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ABSTRACT:  The ability of using tuned mass damper (TMD) to improve the structures’ ability 

to dissipate earthquake input energy is investigated from the seismic fragility point of view.  

Nonlinear material behavior of the structure is modeled using the force analogy method, which is 

the backbone of analytically characterizing the plastic energy dissipation in the structure.  

Numerical analyses based on 100 simulated non-stationary Gaussian earthquake ground motions 

were performed to study the global responses and local energy dissipation of a six-story moment-

resisting steel frame with and without TMD installed.  The effectiveness of TMD based on the 

reduction of seismic responses and enhancement of the seismic fragility of the structure is 

considered at various structural performance levels, which include immediate occupancy, life 

safety, and collapse prevention.  An “equivalent monotonic plastic strain” approach is used to 

correlate the seismic fragilities at different global performance levels with local damage in the 

structure.  Results show that the use of TMD enhances the structures’ ability to dissipate energy 

at low to moderate levels of the earthquake, but may be ineffective during a major earthquake 

that causes excessive damage in the structure.   
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INTRODUCTION 

A major problem in earthquake engineering that requires much research is the 

quantification of structural damage and its correlation with performance levels.  The use of 

“damage parameters” or “damage functions” that relates seismic demands with structural 

capacities under cyclic loading is one way of representing structural “damage” in terms of 

mathematical terminology.  The most common damage measure is inter-story drift ratio (Wang 

et al. 2007, Erduran and Yakut 2007, Yakut and Yilmaz 2008), which gives a good indication of 

the overall global response but lacks the specific detail and location of damage.  Another 

common damage measure is ductility (Jarenprasert et al. 2006, Hong and Hong 2007), where 

damage is measured as a ratio of demand to capacity under a monotonic loading, but it lacks the 

ability to quantify cumulative damage when the structure is loaded cyclically.  Other methods 

consider the effective distribution of plastic cycles and generalize the law of cumulative fatigue 

to the structural damage.  However, some experiments have already demonstrated that high 

cycles of insignificant inelastic deformation are of no practical relevance to the degree of 

structural damage under major earthquake events (Cosenza et al. 1993). 

To evaluate the structural performance and the damage level caused by an earthquake, a 

damage measure expressed in terms of energy seems most appropriate (Benavent-Climent 2007, 

Bojorquez et al. 2008).  Because energy is derived from displacement and at the same time it has 

the ability to measure the cumulative effects, damage will become quantifiable when energy 

demand is compared with the corresponding energy capacity.  More than two decades ago, 

McCabe and Hall (1989) have already introduced the energy spectra in addition to the ductility 

spectra and developed a damage index that depends on the energy dissipated under both positive 
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and negative hysteretic loops.  However, the calculated energy was not based on any theoretical 

analysis but was simply computed based on ductility and equivalent cycles.  

Two damage models that accounts for the maximum deformation and energy dissipation 

have been given great attention.  In Bannon and Veneziano (1982), the damage index is set in a 

probabilistic context where the plastic energy is normalized with respect to the absorbed energy 

at the elastic limit.  In Park and Ang (1985), the damage index is expressed as a linear 

combination of indices caused by excessive deformation and the effect of repeated cyclic 

loading.  However, none of these studies has explicitly considered energies and their transfer 

induced by plastic deformation that actually causes damage to structures. 

While it seems that structural damage can be quantified by accounting for the energy 

dissipation, no research has been found on quantifying structural damage based on plastic strain.  

