thermometer wells in the cavity’s walls to 

compare the resonator’s temperature to TTPW at the time of use and to detect temperature 
gradients [9],  

(8) using theory to reduce the uncertainties of the thermal conductivity of helium and argon 
gas and the acoustic virials of helium [8],  

(9) using finite element models of the elastic response of the cavity’s walls to the acoustic 
resonances, [14] and (10) accurately modeling acoustic transducers [15].  

 
First, we shall discuss the three phenomena that may dominate the uncertainty of the acoustic 

measurements needed to re-determine kB using the spherical cavity method of Moldover et al.: 
 
(1) the thermoacoustic boundary layer, 
(2) vibrations of the metal shell enclosing the gas-filled cavity, and 
(3) the boundary conditions at the interface between the gas and the walls of an acoustic 

cavity.   
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Then, we discuss the use of ducts, the use of theoretical values of the acoustic virial coefficients, 
and advances in modeling transducers, acquiring acoustic data, and in thermometry.  In addition 
to these advances that benefit acoustic thermometry, an acoustic re-determination of kB will 
require either a measurement of a length change or a volume; we mention several techniques 
under study for doing this.  We conclude by mentioning advances in using cylindrical cavities 
(the method of Quinn et al.).   

 
2.  Phenomena dominating the uncertainty of acoustic measurements of kB 
 

At low pressures, the dominant contributions to the uncertainty of kB originate from the 
mean free path of the gas and from the thermoacoustic boundary layer.  At high pressures, the 
dominant uncertainties originate from the coupling between the gas-filled cavity and the elastic 
response of the shell surrounding it and also from fitting the virial coefficients of the gas.  Thus,  
there is an optimum, apparatus-dependent pressure for acoustic measurements of kB.  (For 
completeness, we note that the uncertainties from the frequency-dependence of the speed of 
sound are negligible under the conditions considered here.  [16]) 
 
2.1 The optimum range of pressures 
 
 

Figure 1 displays estimates of the pressure-dependent uncertainties of kB resulting from the 
thermo-acoustic boundary layer [red band, 2u(Δftherm/f )], the vibrations of a spherical shell 
enclosing a spherical cavity [gray band, 2u(Δfshell/f )], and the thermal accommodation length la 
[black dashed black line, 2u(la/a)].  These estimates assume that the shell is made of type 316 
stainless steel and it has an inner radius a = 5 cm and an outer radius b = 8 cm.  A shell of these 
dimensions can be fabricated and thermostatted easily; however, the author is not aware that 
such a thick-walled shell has ever been used for gas metrology.  Because u(Δfshell/f ) varies as p, 
u(Δftherm/f ) varies as p−1/2 , and u(la/a) varies a p−1, there is an optimum range of pressure for the 
measurement of kB which occurs near 1 MPa for helium and 0.3 MPa for argon.  In this range, 

Fig. 1.  Contributions to the uncertainty of kB from the thermoacoustic boundary layer 2u(Δftherm/f ), shell vibrations 
2u(Δfshell/f ) and the thermal accommodation coefficient 2u(la)/a for helium and argon.  The dotted blue line 
represents the uncertainty of the calculated speed of sound of helium from the uncertainty of its second acoustic 
virial coefficient βa. In 1988 βa was treated as a fitting parameter.
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each of the plotted uncertainties is on the order of 0.5×10−6 kB.  First, we consider u(Δftherm/f ) and  
u(Δfshell/f ); then we discuss the uncertainty from the gas-shell interface including u(la/a).   
 
2.2. Thermoacoustic Boundary Layer 
 

During each acoustic cycle, heat exchange between the gas and the shell results in a 
thermoacoustic boundary layer in the gas that is characterized by an exponential decay length 
δtherm = [λ/(ρCpπ f )]1/2.   Here λ is the thermal conductivity of the gas, ρ is its density, and Cp is 
the constant-pressure heat capacity which is exactly 5R/2 for monatomic gases in the limit of 
zero density.)  For the radially-symmetric acoustic modes, the boundary layer contributions to 
the real and the imaginary (half-width) parts of the resonance frequencies are:  

 
( )therm therm t/ ( 1 )( 1) / (2 )f ig f i aγ δΔ + = − + −     .     (3) 

 
Thus, Δftherm and gtherm are equal and both increase at low pressures p−1/2.  (See Fig. 2, left.) 

At low pressures at TTPW, the uncertainty of the thermal conductivity u(λ) dominates the 
uncertainty of Δftherm.  The most accurate, zero-pressure values of the thermal conductivity of 
helium are those calculated ab initio from quantum mechanics and statistical mechanics.  
[17,18].  In the limit of zero density at TTPW, the most accurate value of the thermal conductivity 
of argon λAr is obtained by combining the calculated value of the Prandtl number Pr ≡Cpη/λ , the 
calculated value of the viscosity of helium ηHe, and the measurements by May et al of the ratio  
ηAr/ηHe ≡ (viscosity of argon)/(viscosity of helium).  [19] In Ref. [19], the relative uncertainty of 
the viscosity ratio measurement was ur(ηAr/ηHe) = 0.00011 and the uncertainty of the Prandtl 

