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We propose a cooling mechanism for ultracold fermionic atom ensembles, which capitalizes on the energy
dependence of inelastic collisions near a Feshbach resonance. We first discuss a single magnetic resonance and
find that the final temperature and cooling rate is limited by the resonance width. A concrete example for a
p-wave resonance of 40K is given. We then improve upon this setup by using both a sharp optical or radio-
frequency-induced resonance and a broad magnetic resonance and show that one can improve upon tempera-
tures reached with current technologies.
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I. INTRODUCTION

The technology of cooling atomic ensembles has been one
of the most important developments in physics over the last
decades �1�. Two methods have had the most widespread
impact, laser cooling, and evaporative cooling. In the former,
the heat of the atoms is removed by careful absorption and
emission of photons. The mechanism is typically limited by
the photon recoil energy from the last photon. Lower tem-
peratures are reached with evaporative cooling. This mecha-
nism has two ingredients. The first is a “knife” that selec-
tively removes atoms with the largest kinetic energy. Second,
elastic collisions between the atoms thermalize the remaining
atoms. It has been a critical ingredient in creating Bose-
Einstein condensates �2�.

The push toward lower temperatures is fueled by the
study of ever complex collective phenomena. For instance,
in Fermi gases the BEC-BCS crossover and other pairing
mechanisms can be further elucidated. The lowest tempera-
tures that have been achieved in bosonic gases are below a
nano-Kelvin �3�, whereas for fermionic systems, tempera-
tures of tens of nano-Kelvin have been reported �4�, corre-
sponding to temperatures as low as 0.05 of the Fermi tem-
perature TF. Theoretical studies on evaporative cooling are
given in Refs. �5,6�. Sympathetic cooling of fermions using a
much cooler Bose gas was studied in Ref. �7�. Laser cooling
of two-component Fermi gases was studied in Ref. �8�. Cool-
ing Feshbach molecules was reported in �9�. In principle,
these could be adiabatically dissociated to produce a cold
Fermi gas.

We propose an alternative cooling mechanism that uses
inelastic scattering processes due to a narrow magnetic Fes-
hbach resonance �10,11�. Here, a molecular state that is reso-
nantly coupled to two scattering atoms acts as a knife that
changes the internal state of colliding atoms in a strongly
energy-selective manner. These states are then either un-
trapped or have gained sufficient kinetic energy to quickly
leave the trap. Elastic scattering near the resonance leads to
thermalization. For a resonance to generate loss, the internal
state of the atoms cannot be the lowest-energy state, as there
need to exist states into which they can scatter. For samples
of atoms in their lowest state, we further propose combining
a narrow optical �12� or radio-frequency �rf� induced �13�

resonance with a broad magnetic resonance. Here, the nar-
row resonance generates the loss processes, whereas the
broad magnetic resonance drives thermalization. We show
that we can reach lower temperatures than with a single reso-
nance.

Figure 1 shows a schematic representation of the cooling
process. We assume a gas of Fermi atoms in a single state
although the ideas can be generalized to bosonic or multispe-
cies and multistate fermionic gases. In the degenerate regime
the atoms with mass m form a Fermi sea, as shown in the
figure, with Fermi energy EF=kF

2 / �2m�, Fermi momentum
kF, and a temperature T less than EF /kB. We consider a nar-
row Feshbach resonance that for two colliding atoms with
momenta k� and p� induces atom loss with a rate coefficient
�14–17�

Kin�k�,p�� = vr
��2

kr
2

��E��0

�E − Eres�2 + �tot
2 /4

. �1�

This coefficient is only a function of the relative collision
energy E and is strongly localized around the resonance en-
ergy Eres, which can be controlled by external magnetic field.

FIG. 1. �Color online� Schematic representation of the loss pro-
cesses that lead to cooling. We show the momentum distribution
�kx ,ky� of a degenerate Fermi gas �blue inner feature� and the in-
elastic scattering rate Kin�k� , p�� �orange ring-shaped feature�, both in
arbitrary units, with a scattering partner with a momentum slightly
above the Fermi surface at p� = �px , py�= �1.05kF ,0� and with a reso-
nance energy that corresponds to a relative momentum of 1.05kF.
The losses are largest where the two surfaces approach each other.
This corresponds to atoms with momenta located on opposite sides
of the Fermi sea. �The momenta along z are not shown for clarity.�
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The energy E is given by E=k�r
2 / �2mr�=mrvr

2 /2, where k�r

= �k� − p�� /2 is the relative momentum and mr=m /2 is the re-
duced mass. Finally, the total energy width is �tot=�0
+��E�, where �0 /� is the linewidth of the resonant state and
��E� /� is the collision-energy-dependent stimulated width.