Recognizing strain is already a dimensionless quantity that may be appropriate to serve as a 

damage measure, this research attempts to quantify structural damage by correlating the 

performance levels set forth in FEMA 440 (2005) with the local plastic energy dissipation and 

the corresponding equivalent plastic strain in a moment-resisting steel frame.  Fragility analysis 

based on 100 simulated non-stationary Gaussian earthquake ground motions is used in the 

correlation, since fragility curves have been demonstrated to be a useful engineering tool in 

estimating the probability of reaching a certain structural performance level under a set of ground 

motions of a specified magnitude (Nielson and DesRoches 2007, Kafali and Grigoriu 2007, 

Zareian and Krawinkler 2007).  Furthermore, recent studies have shown that the fragility curves 

for a certain structure can be noticeably altered simply by the implementation of structural 

retrofitting measures (Padgett and DesRoches 2008).  Therefore, in this paper, tuned mass 

damper (TMD) is applied to improve structural performance and reduce structural damage.   
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FORCE ANALOGY METHOD 

 The force analogy method is tool of conducting nonlinear analysis of structures, either 

static or dynamic, based on a change in displacement field instead of stiffness to give the total 

force in the structure.  The overall procedure has been discussed in Wong and Yang (1999).  

Because of its importance in analytically quantifying the plastic energy in the energy balance 

equation, this method is briefly summarized here. 

Consider structure modeled as an n-degree of freedom (DOF) system, the displacement 

can be written in a vector form as 
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where )(tx  represents the total displacement vector, )(tx′  is the elastic displacement vector that 

returns to zero after the earthquake has subsided, and )(tx ′′  is the inelastic displacement vector 

that represents the permanent deformation of the structure (see Figure 1).    

Similar to displacements, the total moments )(tm  and plastic rotations )(tΘ ′′  at the 

plastic hinge locations (PHLs) on the structure in the moment-resisting frame can also be 

represented in vector forms as 
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where )(tm′  is the elastic moment vector due to elastic displacement and )(tm ′′  is the inelastic 

moment vector due to inelastic displacement.  The value m represents the total number of PHLs 
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identified in the structure.  The inelastic moment )(tm ′′  and inelastic displacement )(tx ′′  exist 

when plastic rotations )(tΘ ′′  occur at certain PHLs in the structure.  The relationships after 

imposing equilibrium and compatibility conditions are given by the formula: 

 ( ) )()( 1 tt T Θ ′′′′−′′−=′′ − KKKKm  (3) 

 )()( 1 tt Θ ′′′=′′ − KKx  (4) 

where K ′  is the mn×  stiffness matrix that relates the plastic rotation )(tΘ ′′  with the restoring 

forces at the global DOFs, K is the nn×  global stiffness matrix, and K ′′  is the mm×  stiffness 

matrix that relates the plastic rotation )(tΘ ′′  with the restoring moments at the PHLs.  

 The elastic moment )(tm′  at each PHL relates directly to the elastic displacement )(tx′  

of the structure, which in turn is caused by applying the force )(tsf  on the global structure.  The 

relationship can be written as: 

 )()( tts xKf ′=  (5) 

 )()( tt T xKm ′′=′  (6) 

Substituting Eqs. (4) and (5) into Eq. (1) gives 

   )()()( 11 ttt s ΘKKfKx ′′′+= −−  (7) 

Since the elastic displacement )(tx′  is defined in the way as shown in Figure 1, Eq. (7) shows 

that the total displacement )(tx  in the structure contains two distinctive parts, one due to the 

applied force and the other due to the material nonlinearity of the structure.  This distinction 

facilitates the separation of strain energy and plastic energy to be discussed in the next section. 

 Performing matrix manipulations on Eqs. (1) through (6) gives the governing equation of 

the force analogy method, which is 

 )()()( ttt T xKKm ′=′′′′+ Θ  (8) 
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Equations (4) and (8) represent the essence of the force analogy method, as they are used in each 

and every time steps in the dynamic analysis to calculate the nonlinear structural responses. 