Fig 2.  Left: half-widths of 5 radial acoustic modes of an argon-filled cavity measured during the 
1988 determination of kB. [3]   The horizontal axis is proportional to pressure. Right: differences 
between measured and calculated half-widths.  Linear extrapolations of the differences to zero-
pressure yield intercepts that are equivalent to 2 to 3 ppm of kB.  Note: The values of gcalc include 
a small contribution from the attenuation of sound throughout the volume of the cavity.   
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number was u(Pr) = 0.00004.  Equation (37) of [17] provides the uncertainty of the calculated 
value ur(ηHe) = 0.00022.  The sum in quadrature of these three uncertainties is ur(λAr) = 0.00025, 
and we used this value for argon in Fig. 1. 

 Our value ur(λAr) = 0.00025 is only 3/10 of the uncertainty ur(λAr) = 0.00084 reported by 
May et al.  [19] The two different uncertainty estimates of ur(λAr) results from two different 
estimates of the uncertainty of ηHe(p=0,TTPW).  Here, we refer to Fig. 3 to discuss ηHe at 
298.15 K where accurate viscosity measurements were made.  We argue for the smaller 
uncertainty estimate at 298.15 K and use it at TTPW. 

In 2006, May et al. estimated u(ηHe) as the difference between the best available measured 
and calculated values ηHe(p=0, 298.15 K).  They considered the oscillating disk measurements 
by Kestin and Leidenfrost [20]; the rotating cylinder measurements by Evers et al [21]; and 
Berg’s quartz capillary measurements [22].  They also considered the value calculated ab initio 
in 2000 using the helium-helium potential φ00 [23] and the value published in 2007 calculated 
with the potential φ07 [17].  After May et al. [19] published their conclusions, Jeziorska et al. 
[24] developed a more accurate potential φJCPJS that Mehl [25] used to calculate the values 
ηHe( p=0, 298.15 K) = (19.8269±0.0002) μPa⋅s and (19.8242±0.0002) μPa⋅s, where the quoted 
uncertainty only accounts for the uncertainty of the helium-helium potential φJCPJS.  The larger of 
Mehl’s two values uses the atomic mass of helium; the smaller uses the nuclear mass.  Because 
we do not know which mass is correct, we plotted at 2009 in Fig. 3 the average of Mehl’s two 
values and used the difference between his values (0.0027 μPa⋅s) as the uncertainty bar.  The 
relative uncertainty ur(ηHe) is only 0.00013. 

In private communications, R. F. Berg (2009, NIST) indicated that some Type B uncertainties 
were not included in his uncertainty budget for the capillary measurement.  [22] In particular, 
Berg used only one quartz capillary and determined its average internal diameter by weighing a 
mercury drop that he forced into the capillary.  The diameter was not measured as a function of 
length.  The manufacturer’s claim concerning the roundness of the capillary’s cross sections was 
verified only indirectly by measuring the external diameter and by the consistency of flow 
measurements at large Dean numbers.  Berg fitted his helium data with a momentum-
accommodation coefficient hmometum to eliminate its unphysical pressure-dependence.  The best-

Fig. 3 Accurate determinations of the viscosity of helium in the limit 
of zero pressure at 298.15 K.  Data sources: oscillating disk [20]; 
rotating cylinder [21]; capillary [22]; φ00 [23]; φ07 [17]; φJCPJS [25]. 
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fit values of hmometum were 1.09, 1.19 and 1.14 during the years 2001, 2002 and 2003, 
respectively.  Berg does not know why hmometum changed; however, his values are closer to 1 than 
previous measurements of helium in glass capillaries. [26] 
 We illustrate the importance of the thermoacoustic boundary layer in Fig. 2 by replotting the 
resonance half-widths gmeas that were measured during the 1988 re-determination of kB.  [3] In 
the pressure range 25 kPa < p < 500 kPa, between 80 % and 99 % of gmeas was generated in the 
thermoacoustic boundary layer.  The calculated half-widths gcalc used the thermophysical 
properties of argon, the geometry of the resonator (including crevices), and the attenuation of 
sound throughout the volume of the resonator.  As the pressure approaches zero, the values of 
2Δg/f ≡2(gmeas − gcalc)/f approach 2.5×10−6 for all of the modes studied.  Today, we still do not 
know why 

0
lim(2 / )
p

g f
→

Δ  > 0 and we consider the average limiting value (2.5×10−6) to be a measure 

of our imperfect understanding of the acoustic resonator.  In 1988, this limiting value was 
acceptable because it was only 1.5 times the uncertainty claimed for kB: ur(kB) = 1.7×10−6.  If an 
acoustic resonance technique were used to re-determine kB today, we would expect a much 
smaller claimed uncertainty.  We would also expect correspondingly smaller values of 

0
lim(2 / )
p

g f
→

Δ  to confirm the claim of improved understanding of the acoustic resonator.   

