
1. Introduction

Acoustic thermometers determine the thermo-
dynamic temperature of dilute, high-purity argon or
helium by measuring the acoustic resonance frequen-
cies of a gas-filled cavity [1, 2, 3, 4, 5, 6, 7]. Because
these resonances have high quality factors, one can
measure the frequencies with relative uncertainties of
10 –6 or less. Therefore, uncertainty in determining the
thermodynamic temperature results from other factors
such as impurities in the gas or imperfections of the
model for a particular resonator. The model must
account for ducts used to flow gas into and out of the
resonant cavity as well as crevices at seams joining

sections of the cavity’s wall. At high temperatures, the
gas under study may be contaminated by outgassing
water, hydrogen, etc. Flowing high-purity gas through
the resonator via ducts (long, thin tubes) effectively
mitigates the problem of outgassing [3, 4, 5]. Ducts are
also useful as acoustic waveguides to transmit sound
between a resonator at high temperature and transduc-
ers located near ambient temperature [ 8, 9]. This prac-
tice circumvents the problem of manufacturing effi-
cient, stable electroacoustic transducers and cables that
function at high temperatures.

In this paper, we calculate the perturbations of the
acoustic resonances of gas-filled cavities caused by
circular ducts used either for gas flow or as acoustic
waveguides coupled to remote transducers. First, we
review the well-established model for the acoustic
admittance of circular ducts based on transmission line
theory [10, 11, 12, 13]. We calculate the perturbations
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to the resonance frequencies and half-widths of the
modes of spherical and cylindrical acoustic cavities as
functions of the duct’s radius, length, and also as a
function of the location of the transducers along the
duct’s length. To verify the model for a circular duct,
we measured the complex acoustic admittances of a
series of circular tubes as a function of length between
200 Hz and 10 kHz using a three-port acoustic coupler.
Over this frequency range, the root mean square differ-
ence between the measured and modeled specific
admittances of a 1.4 mm ID, 1.4 m long tube was
0.018. We conclude by discussing design considera-
tions for ducts leading to acoustic thermometers.

2. Acoustic Model for Circular Ducts

See Refs. [12] and [13], and references cited therein,
for a detailed description of the acoustic model for a
duct with a circular cross section. The model is valid
for frequencies below the “cutoff frequency” fco , the
frequency below which only plane waves propagate. If
the duct’s radius is rd and the speed of sound in the gas
is c, then fco ≈ 0.29 c /rd or about 140 kHz for ambient
air in a 1.4 mm ID duct. We adopt the e iω t time depend-
ence convention, consistent with Refs. [12] and [13].
We restrict the discussion to ducts with length ld >> rd

and thereby neglect the effects of non-planar flow and
sharp corners at the ends of the ducts [12]. Finally, we
assume that the cross-sectional area of the duct
Ad = πr 2

d is a small fraction of the resonator’s surface
area.

The model’s central result is that the acoustic
pressure p~± and volume velocity U~

± of damped
traveling waves in a duct are plane waves proportional
to e ± Γ z + iω t, where the propagation constant Γ is given
by

(1)

Furthermore, the ratios p~+ /U~
+ and p~– /U~

– define the
characteristic impedance Z0 of the medium in the duct

(2)

The real part of Γ is a measure of the damping of
these traveling waves; Z0 determines the phase between
p~± and U~

± . The quantities Fv and Ft are functions of

frequency that account for thermoacoustic dissipation
near the duct wall. For a duct with radius rd , the
thermal loss function is

(3)

expressions, ρ is the density, c is the speed of sound, η
is the shear viscosity, λ t is the thermal conductivity, CP

is the isobaric heat capacity per unit mass, CV is the
isochoric heat capacity per unit mass, and γ is the heat
capacity ratio CP /CV . Fv and Ft are complex-valued
functions of δv /rd and δ t /rd , respectively. The length
scales δ t and δ v are not independent but are related via
the Prandtl number Pr = ηCP /λ t by the expression
δ v = δ t√

–P–r. Since Pr for monatomic gases is a weak
function of temperature and pressure, we describe the
damping of waves in a duct in terms of δ t /rd only.

The model for finite-length tubes includes reflec-
tions from the ends. The interference between these
counter-propagating waves produces standing waves at
particular frequencies. Such tube resonances pose a
problem if they occur too close in frequency to the
cavity’s modes used for thermometry and are insuffi-
ciently damped. To model a tube with finite length, we
use a lumped-element equivalent circuit defined by
a T-network as described in Ref. [12]. The input
impedance of a tube with length ld , terminated by an
acoustic impedance Z T is

(4)

In the following sections, we investigate the pertur-
bation that such a tube or combinations of tubes has on
the modes of acoustic resonators.

3. Perturbation of the Modes of an Acoustic
Cavity by Ducts

Consider the acoustic modes of a gas in a closed cav-
ity. The acoustic velocity potential Ψ for the mode N is
a solution to the homogeneous Helmholtz Equation
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(5)
and satisfies a set of boundary conditions defined by
the properties of the gas and the shape of the cavity.
[The “acoustic” fields (velocity, pressure, and tempera-
ture) are the propagating solutions of the linearized
equations of motion. The diffusing solutions (thermal
and shear evanescent waves) are important near the
boundary and define the acoustic boundary layers.] We
assume here that ΨN and the eigenvalue κ N are known
(either from analytical or numerical calculation) and
describe the mode of our “unperturbed” resonator. For
simplicity, we assume that the mode is non-degenerate.
Acoustic resonators typically have holes in the wall to
admit/remove gas and ports for acoustic transducers.
For measurements at extreme temperatures, it may be
necessary to use small tubes (ducts) as acoustic wave-
guides to convey sound to and from remote transduc-
ers. Changes to the cavity wall such as these change the
boundary conditions on the acoustic wave in the vicin-
ity and, therefore, slightly alter ΨN and κ N . For metrol-
ogy applications, these perturbations must be quanti-
fied with high accuracy.