 

ENERGY BALANCE EQUATION 

During an earthquake, input energy (IE) caused by ground motion enters the structure and 

converts into different energy forms in the structure, and these energy forms include the strain 

energy (SE), kinetic energy (KE), damping energy (DE), and plastic energy (PE).  According to 

Uang and Bertero (1990), using absolute energy to characterize the seismic energy in structures 

is more reasonable than using relative energy because kinetic energy should be expressed in 

terms of absolute velocity of the structure.  Therefore, in this research, the energy balance 

equation is based on the absolute energy method.  Consider the equation of motion with the 

global stiffness force given in Eq. (5): 

 )()()()( tttt s gMfxCxM &&&&& −=++  (9) 

where M is the nn ×  non-zero mass matrix, C is the nn ×  damping matrix, )(tg&&  is the 1×n  

earthquake ground acceleration corresponding to each DOF, and a dot above the variable 

represents the derivative of the variable with respect to time.   

Define the absolute displacement )(ty  of an n-DOF structure to be the sum of relative 

displacement )(tx  and ground displacement )(tg , then the equations for displacement, velocity, 

and acceleration can be written as:  

 )()()( ttt gxy +=    ,    )()()( ttt gxy &&& +=    ,    )()()( ttt gxy &&&&&& +=  (10) 

Substituting Eq. (5) and the acceleration equation of Eq. (10) into Eq. (9) gives 

 0xKxCyM =′++ )()()( ttt &&&  (11) 
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Integrating both sides of Eq. (11) over the path of structural response )(tx  from time 0 to time kt  

gives  
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Since )()()( tdtdtd gyx −=  based on displacement equation of Eq. (10), substituting this 

equation into the first term of Eq. (12) gives 
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The first and second terms of Eq. (13) represent KE and DE, respectively, and the term on the 

right side of Eq. (13) represents IE.   

The third term on the left side of Eq. (13) relates to the energy due to stiffness, which 

contains both linear (i.e., SE) and nonlinear (i.e., PE) components.  By taking advantage of Eq. 

(1), these two energy components can be separated very simply as shown in Figure 1.  

Representing Eq. (1) in incremental form, )()()( tdtdtd xxx ′′+′= , and substituting this result into 

the third term of Eq. (13) gives 
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It is observed that the first term on the right side of Eq. (14) gives the strain energy, i.e., 
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Now consider the last term of Eq. (14) based on the force analogy method.  Rewriting Eq. (4) as 

Θ ′′′=′′ − dd KKx 1  and Eq. (6) as Kxm ′′=′ TT , and substituting these results into the last term of 

Eq. (14) gives 
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This term represents the total PE dissipated in the structure, and it accounts for the contribution 

of all plastic hinges.  Since Eq. (16) is calculated by multiplying the elastic moment vector )(tm′  

with the change in plastic rotation vector )(tdΘ ′′ , this equation can therefore be represented by 

the sum of plastic energy dissipated at each plastic hinge, i.e., 
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where iPE  represents the plastic energy dissipated at the ith plastic hinge: 

 ∫
=

=
θ ′′′= ktt

t iii dmPE
0

 (18) 

Therefore, in summary, Eq. (13) can be written in terms of energy balance as 

 IEPESEDEKE =+++  (19) 

 

STRUCTURAL MODEL WITH TUNED MASS DAMPER 

The use of TMD, a passive control device, in structures has been demonstrated to be 

effective in reducing the dynamic response due to lateral loadings since the 1970’s (McNamara 

1977, Luft 1979).  Since then, significant number of studies has been conducted to enhance the 

effectiveness of the TMDs, which include the use of multiple TMDs (Xu and Igusa 1992, Chen 

and Wu 2001, Johnson et al. 2003, Guo and Chen 2007, Qin et al. 2007), and active/semi-active 

TMDs (Li and Liu 2002, Nagarajaiah and Sonmez 2006, Li and Zhu 2007).  Some design 

procedures have also been proposed (Abe and Fujino 1994, Hoang et al. 2008, Ueng 2008).  

However, most of these works mainly consider structures responding in the elastic domain, while 

research work related to structures with TMD responding in the inelastic domain is very limited.  