In summary, the uncertainties of the calculated values of Δftherm/f and gcalc/f have been 
substantially reduced since the 1988 determination of kB because the uncertainties of the 
transport properties of helium and argon have been greatly reduced.  The reduction in u(ηHe) at 
p = 0 and 298.15 K is illustrated in Fig. 3.  Under the same conditions, the uncertainty of the 
Prandtl number u(Pr) = 0.00004; therefore, ur(λHe) is only slightly greater than ur(ηHe). [19] 
  
2.3 Coupling between gas modes and shell vibrations 
 

The effects of shell motion on the gas resonances have been discussed by Mehl.  [27] When a 
radially symmetric gas resonance is not too close to the breathing resonance of an isotropic 
spherical shell, the frequency of the gas resonance is shifted by  

s,ishell
2

breathing

/ 3
1 ( / )

pf
f f f

γ χ−Δ
=

−
    ,   (4) 

where χs,i ≡(3/a)(da/dpi) is the shell’s compliance to internal pressure pi.  To prepare Fig. 1, we 
assumed that χs,i could be determined with an uncertainty of 10 %.  To support this uncertainty 
estimate, we recall that Moldover et al. [3] determined the static compliance of the shell in three 
independent ways: (1) theoretically, based on equations for a thick, spherical shell and published 
values for the elastic properties of 316 stainless-steel; (2) experimentally, by measuring acoustic 
resonance frequency as a function of changes in the external pressure of the resonator; and, (3) 
experimentally, by measuring the expansion of the shell under applied internal pressure while the 
shell was filled with mercury.  (Today, one might also determine compliances by measuring the 
effect of internal or external pressure on microwave resonances of the cavity.)  The compliance 
determined by method (2) was 6 % greater than that determined by method (1); however, this 
was within the combined uncertainties. The compliance determined by methods (1) and (3) agree 
within tighter uncertainty bounds [2 % for method (1) and 1 % for method (3)].  Method (1) was 
also used to estimate the frequency of the breathing mode of the shell fbreathing ≈ 13.58 kHz.  A 
shell resonance was found near 13.2 kHz.  The difference between 13.58 kHz and 13.2 kHz is 
equivalent to a 1.5 % difference in the compliance.   
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In the left panel of Fig. 1, the gray band labeled u(Δfshell/f ) spans the expected uncertainties in 
kB resulting from a 10 % uncertainty of χs,i.  For helium, the band spans estimates for the (0,2), 
(0,4), (0,5), (0,6), and (0,8) radially-symmetric acoustic modes.  The (0,3) mode cannot be used 
for helium gas metrology because its resonance frequency is close to fbreathing; therefore, it is 
strongly perturbed by the shell’s motion.  The (0,7) mode cannot be used for gas metrology 
because it is nearly coincident with the (13,2) mode, as shown in Fig. 8 of [3].  Because the 
shell’s compliance and its uncertainty both scale as [1 − (f /fbreathing)2]−1,  the smallest values of 
u(Δfshell/f ) for helium will occur for the (0,6) and (0,8) modes.  By accident, the resonance 
frequencies of the (0,6) and (0,8) modes occur within 1 % of the frequencies of non-radial shell 
modes predicted for a steel shell with a = 50 mm and wall 30 mm thick.  The (0,6) or (0,8) mode 
can be used re-determine kB if the shell’s thickness is slightly adjusted to increase the separation 
between these modes and the non-radial modes of the shell.   
  The gray band in the right panel of Fig. 1 spans the uncertainties expected for the (0,2) 
through (0,6) radially-symmetric argon acoustic modes; the expected uncertainties increase 
monotonically with frequency. The (0,8) mode cannot be used because its frequency will be 
close to fbreathing and the (0,7) mode cannot be used because it is nearly coincident with the (13,2) 
mode, as mentioned above. 
 Two research groups have studied the interaction of the radial acoustic modes with shell 
modes by continuously varying the speed of sound.  Pitre et al. [28] varied the speed of sound by 
changing the temperature over a very wide range.  Gavioso et al. [29] filled the cavity with 
helium and then continuously diluted it with argon while maintaining the pressure constant.  
Both groups were surprised to observe interactions between the radially-symmetric acoustic 
modes and several modes of the shell at frequencies well away from fbreathing.  These observations 
stimulated J. B. Mehl and M. R. Moldover [30] to model the vibrations of shells that depart from 
spherical symmetry.  They modeled a shell that was bound by concentric spherical surfaces and 
was supported by a stiff connection to a large mass.  They also modeled shells with spherical 
inner surfaces and outer surfaces that had large bosses and/or flanges similar to those on the 
resonators used for acoustic thermometry.  [5,6,7,8,9] Consistent with the observations of Pitre et 
al. and Gavioso et al., the models predict that radial acoustic modes do couple to non-radial shell 
modes when the spherical symmetry is broken, either by the shape of the outer surface or by a 
stiff support.  Optimizing an acoustic resonator to measure kB will minimize its departures from 
spherical symmetry.   
 Because Δfshell ∝ p, it is not essential to know the compliance of the shell accurately. Instead, 
one can treat the linear term in the pressure expansion u2(p,TTPW) as a separate fitting parameter 
for each mode instead of the mode-independent thermodynamic quantity βa/RT.  In doing so, a 
test of understanding is abandoned.  Yet another option is to reduce the compliance of a shell 
(and its uncertainty) by manufacturing it out of a stiffer material.  A beryllium shell will have 
∼1/2 the compliance of a steel shell with the same dimensions.  However, the complex 
metallurgy and toxicity of beryllium might create new problems. 
 