We focus on spherical, quasi-spherical, and cylindri-
cal cavities. Each shape has advantages. Spherical
cavities are characterized by a single length (the
radius). Quasi-spherical cavities are nearly spherical
cavities with a known shape perturbation that splits the
degeneracy of the microwave modes and the non-
radial acoustic modes of a perfect sphere. The radially-
symmetric modes of a gas-filled quasi-spherical cavity
are affected by the shape perturbation only in the
second order. Thus, the first-order results in this paper
for spherical cavities apply to quasi-spherical cavities
as well. Since the wave velocity of a radial mode in a
spherical cavity is normal to the cavity’s wall, there is
no viscous boundary layer dissipation. Therefore, the
quality factors (Q) of radial modes in spherical cavities
are substantially higher than the Qs of modes in non-
spherical cavities with the same volume.

The modes of a fixed-length cylindrical cavity are
determined by two parameters: its radius and its
length. An acoustic interferometer is a cylindrical
resonator in which one end is a moveable piston, so that
the cavity’s length is variable. The interferometer is
operated at a fixed frequency while the length is varied
through a succession of resonances [14]. With the inter-
ferometer, the speed of sound is determined not from an
absolute length but from the measured displacement of
the piston between successive resonances. Further-
more, since the measurements are at fixed frequency,
the perturbations from the end plates cancel out to first

order. An alternative to the interferometer, which
avoids the complications of a moveable piston, uses
two cylindrical resonators in which the length of one is
twice the length of the other. The modes of the shorter
cavity occur at the same frequencies as the even-order
modes of the longer cavity. The combined measure-
ments from both cavities at the same frequencies also
have the advantage that the perturbations from the
endplates cancel to first order.

The theory for calculating boundary perturbations
has been published elsewhere [15]. From first-order
perturbation theory, the shift of the eigenvalue κ N due
to a non-uniform surface admittance is

(6)

where y (ω, rS) is the specific acoustic admittance at
point rS on the boundary. In terms of the acoustic
velocity u~ ac and the acoustic pressure p~, y (ω, rS) is
defined as

(7)

where n∧ is the outward pointing normal unit vector at rS.
For the ideal resonator, the walls are assumed to have

zero admittance. The presence of the duct changes the
shape from the perfect resonator and therefore changes
the mode wavenumbers, because the acoustic wave
propagates into the duct and may be partially reflected
back into the resonator. Furthermore, a lossy duct caus-
es additional thermoacoustic dissipation. Thus, the
acoustic wave in the resonator locally “feels” a larger
admittance at the entrance to the duct than at the
cavity’s wall. If the duct’s diameter is small compared
to the cavity’s diameter, then the long-wavelength
acoustic waves will not vary appreciably over the cross
section of the duct; therefore, we can expand Ψ about
the duct position r d and use the average admittance of
the duct over its cross section y–d . The leading term in
the approximation to the surface integral in Eq. (6) is

(8)

The wavenumber for the nth radial mode of a spher-
ical resonator with radius a is changed by a fractional
amount, from Eq. (6),

(9)
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where z 0n denotes the nth zero of dj0 (x) /dx, n = 2, 3,
4, …. Because of the spherical symmetry, the perturba-
tion of the radial-mode wavenumbers does not depend
on the location of the duct.

For the l th longitudinal mode of a cylindrical
resonator with radius R and length L, Eq. (6) becomes

(10)

where 0 ≤ z d ≤ L is the axial location of the duct and
l = 1, 2, 3, …. The first-order perturbation of longitu-
dinal modes when the duct mounted on an endplate
(z d = 0, L) is independent of where on the endplate the
duct is located. The position of the duct z d must be
chosen carefully based on the duct’s purpose. For ducts
used with remote transducers, there is a competition
between the desire for small perturbations and the
desire for efficient coupling with the acoustic modes
of the resonator. The perturbation will be smallest
when the duct is placed near a pressure node, i.e.,
2lz d / L = 1, 3, 5, ….; however, at this location the
coupling between the mode and the transducers is
least efficient. The perturbation will be largest when
the duct is placed near a pressure anti-node, i.e.,
2lz d /L = 0, 2, 4, 6,… and the coupling will be most
efficient. Node placement is a good choice if the duct’s
purpose is to flow gas into and out of the resonator;
however, it may be a bad choice if the duct is a wave-
guide leading to a remote transducer. When the cavity’s
length is fixed, the locations of the pressure nodes and
anti-nodes on the cylindrical wall depend on the mode.
With an interferometer, the cavity length is varied
between two extremes Lmin and Lmax, and the frequency
(and therefore wavelength) is held constant. Therefore,
the locations of the pressure nodes and anti-nodes are
fixed in space. This feature of the interferometer
suggests that an arrangement where the acoustic wave-
guides are located on the fixed endplate to maximize
the coupling to all the modes, and the fill ducts are
attached to the side of the resonator at z d = Lmin /2
at the pressure node. The disadvantage to this arrange-
ment is that it only works for the odd-symmetry modes,
which are susceptible to the effects of center-of-mass
motion. A better method is to locate the fill ducts and
the waveguides on the endplates, study only the even-
symmetry modes (to avoid center-of-mass motion), and
rely on the cancellation of the first-order perturbations.