Recognizing this drawback on the previous research, this study attempts to apply the 

force analogy method to conduct seismic fragility analysis of structures with TMDs responding 
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in the inelastic domain.  A six-story moment-resisting steel frame shown in Figure 2 was used in 

the present study.  It contains 6 DOFs with 40 PHLs.  Let the mass of each floor be 000,300  kg 

and the damping be 3% in all six modes of the elastic structure.  Based on the member sizes 

shown in Figure 2, the natural periods of vibration of all six elastic modes were calculated and 

summarized in Table 1.  The plastic rotations were assumed to be concentrated at one point at the 

end of the beam and at the bottom of the columns.  The moment capacity pm  was assumed to be 

equal to the plastic moment of the member, i.e., 

 Zfm yp =  (24) 

where yf  is the yield stress of steel of 248.2 MPa, and Z is the plastic section modulus of the 

member.  All beams were subjected to a 21.89 kN/m uniform gravity loads prior to the beginning 

of the earthquake motion.  Moment versus plastic rotation relationship of all plastic hinges was 

assumed to exhibit elastic-plastic behavior, and the effect of interaction between moment and 

axial force on the moment capacities of column members was neglected. 

Tuned mass damper was installed at the roof level of the frame as shown in Figure 2.  Let 

the mass be 10% of the total mass of the structure, which is 000,180=TMDm  kg.  Noting that the 

fundamental period of vibration of the frame is 1.22 s as shown in Table 1, the TMD with a 

period 0.2=TMDT  s was selected.  This resulted in a TMD stiffness of 5.565=TMDk  kN/m, and 

it was assumed to remain elastic during the seismic event.   A critical damping ratio of 

%5=ζTMD  damping was assumed for the TMD, which gave a damping value of 5.56=TMDc  

kN-s/m.  Based on this setup, it follows that the 77 ×  damping and stiffness matrices of the 

frame with TMD installed are of the form: 
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EARTHQUAKE RECORDS 

A suite of earthquake ground motions is always necessary in order to conduct research on 

seismic fragility analysis.  In this study, one horizontal component of the ground acceleration 

)(tg&&  was considered for the 2-dimensional frame, and it was modeled as a non-stationary 

Gaussian process with zero mean.  It was constructed by multiplying a stationary random process 

)(tS  by a deterministic temporal modulation function )(tφ  (Simulescu et al. 1989): 

 )()()( tSttg ×φ=  (26) 

The formulation of Yeh and Wen (1990) for )(tφ  was used: 

 )()( 0te
tD

tAt Ct
E

B

φ
+

=φ −  (27) 

where A, B, C, D, and E are constants, and )( 0tφ  is the normalizing factor set equal to maximum 

value of )(tφ  that occurs at 0tt = .  The Clough-Penzien spectrum (Clough and Penzien 1975) 

was assumed for )(tS , which has zero mean and a two-sided power spectral density function of 

the form: 
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where 0Φ  represents the spectrum level (normalized to unit mass) of the broad-band excitation 

at the base, gω  and gζ  represents the characteristic frequency and  damping ratio of the ground, 
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respectively, and fω  and fζ  represents the characteristic frequency and damping ratio of sub-

filter, respectively. 

A total of 100 earthquake ground acceleration time histories was generated based on the 

above procedure and then normalized to a peak ground acceleration (PGA) of 1.0g.  Nonlinear 

dynamic analyses were performed using the 6-story moment-resisting steel frame shown in 

Figure 2 with and without TMD installed, and a typical time history response comparison is 

shown in Figure 3.  As shown in this figure, there is typically no improvement in terms of 

displacement, velocity, and acceleration responses for using TMD when the structure is 

responding in the nonlinear domain, but there is a considerable improvement in increasing the 

damping energy dissipation while reducing the plastic energy dissipation when TMD is used.  

This shows, from the energy perspective, that TMD does in fact have the advantage of protecting 

the structure by reducing the damage caused by earthquakes. 