2.4 Gas-Solid Boundary Conditions 
 
2.4.1. Thermal accommodation coefficient model 
 

Ewing et al. [31] discussed the acoustic consequences of the kinetic theory prediction that a 
temperature jump occurs at a gas-solid interface when heat is transferred across the interface.  
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[32] They concluded that the temperature jump increases the resonance frequencies and leaves 
the half-widths unchanged.  The frequency increase is Δf/f = (γ − 1)la/a, where la is the thermal 
accommodation length, which for a monatomic gas is given by  

B( / ) /(2 ) (2 ) /al p mT k h hλ π= −     .   (5) 
Here, λ is the thermal conductivity, m is the mass of an atom, and h is the thermal 
accommodation coefficient.  (If h = 1, la equals 1.8 times the mean free path.  For argon at TTPW, 
100 kPa, and h =1, la = 118 nm.) The coefficient h accounts for the fraction of the gas molecules 
incident on the solid that are reflected or re-emitted from the solid with the kinetic energy 
expected from the solid’s temperature.  Thus h might depend upon the gas, the temperature, and 
the microscopic conditions of the surface (e.g. oxidized or covered with an oil film).  The 
temperature jump adds a p−1 term to the polynomial expansion of f 2(p, T=const) where f is the 
measured acoustic resonance frequency on an isotherm.  Ewing et al. [31] included a p−1 term in 
a fit to their measurements of f 2(p,TTPW) for an argon-filled, aluminum-walled cavity and found 
h = (0.84 ± 0.05).  For an argon-filled, steel-walled cavity, Moldover et al. [3] found h = (0.93 ± 
0.07) at TTPW.  We use this experience as a guide to assume that u(h) = 0.05.  The dashed black 
lines in Fig. 1 display how u(h) propagates into an uncertainty of 2u(la)/a.  (The factor of 2 is 
included because u(kB) is proportional to the square of the acoustic radius of the resonator.)  The 
locations of dashed lines on Fig. 1 are insensitive to h as long as h is on the order of 1.  If la, δt, 
and δviscosity were the only lengths relevant to the gas-solid interactions, measurements of f (p,T) 
at low pressures could reduce u(h) below 0.05.  However, the measurements are not easy because 
the signal-to-noise ratio decreases as p−2 below an apparatus-dependent pressure (100 kPa in [3]).  
Also, Q decreases with pressure; therefore; values ffit and Qfit that result from fitting the usual 
resonance function have to be corrected.  For these corrections, Gillis et al. [33] deduced the 
formulas 

 -2 -2 -1 -1 -3corr fit
surf vol surf vol surf

fit

1 1 1 1
8 4 8 8

f f
Q Q Q Q Q

f
−

≈ − + + −  and -1 -1 -2 -1 -1 -3
corr fit surf surf vol surf

1 1(0.263)
4 4

Q Q Q Q Q Q− ≈ − − +  (6) 

that account for boundary losses via Qsurf and the attenuation of sound in the volume via Qvol.  
The background terms in the resonance formula also generate corrections of order Q2. 
 
2.4.2. Corrugated surface model 
 

The kinetic theory calculation that relates the accommodation coefficient to the 
accommodation length assumes that the solid is a perfectly smooth plane; thus, the mean free 
path is the only microscopic length in the calculation.  Machined metal surfaces are rough and 
are characterized by many length scales.  Thus, the real gas-solid boundary conditions will be 
more complicated that those assumed by Ewing et al. and by the 1988 re-determination of kB.   
 Using numerical methods, Mehl [34] estimated Δfcorrugation, the perturbation to the acoustic 
resonance frequencies cause by a corrugation model of a rough surface.  The model surface had 
the profile z = Z cos qx, where λs = 2π/q is the spatial wavelength and Z is the amplitude of the 
corrugation.  In the limit of δt / λs >> 1, the regions between the maxima of the surface profile 
form a nearly isothermal volume whose magnitude is of order Z×Ap, where Ap is the projected 
area.  In the absence of corrugations, the isothermal volume is δtAp.  Thus, the perturbation from 
the thermoacoustic boundary layer is increased by the factor: 1 + O(Z/δt).  To estimate Z/δt, we 
consider typical measurement conditions [argon; a = 50 mm; (0,4) mode; 0.3 MPa; δt = 
13 ×10−6 m] and a hypothetical steel surface that has been finished with a surface grinder that 
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generated a surface finish with a root-mean-square roughness of order 0.2×10−6 m.  For this 
example, the corrugations increase the frequency shift and half-width perturbations by O(1.5 %) 
and this increase varies with pressure as p1/2.  A convenient way to express this result is: 

   corrugation (0,4)61.4 10
0.3 MPa

f fpO
f f

−
⎛ ⎞Δ
⎜ ⎟= ×
⎜ ⎟
⎝ ⎠

  .     (7) 

In the same limit δt / λs >> 1, Mehl found smaller values of Δgcorrugation/f.   
We recommend carefully polishing the interior surface of the cavity.  (For the 1988 re-

determination of kB, the final polishing of the steel used α- and γ-alumina pastes with 0.3 and 
0.05 μm particle sizes.)  Because surface roughness occurs on many length scales, Δfroughness/f 
will surely have a more complicated pressure dependence than either p−1 predicted by the 
thermal accommodation coefficient model or (p/f )1/2 inferred from the corrugated surface model. 
  