To generate cooling, we need to choose the resonance
energy so that only atoms with momenta larger than kF are
lost. The largest relative momentum is about kF for a pair of
atoms on opposite sides of the Fermi sea. Consequently, Eres
must be set slightly above kF

2 / �2mr�=2EF. The exact amount
that the resonance energy lies above the Fermi energy will be
determined by the temperature and �tot. Moreover, the reso-
nance energy needs to be gradually lowered in time by
changing the magnetic field as the atom number decreases
due to the losses and thus the Fermi energy decreases.

At the beginning of the cooling process the temperature is
much larger than �tot /kB. In our simulations, we will find
that the smallest achievable temperature is approximately
4�tot /kB. This suggests the use of arbitrarily narrow reso-
nances. However, the thermalization rate is also influenced
by the resonance. In fact, the total elastic scattering rate co-
efficient Kel�k� , p�� is

Kel�k�,p�� = vr
��2

kr
2

�2�E�
�E − Eres�2 + �tot

2 /4
. �2�

Typically, during the cooling process it is preferrable that the
Fermi gas is close to thermal equilibrium, and therefore we
require the ratio Kel /Kin=��E� /�0�1 for E�2EF, for a
nondegenerate gas. Consequently we have �tot���E�. Since
we want a temperature that is as low as possible, this leads to
competing requirements on �0 and ��E�.

For fermionic atoms in the same internal state, only odd
partial wave scattering exists. In fact, for ultracold atoms we
only need to include the p or �=1 partial wave. Moreover,
the energy dependence of ��E� is enforced by the Wigner
threshold laws. Here, this leads to ��E�=AE3/2, where A is
an intrinsic property of the resonance.

In Ref. �18�, a p-wave resonance was characterized in the
collisions of fermionic 40K atoms in the hyperfine state
�9 /2,−7 /2�. For the ml=0 component of the p-wave reso-
nance, they find �0 /kB=0.9 nK and ��E� /kB=1.4
�10−3 nK at E /kB=1 nK.

II. CLASSICAL LIMIT

Before we consider cooling a Fermi gas in the degenerate
regime, we treat the classical limit of a three-dimensional
homogeneous gas, in which we assume that the momentum
distribution f�p� , t� remains a Maxwell-Boltzmann distribu-
tion throughout the cooling process�19�. In fact

f�p� ,t� = ��n,T�exp�− p2/�2mkBT�� , �3�

where ��n ,T�= �2���3n / �2�mkBT�3/2 is the phase-space
density, and only the particle density n and the temperature T
are time dependent. Its time evolution is

�t f�p� ,t� = −� d3k

�2���3Kin�k�,p��f�k�,t�f�p� ,t� . �4�

In the limit that �0+��E��kBT, we find that the approxi-
mate time evolution for n and T is given by

�tn = − �in�t�n, �tT = − �in�t�	Eres

3kB
−

T

2

 , �5�

with the rate

�in�t� =
1

�
23/2��n,T�

�0��Eres�
�0 + ��Eres�

e−Eres/�kBT� �6�

being linear in n, and time dependent through n, T, and Eres.
For this approach to be consistent, the thermalization rate
during the evolution needs to be larger than the rate �in�t�.
Within the classical theory we find that the thermalization
rate is equal to Eq. �6� with �0 replaced by ��E� in the
numerator. Therefore we have to require ��E� /�0�1, and
�in�t� becomes independent of ��E�.

As an example for the dynamics described by Eqs. �5�, we
consider a process in which the resonance energy tracks the
temperature at a fixed ratio 	, i.e., Eres�t�=	kBT�t�. We find
the solution

n�t� = n0�1 − t/tcl�4/�2	−7�, T�t� = T0�1 − t/tcl�2�2	−3�/3�2	−7�,

�7�

where n0 and T0 are the initial density and temperature, and
the classical cooling time tcl is given by 1 / tcl= ��2	
−7� /4��in�t=0�. The phase-space density increases as
��n ,T�=�0�1− t / tcl�−1, where �0 is the initial phase-space
density. When this approaches one, the system reaches de-
generacy and the classical limit breaks down. This occurs
shortly before tcl if �0�1.