Figure 4 shows the comparison of the average maximum responses of the 6-story frame 

due to all 100 simulated earthquake ground motions.  Similar to the observation made for a 

single ground motion, there seems to be only slight reduction in the average maximum 

displacement and velocity responses when TMD is used, while there is practically no difference 

in the average maximum absolute acceleration, proving again that there is no enhancement of the 

nonlinear structural performance from the kinematic perspective when TMD is used.  Figure 5 

shows the comparison of average maximum energy responses due to all 100 simulated ground 

motions, both globally at the structure level and locally at the plastic hinge level.  Again, similar 

to the observation made for the response due to a single ground motion, the TMD has the ability 

to protect the structure by reducing the plastic energy dissipation, both globally and locally.  In 
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particular when TMD is used, a 25% reduction in local plastic energy dissipation is observed at 

PHLs #2 and #3, which are located at the base of the interior columns. 

 

SEISMIC FRAGILITY ANALYSIS 

Incremental dynamic analyses of each earthquake ground motion record were performed 

on the 6-story moment-resisting steel frame with and without TMD installed by scaling the entire 

earthquake with a scaling factor.  Because the original earthquake ground motion was 

normalized to a PGA of 1.0g, the scaling factor thus represents the resulting PGA of each 

earthquake.  The number of exceedance of the performance levels was then counted.  These 

performance levels include immediate occupancy (IO), life safety (LS), and collapse prevention 

(CP), and these limits for each performance level based on the maximum inter-story drift ratio 

set forth in the FEMA 440 document (FEMA 2005) is summarized in Table 2.  Once the number 

of exceedance is determined, the data were then fitted using a log-normal distribution by the least 

square method to obtain the fragility function.   

For this numerical study, in addition to using a tuned mass of 10% of the total structural 

mass to study the effect of TMD on the seismic fragility of structures, a further selection of TMD 

20% of the total structural mass is also included.  For a TMD of 20% mass, both the period of 

vibration and damping ratio were set to be the same as that of 10%, i.e., 0.2=TMDT  s and 

%5=ζTMD , and therefore the values of TMDm , TMDc , and TMDk  are simply doubled.  Figure 6 

shows the comparison of fragilities of the structure with and without TMD installed.  Several 

phenomena were observed: 

• There is practically no difference in results between the choice of TMD with 10% mass and 

TMD with 20% mass in terms of seismic fragility of the structure. 
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• The use of TMD enhances the fragility of the structure at IO and LS performance levels 

(i.e., low to moderate earthquakes, or zero to moderate nonlinearity in the structure) by 

shifting the fragility curves to the right. 

• TMD is ineffective at CP performance level (i.e., major earthquake, or large nonlinearity in 

the structure) in protecting the structure from collapse. 

 

CORRELATION OF DAMAGE WITH PERFORMANCE LEVELS  

The performance levels used in this study and presented in Figure 6 were evaluated based 

on the drift ratio limits of the global structure, which is highly dependent the types of materials 

and properties used in the lateral resisting system of the structure.  For example, if the structure 

is well designed and constructed, the structure can respond seismically to a higher level of 

displacement without suffering damage, and therefore the IO performance level has been 

achieved even at a larger drift ratio.  In view of this, a more accurate way of measuring 

performance levels may come from the local damage associated with each level of earthquake 

ground motion.  Therefore, an attempt to correlate damage with performance levels is 

investigated here by using fragility functions of the structure based on plastic energy dissipation 

and equivalent strain.  

Similar to normalizing the inter-story drift response by dividing the value with respect to 

the corresponding story height to attain the maximum drift ratio, a normalization method for the 

plastic energy is here proposed as follow: 

 PE Ratio 
⎪⎭
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where iA  and id  are respectively the cross-sectional area and depth of the corresponding 

member.  While the plastic hinge length is assumed to be equal to id , the product of iA  and id  

therefore gives the volume of the plastic hinge.  Finally, multiplying this plastic hinge volume 

with the yield stress of steel yf  gives an equivalent energy capacity of the member, which is the 

PE Ratio in Eq. (29) that can be used to benchmark across the different sizes of the member in 

the structure.  