3. Ducts that Admit Gas into a Cavity 
 

During the 1988 determination of kB, a single duct was used to conduct argon into and out of 
the resonator.  [3] A manually operated valve had been built into the duct.  While the acoustic 
resonance frequencies were measured, this valve was maintained in its closed position where the 
end of its specially fabricated stem was flush with the surface of the spherical cavity.  (See Fig. 3 
of [3].)  This arrangement was advantageous because the closed valve made the smallest possible 
perturbation to the acoustic resonance frequencies.  However, the valve’s vacuum-tight seal was 
made by a small fluoropolymer O-ring.  This O-ring and two other O-rings that sealed the 
acoustic transducers in their places were potential sources of gas contamination.  To minimize 
contamination, the apparatus was flushed with pure argon numerous times before it was used.  
After flushing, no contamination was detected at TTPW; however, progressive contamination was 
observed when the apparatus was operated at 30 °C.  [5] 

Ripple et al. rebuilt the resonator used in the 1988 determination of kB for acoustic 
thermometry at high temperatures.  [35] They did not re-polish the interior surface of the 
resonator; however, they replaced the single fill duct and valve with two long, 1.5 mm-bore, 
ducts, one to serve as a gas inlet and the other as an outlet.  At the wall of the spherical shell, 
these ducts opened into a 1 cm3 volume that was connected to the cavity by a short duct of length 
a/10 as suggested by [11]. These ducts made small, predictable perturbations to the radial 
acoustic modes and allowed a small, steady flow of argon to remove hydrogen that out-gassed 
from the hot steel walls of the cavity. A measure of the ducts’ performance is Δg/ f, where the 
excess half-width Δg ≡ gmeas − gcalc is the difference between the measured half-width and that 
calculated from the thermophysical properties of argon and the geometry of the resonator, 
including its ducts.  [9] Typically, Δg/f varied from ∼10 ppm at high densities to a zero-pressure 
limit near 2 ppm.  The zero-pressure limit of Δg/f was independent of mode and temperature 
demonstrating that the effects of the ducts cancelled out of the determination of the 
thermodynamic temperature T.  This behavior of Δg/f is consistent with that observed at TTPW 
during the 1988 re-determination of kB (Fig. 2) when a valve at the cavity closed a single duct.  
(Note: Fig. 2 is a plot of 2×Δg/f.)       
 In contrast with Ripple et al, Pitre et al [8] and, independently, Benedetto et al. [7] used 
ducts with lengths equal to their respective cavities’ radii a.  These ducts led from the cavities to 
the volume inside pressure vessels surrounding the cavities.  Both groups found larger values of 
Δg/f than they could explain, particularly for the (0,2) mode.  After their measurements were 
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completed, they found evidence that the mating surfaces of the hemispheres were not sufficiently 
flat to avoid a crevice at the equatorial joint. [28] (A crevice will increase Δg/f.)  Because, the 
zero-pressure limits of Δg/f in [7] and [8] were independent of temperature for each mode, the 
acoustic thermometry was successful.  (In [8] the same limits were found for helium and argon.) 
However, a re-determination of kB cannot rely on temperature-independence; the perturbations 
from imperfect spherical geometry (e.g. ducts, crevices, acoustic and microwave transducers) 
must be accurately known.  
 In this context, the acoustic admittance of ducts has been measured using three-port 
couplers.  [36,37]  A three-port coupler is a small, sealed, gas-filled volume.  One port contains a 
sound source; a second port contains a sound detector, and the third port is the test port.  One 
measures the complex frequency-dependent acoustic pressure while the test port holds the object 
under study.  Often, the object under study is replaced with an admittance standard (e.g. a solid 
metal wall that has a calculable admittance) and the acoustic pressure is measured again.    The 
complex ratio of the acoustic pressures is used to deduce the complex ratio of the acoustic 
admittance of the test object to that of the admittance standard.  Lin et al. [37] were unable to 
obtain satisfactory reproducibility following the usual practice.  Instead, they adopted an unusual 
alternative; they mounted a 1.4 m long duct in the test port and measured the admittance changes 
after successive lengths of duct were cut off its open end.  (The duct was open to the room at the 
end opposite the coupler.)  The measured admittance of the1.4 m long duct agreed with a model 
calculation within the measurement’s uncertainty of 1%.  For ducts 10 cm and 20 cm long, the 
measured admittance differed from a simple model by as much as 10 % of the admittance.  The 
frequency dependence of the differences resembled that of the acoustic resonances in the duct.  
This suggests that the sound reflected from the open end underwent a phase shift that was not 
included in their model.  (Note: a 5 cm-long duct with a 1.4 mm bore is predicted to perturb the 
(0,2) mode of a 5-cm radius sphere filled with argon at 0.3 MPa by (Δf + ig)/f  = (0.9+1.1i)×10−6 
and the (0,5) mode by (Δf + ig)/f  = (−0.8+0.7i)×10−6.  As the pressure is reduced, the predicted 
perturbations increase approximately as p−1/2.)  The disagreement between measurement and 
theory reported by Lin et al. for short ducts is much smaller than that reported by Pitre et al. [8] 
and Benedetto et al. [7]. 