In the following sections, we model the acoustic
admittance of several duct geometries. Then we esti-
mate the perturbations due to the duct on the radial

modes of a 5 cm radius spherical resonator and on the
longitudinal modes of a 5 cm radius acoustic interfero-
meter with variable length between 10 cm and 20 cm.

3.1 Infinite-Length Duct With Uniform ID

We first consider an infinitely long duct with inner
radius rd . An acoustic wave entering the duct (point P
in the inset in Fig. 1) travels to the right and damps
away with no reflection back to the resonator. As stated
in the introduction, the input impedance for such a duct
is just the characteristic impedance given in Eq. (2).
The specific acoustic admittance for the infinite tube is,
therefore,

(11)

The perturbation of a resonator mode, calculated
from Eqs. (9) and (10), shifts the mode’s wavenumber 
(and resonance frequency) by an amount proportional

(12)

We recommend caution when using Eq. (12) for
noble gases because the imaginary part is subject to
large errors even when δ t /rd is as small as 0.1. In prac-
tice, however, the error in Re(ΔK /κ ) introduced by the
wide tube approximation is less than 1 × 10–6 when
a /δ t > 200 for the (0,2) mode of a sphere or R/δ t > 400
for the first longitudinal mode of a cylinder.

Figure 1 shows the calculated admittance of an
infinite duct (rd = 0.7 mm) filled with argon at 273 K
for pressures of 0.02 MPa (dashed curves) and
0.4 MPa (solid curves). The normalized admittance

either the radius of a spherical resonator or the radius of
a cylindrical resonator and is assumed to be 50 mm in
either case. The arrows in the figure locate radial modes
of a sphere, and the horizontal bar shows the range of
ka that will excite longitudinal modes of an interfero-
meter with length L in the range 10 cm < L < 20 cm. We
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1.95 × 10– 4. For the (0,2) mode of a sphere (ka ≈ 4.49),

3.2 Two-Stage Infinite Tube

We now examine a two-stage infinite tube shown in
the inset in Fig. 2. A smaller diameter duct with radius
rd and length ld is inserted between the resonator and the
infinite duct discussed in Sec. 3.1. The wave present in
the short duct will be partially reflected at points P and
P′ giving rise to standing waves at specific frequencies.
Neglecting the effects on the acoustic field of the
abrupt transitions at the duct ends, we assume that the
pressure and volume velocity are continuous 1-dimen-
tional functions of z. The pressure and volume velocity
in the duct are

(13)

respectively, and in the infinite tube we have

(14)

We match the impedances in the two ducts at point P′, 

ance at point P, Zd = (Ud /pd ) z = 0 , to eliminate pR/pL .
Rearranging, we obtain

(15)

Equation (15) has the same form as the equation for a
finite-length lossy transmission line (i.e., the small
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Fig. 1. The specific acoustic admittance of an infinite duct, from Eq. (11) multiplied by i (rd / a) 2, as a function
of ka. The duct is assumed to be filled with argon at 0.02 MPa (dashed) and 0.4 MPa (solid) at 273 K.
– Re: – 1 × real part, Im: imaginary part. The model assumes r d = 0.7 mm and the (spherical or cylindrical) res-
onator radius a = 50 mm. The arrows in the lower right corner locate the first five radial modes of a sphere. The
horizontal bar shows the range that will excite longitudinal modes of an interferometer with length L variable
between 9 cm and 19 cm.
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duct) terminated by the impedance Z0′. Derivation of
this expression from an equivalent T-network is given
in the next section. The specific acoustic admittance at
the duct entrance is

(16)

with the definition y–0 ≡ ρc / (Ad Z0). Figure 2 shows the
specific admittance for the two-stage infinite tube
(rd = 0.35 mm, ld = 50 mm) from Eq. (16) scaled by
i (rd /a)2, where a = 50 mm is either the radius of a
spherical cavity or the radius of a cylindrical cavity.
The acoustic medium is assumed to be argon at 273 K
and 0.02 MPa (dashed) and 0.4 MPa (solid). For
comparison, the specific admittance of the uniform
infinite tube from Eq. (11), scaled by i (r′d /a)2, where
r′d = 0.7 mm, is also shown. The peaks in y–d indicate
damped resonances. The left-most peak, near ka = 0, is
a Helmholtz mode in which gas moves asymmetrically
between the resonator and the infinite tube through the

small duct. The other peaks are resonances in the small
duct. Between the resonances are regions where the
admittance is small.

The length of the short tube in Fig. 2 was chosen
such that the modes of the spherical cavity fall in
between the modes of the duct where the admittance is
near zero. By comparison, the characteristic imped-
ances of the long tube and of the cavity are small
compared to the characteristic impedance of the short
duct, so the duct itself is nearly a half-wave resonator
with resonances when ka ≈ mπa / ld , with m a positive
integer. The anti-resonances (minimum amplitude)
occur when ka ≈ (m+1/2)πa / ld . The low-lying radial
modes of a spherical cavity will be close to these anti-
resonances if ld = a.

For a cylindrical cavity, the optimum arrangement is
different. If r d′ > rd , as in the inset of Fig. 2, the odd-
symmetry longitudinal modes can be placed near the
anti-resonances if, for example, ld = 1.5 L . However,
both the even and odd-symmetry modes cannot be
placed near anti-resonances. On the other hand, if we
choose r d′ < rd , then the short duct will be nearly a 
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Fig. 2. The specific acoustic admittance for the two-stage infinite tube, from Eq. (16) multiplied by i (rd / a) 2, as
a function of ka. The duct is assumed to be filled with argon at 0.02 MPa (dashed) and 0.4 MPa (solid). The
locations of the first 5 radial modes of a sphere are indicated by arrows.
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quarter-wave resonator with anti-resonances when
km = mπ / ld . If we further choose ld = 1.5 L , the even-
symmetry modes of the cavity fall between the modes
of the short duct. 