 Another way of interpreting Eq. (29) is that when plastic energy iPE  is divided by the 

volume of the plastic hinge, i.e., ii dA × , plastic energy density is obtained.  Since plastic energy 

density represents the area under the stress-strain curve of any material, further dividing this 

plastic energy density by the yield stress of steel yf  gives the equivalent plastic strain.  

Therefore, PE Ratio can be view as the maximum of the “equivalent monotonic plastic strain” 

experienced among all the plastic hinges, where strain hardening is not considered. 

By selecting different PE Ratio limits, fragility curves were constructed and compared to 

the fragility curves based on drift ratios limits.  The best correlation of PE Ratio limit and drift 

ratio limit were found, and the results are presented in Table 2 for each performance level.  The 

mentality of correlating PE Ratio limit equal to zero with the IO performance level seems 

correct, since no structural damage should be expected in order to achieve immediate occupancy 

after an earthquake.  For a yield strain of steel of 0.00125, a PE Ratio = 0.002 at the LS 

performance level corresponds to an “equivalent monotonic strain ductility”, LSμ , of  

 6.2
00125.0

002.000125.0
=

+
=LSμ  (30) 

Similarly, a PE Ratio = 0.02 at the CP performance level corresponds to an “equivalent 

monotonic strain ductility”, CPμ , of 
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 0.17
00125.0

02.000125.0
=

+
=CPμ  (31) 

Figure 7 summarizes the correlation between PE Ratio limits and drift ratio limits at all 

three performance levels for the frame without TMD installed.  Similarly, Figure 8 shows the 

same for the frame with TMD of 10% mass, and Figure 9 shows that with TMD of 20% mass.  

While there is a consistency in the correlation at both the LS and CP performance levels, these 

figures show that the drift ratio limit of 0.005 at the IO performance level is far below the 

threshold to yielding, indicating that conservatism has been built into the limit set forth in FEMA 

440 (2005) at the IO performance level.  

Similarly, note that a plastic strain of 0.02 represents a level where the steel material 

begins its strain hardening behavior.  This means that equivalent monotonic plastic strain, or the 

PE Ratio, of 0.02 as the limit of the CP performance level is truly far away from fracture of the 

structural member, which indicates yet another level of conservatism has been built into the drift 

ratio limit set forth in FEMA 440 (2005) at the CP performance level. 

Figure 10 compares the average of the 100 values for the PE Ratios of individual plastic 

hinge in the structure with and without TMD installed at a PGA of 0.8g, which corresponds to a 

level of earthquake ground motion that produces a 50% of exceedance of the LS performance 

level when TMD of 10% mass is used (see Figure 8).  Similarly, Figure 11 compares the average 

PE Ratios of each plastic hinge in the structure with and without TMD installed at a PGA of 

1.3g, which corresponds to a level of earthquake ground motion that produces a 50% of 

exceedance of the CP performance level when TMD of 10% mass is used.  While the PE ratios 

are considerably lower when TMD is used (see Figure 10(b)) than without TMD (see Figure 

10(a)) at the LS performance level, the difference is less evident in Figure 11 at the CP 
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performance level, which again proves that TMD is ineffective in protecting structures during a 

major earthquake. 

A point worth mentioning in Figures 10 and 11 is that while TMD is effective in reducing 

the damage at the lower stories, it draws energy up to the structure to where the TMD is located.  

Therefore, larger PE ratios and damage are observed at the roof level, which is consistent with 

the conclusion obtained in Wong and Johnson (2009).   

 

CONCLUSION 

In this research, the effectiveness of using TMD in terms of global structural responses 

and local energy responses based on 100 simulated earthquake ground motions was studied.  