  From these observations, we conclude that an optimized measurement of kB will certainly 
require mounting ducts in a way that avoids crevices and might require some combination of 
three options to reduce the uncertainty of the perturbations.  The options are: (1) narrower or 
longer ducts, (2) systematic measurements of the admittance of the ducts actually used, or (3) a 
more accurate theory for ducts.  
 
4.  Theoretical values of the acoustic virial coefficients.  
 

As mentioned in the Introduction, the polynomial expansion of u2(p,T) includes the term 
βap/(RT).  The value of βa(TTPW) for helium calculated ab initio is more accurate than any 
measurement [(ur(βa) =  0.00084 in [17] at TTPW] and its uncertainty will decrease. [25] The 
dotted blue line in Fig. 1 for helium displays the pressure-dependent ratio u(βa)p/(RT) at TTPW.  
This ratio is comparable to the uncertainty of the correction for the breathing mode of the shell.  
Therefore, comparing the ab initio value of βa(TTPW) to the values of βa(TTPW) determined by 
fitting the data for various modes will be a useful test of the understanding of a helium-filled 
spherical acoustic resonator.  
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5. Modeling acoustic transducers 
 
 Recently, Guianvarc’h et al. [15] studied condenser microphones similar to those used in 
several acoustic thermometers, in the 1988 re-determination of kB, and in recent experiments 
directed towards re-determining kB.  Guianvarc’h et al. accurately calculated and measured the 
microphone’s characteristics as functions of frequency and pressure for both helium and argon 
and used their results to calculate the perturbations to the resonance frequencies of the radial 
acoustic modes of a gas in a spherical cavity.  They concluded that the simple approximation 
(Δfmicrophone/f = −0.8×10−6 p/MPa) used for the 1988 determination of kB was satisfactory. (The 
1988 measurements used argon in a cavity with a = 89 mm.)  However, such a simple 
approximation is not suitable for re-determining kB using, for example, the (0,4) and higher 
modes of a helium-filled cavity with a = 50 mm, because Δfmicrophone/f  has complex dependences 
on frequency, pressure, and the gas in a wide region spanning the microphone’s resonance near 
50 kHz.  [The (0,6) mode of helium occurs at 53 kHz.]  Even the (0,2) and (0,3) modes of a 
resonator with a = 50 mm are problematic because Δfmicrophone/f  ∝ a−3 at low frequencies.     
 
6. Remarks on acquiring data and on thermometry 
 

In 1988, the statistical uncertainties of the acoustic measurements contributed 0.68 ppm to 
ur(kB).  Present-day acoustic apparatus acquires data fully automatically; therefore, it is easy to 
acquire five or ten times the amount of data that was acquired in 1988.  This will significantly 
reduce the statistical uncertainties, provided that the replicated data are statistically independent. 

In [3] the temperature was measured by three capsule-type standard platinum resistance 
thermometers (SPRTs) that were calibrated before and after the acoustics measurements.  
Consequently, the largest component of the temperature uncertainty resulted from the random 
uncertainty of the calibrations and it contributed 0.8 ppm to ur(kB).  This component of the 
uncertainty could be reduced by a factor of 5 or more by adopting the procedures used in primary 
thermometry at high-temperatures.  [9,10] To do so, one or more thermal wells must be built into 
the acoustic apparatus.  Then, thermometers can be transferred between these wells and triple-
point-of-water cells. 
 
7.  Volume Determinations 
 
7.1 Pycnometry 

In the 1988 re-determination of kB, the volume of the spherical cavity was determined by 
weighing the mercury required to fill the cavity at TTPW and using literature values for the density 
of the particular sample of mercury used.  [3] The relative uncertainty of the volume was ur(V) = 
1.2 ppm.  Because the value of kB depends on V2/3, these measurements contributed 0.80 ppm to 
ur(kB) and the largest contribution to this uncertainty (0.67 ppm) came from literature values of 
the thermal expansion of mercury in the range 0 °C to 20 °C.  If pycnometry were used today, 
the volume of the cavity would be determined near 20 °C using a particular sample of a liquid 
(e.g. water, mercury, tridecane) whose density was determined at 20 °C, probably by using one 
of Cook’s techniques.  [38] Then, the thermal contraction of the cavity between 20 °C and TTPW 
would be determined with a much smaller uncertainty from measurements of the temperature-
dependence of the resonance frequencies of the microwave modes within the same cavity.  If this 
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were done and if the uncertainties achieved in [3] were reproduced, the uncertainty of V2/3 would 
be reduced to 0.43 ppm. 