3.3 Finite-Length Tube With Uniform ID
The inset in Fig. 3 shows a sketch of a tube (with

diameter 2rd and length ld ) terminated by an impedance
Z T . This arrangement is suitable for a fill duct in which
the terminal impedance results from a chamber with
volume Vc , such as a valve. In this case, since the
chamber’s dimensions are smaller than an acoustic
wavelength, Z T will be the impedance of the chamber
volume, given by

(17)

where Sc is the chamber’s surface area. If the duct
is open into a pressure vessel, then the termination

impedance will likely be dominated by the radiation
impedance except perhaps near the resonances of the
pressure vessel. Radiation impedance is discussed in
Sec. 4. The specific acoustic admittance for this
arrangement is

(18)

ted in Fig. 3 as a function of ka for a tube 3 meters long.
The acoustic medium is assumed to be argon at
0.02 MPa and 0.4 MPa. The oscillations in the admit-
tance in Fig. 3 are due to resonances that occur in the
tube. The locations of the resonances are sensitive to
the termination impedance, however the envelope
defined by the peak-to-peak oscillations is determined
primarily by the damping in the tube. Therefore, this
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envelope gives an estimate of the uncertainty in the
admittance if the termination volume Vc is unknown.
The uncertainty in the admittance defined by the
envelope is approximately

(19)

where the attenuation length la ≡ 1/Re(Γ) is the charac-
teristic distance that the wave travels in the tube before
it damps out (see Sec. 3.5). The attenuation length is
about 0.6 m for sound at the frequency of the lowest
radial mode (ka = 4.49 ) in a tube with an inner radius
of 0.7 mm filled with argon at 273.16 K and 0.4 MPa
pressure. For the dimensions used in Fig. 3 and 0.4 MPa,

A special case of an open-ended tuned-length tube is
worth considering here. Resonators are usually placed
in a pressure vessel to reduce the dimensional changes
caused by changes of pressure and to provide thermal

isolation. A short open tube can provide a means of
changing the gas pressure in the resonator quickly,
instead of the much slower method through a long tube.
We caution, though, that a duct open to a pressure ves-
sel may cause difficulties if an acoustic mode of the
vessel overlaps with a mode of either a spherical or
cylindrical cavity.

3.4 Two-Stage Tube With Termination
We now investigate a 2-stage tube in which the open-

ing into the resonator is through a short duct with a
smaller diameter, as shown in the inset in Fig. 4. We
can use the methods in the previous sections to write
the admittance at point P as

(20)

where y–d′ is the admittance at point P′ from Eq. (18). In
Eq. (20), y–0 and the unprimed quantities with subscript d
refer to the short duct. The results are shown in Fig. 4.
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3.5 Design Suitable for Remote Transducers
When tubes are used as acoustic waveguides to

transmit sound between the resonator and remote trans-
ducers, the perturbation due to the waveguides must be
weighed against the signal-to-noise ratio. If not proper-
ly addressed, these issues may result in an unacceptably
large uncertainty with which the speed of sound or
temperature is measured. For example, if a detector
microphone is placed at the end of the waveguide, as in
the inset of Fig. 3, resonances will occur in the wave-
guide at specific frequencies due to the impedance mis-
match between the duct and the transducer. Weakly-
damped resonances in the waveguides may couple to
the modes of the resonator causing significant fre-
quency shifts; furthermore, the unwanted resonance
response of the tube that may be difficult to deconvolve
from the resonator’s response. The reflections and the
tube resonances can be strongly damped if the wave-
guide is sufficiently long, but then the attenuation of the
desired signal will reduce the signal-to-noise ratio.
These and other issues will be discussed in more detail
in a forthcoming publication [16]. We give the basic
concepts below.

A successful design, implemented by Ripple, et al.
[9] for the detector and its waveguide, is to mount the
detector (T) as a branch with impedance Z D on a long
waveguide at an intermediate distance l1 from the
resonator, as shown in the inset of Fig. 5a. For this
split-tube design, the admittance at P is

(21)

where y D ≡ (pc /A d ) ZD
– 1, and y–d′ is the admittance at

P′ given by

(22)

If ld′ is sufficiently large, then a wave at P′ traveling to
the right will be damped out before it reaches the end
of the waveguide. The characteristic length for damp-
ing is the attenuation length la , the distance a wave
must travel for the acoustic pressure to be attenuated to
1/e of its initial value. Thus, if ld′ la then y–d′ ≈ y–0

from Eq. (22), and y–d in Eq. (21) will be insensitive
to Z T.

The scaled admittance i (rd / a)2 y– d in the limit
ld′ → ∞ is plotted in Fig. 5a for Ripple’s sphere, which
had a radius of 9 cm. The transducer Ripple used was a

commercially-available micromachined microphone
with an estimated internal volume of 8.8 mm3 and inter-
nal surface area of 60 mm3. The transducer was con-
nected to the waveguide through a short duct with
radius rn = 0.5 mm and length ln = 0.6 mm. We approx-
imated the transducer impedance Z D by the sum of the
short duct’s impedance Z neck ≈ (pc /πr 2

n ) ikln / (1 – Fvn ),
where Fvn is the viscous loss function, and the volume’s
impedance Z vol from Eq. (17) with Vc = 8.8 mm3 and
surface area Sc = 60 mm2. The oscillations of the admit-
tance in Fig. 5a indicate resonances in the short
section (l d = 0.4 m, rd = 0.7 mm) between the resonator
and the transducer. The details of these oscillations are
controlled by the reflection coefficient at point P′,

ions (also shown in Fig. 5a) has the form

(23)

The shape of the envelope is determined from two
competing phenomena: 1) the magnitude of the reflec-
tion coefficient |R | increases as ka (or the frequency)
increases, and 2) the attenuation length decreases as ka
increases. The attenuation length for a circular duct is

(24)

where the approximation is valid for δt << rd . Equation
(24) tells us that acoustic waves in a duct travel the
furthest at low frequencies and high gas densities, all
else being equal. The perturbation from the wave-
guide and the transducer on the acoustic modes is
shown in Fig. 5b. We estimate the perturbation of
the (0,2) mode’s resonance frequency Re(ΔK /k) to be
±0.4 × 10–6 based on the envelope in Eq. (23).