Seismic fragility analyses were conducted, and conclusions were drawn based on the simulated 

results.  The results showed that the use of TMD enhances the energy dissipation of the structure 

over a broad spectrum of earthquake ground motions normalized at PGA of 1.0g by dissipating 

larger amount of damping energy and lesser amount of plastic energy, which correlates directly 

to lesser damage in the structure. 

While TMD is ineffective in protecting structures against collapse, it has the ability to 

enhance the fragility of the structure at low to moderate seismic levels.  However, there seems to 

be significant conservatism on the limits of each performance level set forth in FEMA 440 for 

moment-resisting steel frames.  For example, when the immediate occupancy (IO) performance 

level is reached, the structure remains elastic and it can still withstand larger magnitude 

earthquakes before yielding begins.  In addition, when the collapse prevention (CP) performance 

level is reached, only moderate strain was observed and the structure still has the capability to 
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deform further without collapse.  Therefore, further research is necessary in standardizing the 

drift ratio limits of the performance levels. 
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TABLE 1.  Period of Vibration of the Elastic Structure 

Mode Period (s) 
1 1.22 
2 0.44 
3 0.25 
4 0.18 
5 0.14 
6 0.11 

 

 

TABLE 2.  Limits of Each Performance Levels 

Level Drift Ratio Limit PE Ratio Limit Equivalent Monotonic 
Strain Ductility 

IO 0.005 0 1.0 
LS 0.01 0.002 2.6 
CP 0.02 0.02 17.0 

 

 

 

Figure 1.  Elastic and inelastic displacements (to be changed). 
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Figure 2.  Six-story moment-resisting steel frame model. 
 
 

W27x94
W27x94

W27x94

W36x135

W36x150

W36x210

W36x210

W36x210

W36x210 W36x210

W36x210 W36x210

W36x210 W36x210

W36x150 W36x150

W36x135 W36x135

W
14

x2
83

W
14

x2
57

W
14

x1
93

W
14

x1
93

W
14

x3
42

W
14

x3
42

W
14

x2
57

W
14

x4
55

W
14

x4
55

W
14

x2
83

W
14

x5
00

W
14

x5
00

Ground
EL=0 m

2nd Floor
EL=4.57 m

3rd Floor
EL=9.14 m

4th Floor
EL=13.41 m

5th Floor
EL=17.68 m

6th Floor
EL=21.95 m

Roof 
EL=26.21 m

7.62 m 7.62 m 7.62 m

1

i

2 3 4

5
6

x

x

x

x

x

x

x i  -  Degree of Freedomth

6

5

4

3

2

1

i

7
8

9
10

11 12 13 14 15 16

17 18 19 20 21 22

23
24

25
26

27
28

29 30 31 32 33 34

393735
403836

-  Plastic Hinge Locationith

TMD



24 

 
Figure 3.  Comparison of time history responses of the frame with and without TMD installed for 

a single simulated earthquake record at PGA of 1.0g. 
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Figure 4.  Comparison of average maximum kinematic responses of the frame with and without 

TMD installed due to 100 simulated earthquake records at PGA of 1.0g. 
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Figure 5.  Comparison of average maximum energy responses of the frame with and without 

TMD installed due to 100 simulated earthquake records at PGA of 1.0g. 
 
 
 
 

 
Figure 6.  Comparison of fragilities of the frame with and without TMD installed at different 

performance levels. 
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Figure 7.  Correlation of performance level with damage for structure without TMD installed. 

 
 
 
 

Figure 8.  Correlation of performance level with damage for structure with TMD of 10% mass. 
 
 
 
 

Figure 9.  Correlation of performance level with damage for structure with TMD of 20% mass. 
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Figure 10  Comparison of local PE Ratios among plastic hinges for structure with and without 
TMD installed at 50% chance of exceedance of life safety (LS) performance level. 
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Figure 11  Comparison of local PE Ratios among plastic hinges for structure with and without 
TMD installed at 50% chance of exceedance of collapse prevention (CP) performance level. 
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