Pycnometry is usually conducted at ambient pressure.  The volume of the acoustic cavity is 
needed either at the pressures at which the acoustic frequencies are measured or at zero pressure, 
depending upon how the data are analyzed.  When hydrostatic pressure is applied to a cavity 
bounded by isotropic steel walls, its volume will shrink by the fraction 6×10−6 (p/MPa). 
 
7.2 Microwave Resonances.  

The quasi-spherical cavity was invented to simplify the determination of the thermal 
expansion of acoustic cavities used for primary thermometry.  [13] As reported elsewhere in this 
volume, significant effort is being devoted to determining the volume of a quasi-spherical cavity 
from microwave measurements.  
 The microwave resonances in a perfectly spherical cavity occur in overlapping multiplets 
that have degeneracies of (2l+1) where l = 1, 2, 3, . . .  Unavoidable imperfections in 
construction partially remove the degeneracies, thereby creating the difficult measurement 
problem of determining the average value of three or more overlapping resonances, particularly 
when the degree of overlap is temperature-dependent, either because of temperature-dependent 
conductivity of the cavity’s walls or because the thermal expansion of the cavity is anisotropic.  
The quasi-spherical cavity is designed to have sufficiently large deviations from a perfect sphere 
to fully separate the components of the triply-degenerate modes.  A numerically controlled 
milling machine can manufacture a “hemispherical” shells with inner surfaces approximating a 
triaxial ellipsoid with axes of lengths a, a(1+e1), and a(1+e2) where e1 and e2 are small numbers.  
For example, if e1 ≈ 0.002 and e2 ≈ 0.001, the microwave triplets that would be degenerate in a 
perfect copper sphere with a = 5 cm are split by more than 5 times their half-widths at TTPW; if 
the quasi-sphere were stainless steel, the splitting would be 1.5 times the half-widths.  With this 
splitting, the average frequency of a multiplet can be determined with a relative uncertainty of 
10–8 or less.  This is sufficient to measure the thermal expansion of the quasi-sphere with an 
uncertainty of 10–8 or less.  For the same values of e1 and e2, the perturbations to the acoustic 
frequencies are calculable and they are small compared with the separation between the closely 
spaced (0,2) and (3,1) acoustic modes. 
 To determine V2/3 with a relative uncertainty of 1 ppm or less from microwave 
measurements, one requires a theoretical relationship between the measured frequencies and the 
volume that is correct to order e1

2 and e2
2.  Recently, Mehl [39] developed the necessary theory 

and showed that it that correlates certain microwave data at the 1 ppm level.  Now, systematic 
studies are required to account for the coupling of the microwave modes of the cavity to the 
antennas, coaxial cables, and measuring instruments.  These studies would be the microwave 
equivalent of the studies of microphones conducted by Guianvarc’h et al.  [15] The microwave 
method has the advantage that many microwave triplets, perhaps spanning a factor of 10 in 
frequency, can be used to determine the same volume.  Thus, there are many consistency checks.  
A weakness of this method is that there is no independent way to measure the conductivity of the 
cavity’s walls at microwave frequencies; thus, the measured widths of the microwave modes 
cannot be used to critically test the theory.  (In contrast, the widths of the radially symmetric 
acoustic modes in a gas-filled spherical cavity can be compared with independently-determined 
transport properties of the gas.) 
 
7.3 Dimensional Metrology. 
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As reported elsewhere [40], significant effort is being devoted to determining the volume of 
a cavity from dimensional measurements.  From the perspective of a non-expert, there are two 
parts to this problem: (1) determine the shape of a hemispherical (or quasi-hemispherical) cavity 
from dimensional measurements, and (2) determine from exterior measurements, how the 
operations of assembling two hemispherical cavities into a single spherical cavity influence 
dimensions of the cavity.  Problem (1) has been carefully explored by comparing the coordinates 
of either a silicon or a zerodur sphere to the coordinates of hemispherical cavities using the same 
coordinate measuring machine at the same time.  Problem (2) is somewhat analogous to the 
dimensional changes that occur when “wringing” two gage blocks together.  The wringing of 
gauge blocks has a long history. [41] During a recent Key Comparison [42], 11 laboratories 
wrung together pairs of gage blocks and measured the resulting lengths.  The standard deviation 
of the repeatability of the lengths ranged from 3 to 12 nm, depending upon the laboratory.  This 
suggests that two hemispherical shells could be assembled into a spherical shell with a relative 
volume uncertainty of only 10 nm/a, where a is the radius.  However, achieving this remarkable 
performance might require the mating surfaces of the hemispheres to be as hard and as flat as the 
ends of gage blocks. 