If both the source and detector are mounted remote-
ly, then the attenuation in both waveguides must be
taken into account. An acoustic wave with pressure
amplitude p~S at the source is attenuated as it propagates
a distance l S down the waveguide to the resonator, gets
amplified by the resonance quality factor
Q N , and is again attenuated as it further propagates a
distance l D down a similar waveguide to the detector
where the acoustic pressure is p~ D. The ratio of pres-
sures p~

D
/p~

S
is proportional to QN e– ( ls + lD ) / la , which is

useful to estimate the source strength needed to achieve
a desired signal-noise ratio.
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Fig. 5. An infinitely long waveguide (r d = 0.7 mm) with a transducer (T) located ld = 0.4 m from the resonator
is shown in the inset. The transducer’s impedance is described in the text. Results for argon at 273 K and
pressures of 0.02 MPa (dashed) and 0.4 MPa (solid) in a 9 cm resonator are shown [9]. (a) The real part (red,
dark red) and the imaginary part (green, blue) of the normalized specific admittance from Eq. (21). (b) The real
part (red, dark red) and the imaginary part (green, blue) of the fractional perturbation from Eq. (9).



4. Experimental Details

We studied the acoustic propagation between 200 Hz
and 10 kHz in 1.4 mm ID tubes using a 3-port acoustic
coupler as shown in Fig. 6. The internal chamber of the
coupler was conical with a volume of 134 mm3 (deter-
mined from dimensional measurements). The sound
source was a 6 mm diameter condenser microphone
cartridge (Brüel & Kjær2 4135) mounted in a flange
and placed in one of the ports. The detector was a 3 mm
diameter condenser microphone (Brüel & Kjær 4138)
and preamp (Brüel & Kjær 2669) placed in a second
port. The third port held the tube under study. The
microphones and the tube were positioned flush with
the interior surface of the coupler and were secured
with elastomer o-rings and a small amount of grease to
fill the crevices. The coupler was operated in ambient
air. The temperature of the coupler and the air pressure
were continuously recorded. The properties of air from
NIST’s properties database REFPROP [17] were used
to correct for temperature and pressure changes. The
admittances of the tubes are determined with a ratio-
metric method (described below); therefore, most of 
the systematic errors due to the properties of air drop
out to first order. The tube admittance is a function of
kl d = 2π f ld /c . Since the frequency is known with high
accuracy, the uncertainty of the admittance is dominat-
ed by the uncertainty in the quantity ld /c . The uncer-
tainty in the length measurement u (ld ) is 0.5 mm, and
the relative standard uncertainty of the speed of sound
u (c) /c is 0.001.

The experimental electronics were arranged as
shown in Fig. 7. A sinusoidal drive voltage VG at
frequency fG from a Hewlett-Packard 3225B function
generator was amplified and applied to the source
microphone. The applied root mean square (rms) volt-

age was nominally 20 V, but depended on the frequen-
cy. The actual rms drive voltage VS(scaled by a factor
of 0.008 with a voltage divider) was measured at each
frequency with a digital lock-in amplifier (Stanford
Research SR8350). The signal from the detector
microphone VD(at frequency 2fG) was measured with a
second lock-in amplifier. Both the detector and source
lock-in amplifiers were referenced to the applied drive
voltage to eliminate phase shifts from the external
electronics. The detector voltage VD was proportional
to VS

2, as explained in Appendix A. To remove the
frequency dependence of VS , we normalized the detec-
tor voltage by (20 V/VS)2. The acoustic pressure was
determined from the expression

(25)

The observed root mean squared noise in the
acoustic pressure was about u ( pa ) = 0.001 pa . This
noise level is consistent with fluctuations in ambient
temperature and pressure on the time scale of the meas-
urement at each frequency, since the temperature and
pressure of the air in the coupler and the tubes was not
controlled.
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Fig. 6. 3-port acoustic coupler used to measure the impedance of
small tubes.

2 Certain commercial equipment, instruments, or materials are iden-
tified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the
purpose.

( )( )( )2
a D S0.001 Pa V 20 V .p V V= μ



We studied 9 different lengths all cut from the
same tube: 1601.12 mm, 1400.94 mm, 1200.77 mm,
1000.59 mm, 800.01 mm, 599.84 mm, 399.86 mm,
199.48 mm, and 98.51 mm. (These lengths resulted from
fits to the admittance data; however, they all were with-
in the 0.5 mm uncertainty of direct measurements of
the length using a steel scale.) We determined the inside
diameter of a 3 meter length of the tube from measure-
ments of the pressure drop across the tube produced by
a known flow rate of nitrogen gas. The rate of flow
through the tube was measured with a mass flow trans-
fer standard (DH Instruments, Molbloc-L, calibrated by
the NIST Fluid Metrology Group) attached to the
upstream end of the tube. The downstream end of the
tube was open to the room. The Molbloc’s downstream
pressure transducer was fitted with a two-way valve
that enabled us to measure sequentially the pressure at
the junction between the Molbloc and the tube, then
ambient room pressure. The difference between the two
pressures was a measure of the pressure drop across
the long tube. We used three flow rates (nominally
74 μmol/s, 220 μmol/s, and 450 μmol/s) in order to
check for nonlinear effects. We analyzed the data with
the detailed model for flow in a circular tube described
by Berg [18]. A small correction due to the increase in
kinetic energy at the tube entrance was applied to the
flow rate in accordance with Eq. 40 in Ref. [18]. This
correction increased the flow rate by at most 1%. Based 
on these measurements, we determined the tube’s inner
diameter to be (1.377 ± 0.005) mm.