For the 40K example, 	=11 /2, T0=1 
K, and n0
=1013 cm−3, we find tcl�2 s. This is a realistic time scale
for current experimental setups, motivating the subsequent
more in-depth analysis.

III. SINGLE RESONANCE COOLING

We now consider cooling of a gas of spin-polarized fer-
mions in the degenerate regime using a single Feshbach reso-
nance. We use the quantum kinetic theory of Refs. �20,21�.
The quantum dynamics is then fully given by the evolution
of the momentum state occupation, which satisfies a homo-
geneous quantum Boltzmann equation. We further assume a
spherically symmetric momentum distribution, and the mo-
mentum distribution f becomes a function of kinetic energy
e= p2 / �2m� only. This function f�e� satisfies

��e1��t f�e1� = − ��e1���e1�f�e1� − I�e1� , �8�

where the density of states per unit volume is ��e�
=4�m3/2�2e / �2���3, the loss rate � is given by

��e1� =
1

2
� ��e2�de2f�e2�� d cos 
Kin�E� . �9�

We denote Kin�E��Kin�k�1 ,k�2�, as the inelastic loss rate co-
efficient only depends on the relative energy E=e1 /2+e2 /2
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−�e1e2 cos 
, and 
 is the angle between k�1 and k�2. The
collision integral is given by

I�e1� =� de2de3W�e1,e2,e3,e4�


f�e1�f�e2��1 − f�e3���1 − f�e4��

− �1 − f�e1���1 − f�e2��f�e3�f�e4�� , �10�

where e4=e1+e2−e3, and the collision kernel W is

W�e1,e2,e3,e4� =
32�2m2

�2���6 �
Pmin

Pmax

dP��E� . �11�

The elastic cross section ��E�=Kel�E� /vr�E�, and we
use Kel�E��Kel�k�1 ,k�2� as it only depends on the relative
energy E=e1+e2− P2 / �4m�, where P� is the total momen-
tum in the collision. The integration bounds are given by
Pmin=max��p1− p2� , �p3− p4�� and Pmax=min�p1+ p2 , p3+ p4�,
where pi=�2mei.

We estimate the thermalization rate in the quantum degen-
erate regime based on Eq. �8�. As outlined in �22�, we lin-
earize the Boltzmann equation around a Fermi distribution
f0�e� with Fermi energy EF and temperature T, that is, f�e�
→ f0�e�+ f0�e��1− f0�e����e�, where ��e� is a small deviation
and the functional form ensures that the fluctuations are lo-
calized around the Fermi energy. Then we find that the ther-
malization rate for states close to the Fermi energy is given
by

1

�th
�

�kBT�2

��EF�
W�EF,EF,EF,EF� , �12�

reflecting that the only contributions to the collision integral
of Eq. �10� are processes close to the Fermi energy.

W�EF ,EF ,EF ,EF� can be estimated by realizing that the
integral in Eq. �11� runs from zero to 2kF, and therefore the
relative energy from zero to 2EF. As the resonance energy
will be larger than 2EF by an amount of the order of ��2EF�
or equivalently kBT toward the end of the cooling cycle, we
find that W����2EF� /EF and the thermalization rate is

1

�th
� �kBT�2A1/2EF

−3/4/� . �13�

The quadratic temperature dependence is typical for a Fermi
gas in the degenerate limit �22�. For the losses we similarly
find a time scale 1 /�l��0��2EF� / ��EF�.

We now solve the quantum Boltzmann equation numeri-
cally to study our cooling process, starting from a Fermi
distribution for the atoms. The initial resonance energy Eres
is set well above twice the Fermi energy. We then gradually
lower Eres to eliminate atoms with large kinetic energy. The
final Eres, and thus EF, and the time scales of the cooling
process can be estimated from our expectation that the small-
est T /TF is of the order �tot /EF. Minimizing this with respect
to EF gives EF= �2�0 /A�2/3. The time scales �th and �l will be
largest at that final value. They are approximately �th
�� / �A�0

3/2� and �l�� / �A2/3�0
4/3�.