 
 8. Advances in cylindrical resonators.   
 

In cooperation with NIST, Zhang et al. [43] at the Chinese National Institute of Metrology 
(NIM) are actively studying the longitudinal modes (fn ≈ nuL/2) of gas-filled, cylindrical cavities 
of length L for re-determining kB.  The spirit of their work follows the pioneering acoustic 
determination of kB of Quinn et al. [1]; however, there are numerous innovations.  The 
longitudinal modes are non-degenerate and their resonance frequencies are not sensitive, in the 
first order of perturbation theory, to misalignments of the ends of the cavity.  The prototype 

Fig. 4  Schematic diagram of NIM acoustic/optical interferometer. [43] 
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resonator had an inside radius a = 50 mm; therefore, the quality factors (Qs) of the longitudinal 
modes were approximately double those obtained by Quinn et al in their cylinder with a = 
15 mm.  For a cylinder of length L = 2a, the Qs of the lowest few longitudinal modes are 
approximately 1/5 of the Qs of the lowest few radially symmetric modes of a spherical cavity 
with a radius a; this is a disadvantage.  However, the Qs of the cylinder’s modes are large 
enough that small transducers can be used to excite and detect the modes while generating only 
small perturbations to the resonance frequencies. 

Quinn et al. used a movable piston to continuously vary the length of the resonator.  In 
contrast, the NIM group will use two cylindrical cavities with fixed lengths in the ratio 2:1.  (See 
Fig. 4.)  They will transfer a single pair of cavity ends from one cylinder to the other.  The 
transfer of the ends avoids problems resulting from the gap or seals between a moveable piston 
and the cylinder enclosing it.  The 2:1 length ratio facilitates an approximate cancellation of 
perturbations from the acoustic admittances of the cavities’ ends.  Neglecting perturbations, the 
even longitudinal modes (n = 2, 4, 6, …) of the longer cavity will have the same resonance 
frequencies as the longitudinal modes of the shorter cavity.  The frequencies of these modes are  
perturbed by the frequency- and position-dependent specific acoustic admittances β(r,f) of the 
surfaces of the cavities.  The surface perturbations ΔFsurface can be calculated from the sum of a 
surface integral over the ends of the cavity and another surface integral over the cylindrical sides 
of the cavity: 

2 2 2
surface surface surface n n nends sides volume

( , ) ( ) ( , ) ( ) ( )
4
iuf ig r f r ds r f r ds r dVβ φ β φ φ
π
⎡ ⎤Δ ≡ Δ + ≈ + +⎣ ⎦∫ ∫ ∫F   . (8) 

(Here φn is the velocity potential.)  Because both resonators operate at the same frequencies and 
use the same ends, the integrals over the ends ∫ends are identical for both resonators and 
independent of L.  However, the volume integral ∫volume and the integral over the sides ∫sides are 
proportional to L.  Therefore, results from both resonators can be combined to eliminate ∫ends 
from the calculation of kB.  The eliminated contributions originate in the thermo-acoustic 
boundary layer on the multilayer dielectric mirrors and in ducts and/or acoustic transducers 
embedded in the ends.  If the thermal accommodation lengths la at the mirrors do not change 
when the ends are transferred from one cylinder to the other, their contributions to kB and u(kB) 
will also be eliminated. 

When the effects of δT and δviscosity are considered, the acoustical lengths of the resonators will 
differ from their optically-measured lengths by pressure-dependent terms of order O(δT/L) ∼ 
2×10−3.  Therefore, the resonance frequencies of the two resonators will not be identical and the 
cancellation of the perturbations from the ends will not be exact.  

The NIM group will use a two-color laser interferometer to determine the distance between 
the multilayer dielectric mirrors on the inner surface of each end of the cavity.  This optical 
length depends upon optical phase shifts within the dielectric mirrors and on the thicknesses of 
the mirrors.  However, the difference between the optical lengths of the two resonators will be 
independent of the mirrors because the same mirrors will be used for both resonators. 

To summarize, the two-cylinder approach to an acoustic measurement of kB will use an 
optical method to measure the distances between the inside surfaces of the ends of two 
cylindrical cavities after the cavities are assembled.  In contrast, the dimensional metrology of 
the interior surfaces of two hemispheres (Section 7.3) must be conducted before the hemispheres 
are assembled to for a cavity.  The two-cylinder approach avoids the complexities of pycnometry 
and it does not require advances in the understanding of microwave cavities.  However, the 
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lower Qs of the acoustic resonances in the cylindrical cavities (compared with spherical cavities) 
will complicate the measurement and the interpretation of the acoustic resonance frequencies. 

 
9. Concluding Remarks   
 
 We have reviewed the advances made since 1988 in understanding acoustic resonators. 
Stimulated by primary acoustic thermometry, the uncertainties from every aspect of the acoustic 
measurements have been understood and can be smaller than they were in 1988.  The 
uncertainties of the transport properties of helium and argon have been reduced by 
approximately a factor of 10.  If thermometer wells are built into an acoustic apparatus, TTPW can 
be achieved in the apparatus with a much smaller uncertainty than was achieved in 1988.  With 
this progress, one could re-determine kB today from acoustic measurements using either helium 
or argon with a relative uncertainty ur(kB) ≈ 10−6.  A further reduction in uncertainty is possible if 
the acoustic volume of a spherical cavity can be determined more accurately than it was in 1988.  
Several groups are actively researching ways to do this.  If argon is used to re-determine kB with 
ur(kB) < 10−6 the relative abundances of the argon isotopes and noble gas impurities must be 
determined more accurately than they were in 1988.     
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