The longest tube (1601.12 mm) was used to deter-
mine the acoustic source strength U0 based on the
measured acoustic pressure and the calculated imped-
ances. The source strength was then used to determine
the tube impedance from the measured acoustic
pressure for the other tube lengths.

The lumped-element model for the acoustic coupler,
the source, and the tube is shown in Fig. 8. The acoustic
source is modeled as a current source that generates a
volume velocity U0 e iωt . The acoustic impedance of the
coupler volume is denoted Z V, and the tube impedance
is modeled as a waveguide T-network. The small
impedances Z end and Z rad are corrections that account
for the imperfect flow fields near the tube end inside
the coupler and near the open end, respectively. The
detector microphone measures the acoustic pressure pa

in the coupler volume as indicated in the figure. If we
neglect the small end correction Z end in Fig. 8, the
acoustic pressure in the coupler generated by the source
is given by pa = U0 Z total , where the total acoustic
impedance seen by the source is

(26)

In order to include the end effect impedance Z end in
Eq. (26), we simply replace Z tube with Z tube + Z end .

In the frequency range studied here, the wavelength
of sound was always much larger than the coupler’s
internal dimensions. Under these conditions, the
acoustic impedance of a chamber has been shown
to be insensitive to the geometry but dependent
simply on the volume and surface area. Therefore, the
impedance of the coupler volume was assumed to be
given by [19]

(27)
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Fig. 7. Electronic circuit.
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The input impedance of a tube with radius rd and length
ld is given by [see Eq. (4)]

(28)

where the characteristic impedance Z 0 and the propaga-
tion parameter Γ include the effects of the thermo-
acoustic boundary layer in the tube. The radiation
impedance Z rad has the form (for krd << 1)

(29)

where δ R is the orifice resistance parameter and δ I is
the inertial end correction for sound radiating from the
end of an unbaffled open tube. We used the results of
Levine and Schwinger [20] for an infinitely thin wall
tube

(30)

where ε i 0 = 0.6127, ε i 2 = – 0.1750, and γ e is Euler’s
constant. For convenience, we define the specific

acoustic impedance z rad ≡ (Ad /pc)Z rad , and the admit-
tances yV ≡ (pc /Ad )(1 /ZV), and y tube = (pc /Ad )(1 /Ztube ),
and y0 = (pc /Ad )(1 /Z 0). With these definitions and sub-
stitution from Eq. (28), the admittance of the tube is

(31)

A plot of yV is shown in Fig. 9.
We attempted to determine the source strength with

the tube port plugged, however we were not able to
obtain a consistent and repeatable seal around the plug
and tubes. Instead, we started with the longest tube
(1.6 m) mounted flush with the inner coupler wall,
measured the acoustic pressure as a function of
frequency, and then cut portions off the tube’s free end
to change the length without disconnecting the tube
from the coupler. In this way, the baseline conditions at
the coupler end were undisturbed and could be reliably
eliminated.

Figure 10 shows the measured acoustic pressure with
the 1.6 m long tube in place. The source strength U0

was determined from the measured acoustic pressure
combined with the calculated impedances of the cou-
pler and tube from Eqs. (26)-(28). In terms of admit-
tances, the source strength is

(32)
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Fig. 8. Acoustic model of the acoustic coupler, source, and tube.
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Fig. 9. The admittance of the coupler volume yV = (ρ c / Ad ) (1 / ZV) from Eq. (27) as a function of frequency.

Fig. 10. The measured acoustic pressure for the 1.6 m tube.



where p 160 is the measured acoustic pressure, y 160 is
given by Eq. (31) for the 1.6 m tube. The theoretical
tube impedance is plotted in Fig. 11, and the source
strength deduced using Eq. (32) from the measured
acoustic pressure with no adjustable parameters is
shown in Fig 12.

The simple model for the source given in Appendix A
predicts a linear frequency dependence for the source
strength with a slope that is consistent with the slope of
Re(U0 ) in Fig. 12. At 1000 Hz, the measured source
strength was 0.098 mm3/s compared to the predicted
value 0.091 mm3/s with no adjustable parameters. The
simple model in Appendix A does not predict the
observed Im (U0 ), however. Measurements of the
acoustic pressure above 10 kHz revealed that the
increase in Re(p) with frequency [and therefore the
increase in Im(U0 )] is due to the tail of a large reso-
nance at 40 kHz, presumably of the membrane. For all
the measurements presented here, the source strength
was limited by the microphone’s effective volume and
membrane tension, but not limited by the impedance of
the coupler or the attached tubes. We therefore used the
same source strength function for all the tubes in order
to deduce the tube impedances.