Figure 2 shows an example of cooling for the 40K reso-
nance described before. The atomic ensemble has an initial
temperature of 1.0 
K and a chemical potential of

�0� /kB=0.5 
K, corresponding to an initial density of n
�5�1013 cm−3. We choose Eres�0� /kB=Eres,i /kB=8 
K,
well above 2EF /kB�2.5 
K and T. We choose Eres,f /kB
=0.2 
K as the final value for the resonance energy based
on the above estimate for the optimal T /TF. We use an ex-
ponential time dependence Eres�t�= �Eres,i−Eres,f�exp�−t / t0�
+Eres,f, with a time scale t0=5 s, that is larger than the esti-
mates for �th and �l. In Fig. 2�a� we show the distribution
f�e� as a function of energy and time. It becomes visibly
colder in the process. Throughout the simulation f�e� is fairly
close to thermal. Thus one can fit f�e� to a Fermi distribution
and assign a temperature and a chemical potential at any
point in time. Figure 2�b� shows the fitted temperature as a
function of time. It gradually approaches the temperature of
4�tot�2EF� /kB. The fastest cooling rate or slope, around t
�3 s, is consistent with the rate expected in the classical
limit. The cooling is slower for lower temperatures consis-
tent with Eq. �13�. The temperature has decreased by two
orders of magnitude in the process, from 1 
K to 10 nK. In
Fig. 2�c� we show T /TF and n. T /TF is reduced by a factor of
6, from 0.8 to 0.15, while simultaneously the density has
decreased from 5�1013–0.7�1012 cm−3. We have per-
formed other cooling simulations with other parameters
and found that the final temperature always approaches
�4�tot /kB.

We have performed multiple simulations with various ini-
tial densities, temperatures, resonant energies, and t0. We ob-
serve the same qualitative behavior, except for very small
values of t0, where we lose atoms too quickly and the system
does not equilibrate. Most importantly, we find that kBT ap-
proaches 4�tot. By optimizing the functional form of Eres�t�,
this temperature could be achieved in a shorter time.
However, we do not expect to reach significantly lower tem-
peratures.
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FIG. 2. �Color online� Collisional cooling of a Fermi gas with the resonance described in �18�. Panel �a� shows the distribution f�e� as
a function of time. Panel �b� shows the temperature T and 4�tot�2EF�. Finally, panel �c� shows T /TF and the density n.
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IV. COOLING WITH TWO RESONANCES

The elastic and inelastic scattering rate coefficients are
governed by ��E�, which leads to contradictory require-
ments. To overcome this limitation, we propose the use of
two p-wave resonances: a narrow optical or rf induced one,
which acts as the knife, and a broad lossless magnetic one
which thermalizes. We locate the magnetic resonance such
that the elastic rate coefficient is unitarity limited at Kel
=vr��2 /kr

2. To ensure a lossless magnetic resonance the at-
oms must be in the lowest hyperfine state and the field driv-
ing the narrow transition must not couple to the Feshbach
molecular state �23�. On the other hand, the loss from and the
width of the optical �rf� resonance can be controlled by the
laser intensity �rf field�. This creates a very narrow knife
with a negligible contribution to the elastic rate coefficient.
Its resonance location Eres

opt is lowered in time.
We have repeated the analysis of the previous section. The

thermalization rate is driven by the magnetic resonance and
given by 1 /�th��kBT�2 / ��EF�. Hence, unlike for the single
resonance case, thermalization does not constrain �opt�E�
and �0

opt. In fact we find that �opt�2EF���0
opt leads to the

fastest cooling for a given �tot
opt and that the lowest tempera-

ture is again given by 4�tot
opt /kB. Figure 3 shows an example

of the cooling process. The initial density is 4�1013 cm−3,
and the initial temperature is 0.3 
K. The system is cooled
down to a final density 1.9�1013 cm−3 and a final tempera-
ture 0.017 
K. This demonstrates that T /TF�2.5�10−2 can
be achieved with this cooling process.

In conclusion, we have proposed a cooling mechanism for
fermions which uses the energy selectivity of a Feshbach
resonance. We first discussed the limit of a classical thermal
gas before we turned to a quantum kinetic simulation of a
degenerate Fermi gas. We find that the temperatures achieved
by the cooling process are limited by the linewidth of the
resonance, and we give estimates of the thermalization time

scales. We show that for 40K we can reach T /TF�0.1 for an
easily accessible resonance. We then improve on this setup
by using one narrow resonance for the loss process and a
broad magnetic resonance for thermalization.
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