After shortening the duct by cutting off a section,
leaving the attachment to the coupler unaltered, the
acoustic pressure as function of frequency was again 

measured. The admittance of the tube with new length
l was determined, with no adjustable parameters, from

(33)

Figure 13 shows the measured acoustic pressure for
the 1.4 m length, and the measured tube admittance is
plotted in Fig. 14 as a function of frequency. Also
plotted in Fig. 14 are the theoretical admittance (solid
curve) and the deviations between the measured and
calculated values. The root mean square difference
between the measured and modeled specific admit-
tances (both real and imaginary parts) over this fre-
quency range was 0.018. The observed noise in the
measured acoustic pressure mentioned previously
accounts for the scatter in the deviation in Fig. 14.
Figures 15 and 16 show similar plots of the acoustic
pressure and the measured admittance for the 100 cm
long tube.

We observed the largest systematic deviations
between the measured and predicted admittances of the
shortest tubes, where the admittance is more sensitive
to errors in the length and to the details of the termina-
tion impedance. The attenuation length l a = 1 /Re(Γ)is
a measure of how far the wave propagates down a long
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Fig. 11. The specific acoustic admittance y160 for the 1.6 m tube from Eq. (31) as a function of frequency.
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Fig. 12. The measured source strength U0 as a function of frequency.

Fig. 13. The measured acoustic pressure for the 1.4 m tube.



tube before damping out. Lower frequency waves
travel further than higher frequency waves: l a = 1.4 m
at 200 Hz, whereas l a = 0.22 m at 10 kHz. At 200 Hz,
the acoustic pressure at the open end of the 20 cm long
tube is attenuated by only 13 % of the acoustic pressure
in the coupler. Once the wave leaves the open end, the
attenuation length is significantly longer.

Our impedance measurements are comparable to the
1982 measurements by Rasmussen [10]. He compared
the measured and calculated acoustic transfer
impedance of a coupler fitted with standard laboratory
microphones and two narrow, open-ended tubes. The
transfer impedance was measured using a reciprocity

technique. Both tubes had a radius of 0.234 mm and
a length of 1 m. Rasmussen reported a plot of
the change (in dB) of the coupler impedance when
the tubes were blocked compared to when the tubes
were open. Rasmussen showed that a particular
expression for the low-frequency acoustic impedance
of a narrow tube (used to correct the coupler impedance
for microphone calibrations) was subject to large
systematic effects at sufficiently low frequency.
Unfortunately, insufficient information was given
to directly compare the measured and calculated
impedance of a single tube without the coupler.
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Fig. 14. (upper) The measured and calculated admittance for the 1.4 m long tube as functions of frequency.
(lower) The difference between the measured and calculated admittance. The standard deviation of the
difference is 0.018.
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Fig. 15. The measured acoustic pressure for 1.0 m tube versus frequency.

Fig. 16. (upper) The measured and calculated admittance for the 1.0 m long tube as
functions of frequency. (lower) The difference between the measured and calculated
admittance.



5. Discussion and Recommendations

Figure 17 shows Δ K /κ from Eq. (9) with z 0 n

replaced by ka and y–d due to the single-stage duct
(dotted) and two-stage duct (solid) considered in
Secs. 3.3 and 3.4 plotted as a continuous function of ka.
The predicted perturbations of the radial modes of a
spherical cavity (with a = 5 cm) are found for the
values of ka indicated by the arrows. The perturba-
tions of the (0,2) mode from the single-stage duct
are (0.20 + 10.7i )× 10–6 and (0.02 + 10.9i )× 10–6 at
0.02 MPa and 0.42 MPa, respectively. The perturba-
tions of the (0,2) mode from the two-stage duct are

(0.6 + 2.5i )× 10–6 and (–0.08 + 1.1i )× 10–6 at 0.02 MPa
and 0.42 MPa, respectively. At the higher pressure
(0.4 MPa), the modes of the sphere coincide with the
anti-resonances of the short duct since we chose the
length of the short duct l d = a . The rapid oscillations
that occur near and below ka = 1 are due to resonances
in the 3 m long duct.

The perturbations for the longitudinal modes of a
(5 cm radius) cylindrical cavity, from Eq. (10) with lπ
replaced by kL, are obtained by multiplying the vertical
axes in Fig. 17 by (0.2 m) /L . However, the 2-stage
arrangement with rd < rd′ , used to generate the plots,
is not optimal for a cylindrical cavity. For the
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Fig. 17. The perturbations for a spherical resonator from Eq. (9) for the single-stage duct (dotted) and two-stage duct (solid), discussed in Secs.
3.3 and 3.4, are plotted as a continuous function of ka. The sphere’s radius is assumed to be 5 cm.  The values of ka for the radial modes are indi-
cated by the arrows. The perturbations for a (5 cm radius) cylindrical resonator from Eq. (10) are obtained by multiplying the vertical scale by
(0.2 m) / L .



quarter-wave duct, discussed in Sec. 3.2, with
rd = 0.7 mm, rd′ = 0.35 mm, ld = 1.5L, and L = 2R , the
perturbations of the two lowest even-symmetry modes
(kR = π and 2π ) at 0.02 MPa are (4.1 + 32.7i )× 10–6

and (0.03 + 16.2i )× 10–6; at 0.4 MPa the perturbations
are (5.4 + 14.1i )× 10–6 and (3.5 + 18.4i )× 10–6, respec-
tively. With this arrangement, two ducts are necessary
to flow the test gas through the resonator. We recom-
mend using two cylindrical resonators, one twice as
long as the other, to take advantage of the cancellation
of the end-plate perturbations at the same frequency.
For this reason, the ducts for flowing gas and for
remote transducers, if needed, should be placed on the
resonator’s end plates.

To improve the experimental measurements of the
admittance of small-diameter ducts, we recommend the
following improvements in decreasing order of impor-
tance: 1) controlling the temperature and static pres-
sure of the gas medium to reduce the random noise in
the acoustic pressure, 2) devising a method to remove
and reattach the tube such that the admittance is repro-
ducible, so that the tube length can be determined more
accurately and the coupler’s impedance can be meas-
ured directly, 3) using argon instead of air as the gas
medium to reduce the uncertainty in the gas properties,
and 4) blocking the end of the tube opposite the coupler
or using another coupler to better define the terminal
impedance.

We have examined the perturbations of the modes of
an acoustic thermometer caused by circular ducts used
either for gas flow or as acoustic waveguides coupled
to remote transducers. We calculated the acoustic 
admittance of circular ducts using a model based on
transmission line theory. We used the admittance to
calculate the perturbations to the resonance frequencies
and half-widths of the modes of spherical and cylindri-
cal acoustic resonators as functions of the duct’s radius,
length, and the locations of the transducers along the
duct’s length. We measured the specific acoustic admit-
tances of a series of ducts between 200 Hz and 10 kHz
in ambient air and compared the results with theory. For
a 1.4 mm inside-diameter, 1.4 m long tube, the root
mean square difference between the measured and
modeled specific admittances over this frequency range
was 0.018 (the magnitude of the specific admittance
was nominally one).

6. Appendix A. Condenser
Microphone as a Source

A schematic diagram of the Bruel & Kjaer 4135
condenser microphone is shown in Fig. A1. The prop-
erties of the 4135 are listed in Table A1. The membrane
has a thickness tx and is stretched in tension over an
annular insulator (quartz). The membrane flexes with
an effective radius ax . The gap hx separates the mem-
brane from a backplate with radius bx . The membrane
and the backplate form the two electrodes of a parallel-
plate capacitor with capacitance Cx = ε0πbx

2/hx . When
used as a detector, the microphone is biased with a DC
voltage of 200 V, and the charging current resulting
from motion of the membrane is detected. However,
when a condenser microphone is used as a source with 
sinusoidal drive and no DC bias, the sound waveform it
generates is a sinusoid whose frequency is twice the
excitation frequency. An advantage to this (2f ) mode of
operation is that cross talk between the high voltage
excitation and the low voltage of nearby detectors is
virtually eliminated.

A very detailed model of condenser microphones is
given in Ref. [21], but is beyond the scope of this
article. Our objective in this appendix is to describe the
low-frequency behavior of a condenser microphone
used as a source. We solve a simplified equation of
motion for a membrane under tension whose displace-
ment from equilibrium is y. Additional forces are
included to account for the reaction of the gas in the
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Fig. A1. Sketch of B & K 4135 microphone cartridge.



microphone volume and the surrounding environment.
Thermoacoustic dissipation is neglected.

If we define y as positive for upward displacement,
then a simplified equation of motion is

(A1)

The first term on the right hand side of Eq. (A1) is
the restoring force per unit area due to the membrane
tension, p E is the force per unit area from the applied
electric field E

(A2)

and Δp = pa – px , where pa and px are the acoustic
pressures generated in front of and behind the
membrane, respectively. The applied voltage V (t) =
Vs e iωs t is at frequency fs , but the electric force on the
membrane oscillates at 2fs and has a DC component.
Since we are only concerned with the AC response, we 
replace V 2 in Eq. (A2) by V 2

r m s e iω t with ω = 2ω s . The
steady-state response of the driven membrane displace-
ment y (t) is also proportional to e iω t .

The source strength is defined as the rate of volume
displacement averaged over the membrane area

(A3)

If the acoustic impedance of the medium in front the
transducer is ZL and the impedance of the medium in
the space inside the transducer is Zx , then we have

(A4)

and

(A5)

We rewrite Eq. (A1) as

(A6)

where K2 = σ M ω2 /T . The steady-state solution for
Eq. (A6) can be expanded in terms of the normal modes
of a circular membrane with a fixed edge, namely
Jm (ξmnr /ax ) cos (mθ ), where Jm (ξmn) = 0. Due to the
axial symmetry of the drive force, however, only the
axially symmetric modes (m = 0) will be considered in
the model, i.e.,

(A7)

The coefficients A 0 n are obtained by substituting
(A7) into (A6) and integrating over the membrane area. 
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Table A1. Properties of B & K 4135 microphone cartridge used a sound source

Property Source Symbol Value Unit

membrane radius measured a x 2.13 mm
membrane thickness measured t x 2.54 m
backplate radius measured b x 1.74 mm
gap calculated h x 13.0 m
membrane mass per unit area calculated σ M 0.0223 kg/m2

capacitance manufacturer C x 6.4 pF
membrane compliance manufacturer χ 1.5×10–10 m/Pa
microphone equivalent volume manufacturer V x 0.6 mm3
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For simplicity, we assume the membrane and backplate
have the same diameters.

(A8)

Equation (A8) predicts the lowest mode of the
membrane occurs when Ka x = ξ 01 ≈ 2.4048 or about
74 kHz. The average membrane displacement in the
low-frequency limit Ka x << ξ 01 is

(A9)

identified the membrane compliance χ = a 2
x/ (8T ). We

can estimate ZL and Zx assuming they represent simple
volumes, VL and Vx , respectively, with the expressions
Z L = pc2 / (iωV L ) and Z x = pc2 / (iωVx ). For our applica-
tion, the volume of the coupler (134 mm3) is very large
compared to the transducer’s equivalent volume
(0.6 mm3), so we can neglect the impedance Z L . This is
important because it means that the source strength will
not depend strongly on the coupler or the attached
tubes.

Finally, the source strength from Eq. (A3) in the low-
frequency limit is (neglecting Z L)

(A10)

In ambient air (ρc 2 = 1.41 × 105 Pa) at 1 kHz, Eq. (A10)
gives

(A11)

using values from Table A1.
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