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We characterize fluctuations in atom number and spin populations in F ¼ 1 sodium spinor condensates.

We find that the fluctuations enable a quantitative measure of energy dissipation in the condensate. The

time evolution of the population fluctuations shows a maximum. We interpret this as evidence of a

dissipation-driven separatrix crossing in phase space. For a given initial state, the critical time to the

separatrix crossing is found to depend exponentially on the magnetic field and linearly on condensate

density. This crossing is confirmed by tracking the energy of the spinor condensate as well as by Faraday

rotation spectroscopy. We also introduce a phenomenological model that describes the observed

dissipation with a single coefficient.

DOI: 10.1103/PhysRevLett.102.225301 PACS numbers: 67.85.�d, 03.75.Kk, 03.75.Mn

The transition from a thermal atomic gas to a Bose-
Einstein condensate (BEC) is marked by the appearance
of a scalar order parameter. Spinor BECs have an addi-
tional spin degree of freedom which results in a vector
order parameter. The increase in complexity leads to the
formation of spin domains [1–3], the appearance of novel
phases [4] and the possibility of high spatial resolution
magnetometry [5]. Spin-1 spinor BECs have been studied
with 23Na atoms that show antiferromagnetic interactions
[3,6–8] and with 87Rb atoms that show ferromagnetic
interactions [2,9–13]. A remarkable result is the observa-
tion of spin population oscillations that appear when the
system is taken out of equilibrium in the presence of a
magnetic field [2,7]. An interplay between the quadratic
Zeeman energy and a spin-dependent interaction energy
determines the oscillation frequency. The oscillations are
nearly harmonic except near a separatrix in phase space
where the period diverges [7,8,10]. The system can be
forced onto either the low or high energy side of the
separatrix using the magnetic field strength [7,10], the
BEC density [2], or the balance among spin states [8].

Quantum optical effects in spinor BECs are now being
actively studied. Recent experiments observed the spin-
mixing analogue of parametric amplification [14]. Number
fluctuations and spin oscillations were investigated in a
ferromagnetic Rb BEC in Refs. [9,15]. The observed spin
oscillations damped and the system reached a steady state,
while the fluctuations saturated. Nondissipative theories of
quantum effects in number fluctuations [15–18] show that
such damped spin oscillations can be produced by dephas-
ing from quantum fluctuations or from number and phase
fluctuations in the initial state.

We report observations of the dynamics of atom number
fluctuations in an antiferromagnetic 23Na spinor BEC
which show strong evidence of energy dissipation. Atom

number fluctuations of the spin projections are extracted
from a series of measurements on condensates which
spin mix while slowly evolving to the ground state.
Because of the dissipation, a spinor BEC with given initial
conditions and sufficiently high energy will cross the sep-
aratrix at a critical time, tc. The time evolution of the
population fluctuations unambiguously identifies tc. We
have developed a dissipation model that includes a single
phenomenological coefficient, is classical, and does not
require the intrinsic quantum fluctuations that have been
used to describe ferromagnetic Rb spinor systems. Other
dissipation mechanisms have been suggested in [12,19,20],
but do not explain our data. Mean-field simulations at zero
magnetic field including finite temperature effects in
Ref. [21] indicate that thermal excitations play a prominent
role in the dissipation.
We show that a nondissipative quantum model does not

account for our data. This model predicts a damped spin
oscillation due to quantum dephasing similar to the ferro-
magnetic case. Its predicted steady states, however, are
very different from the experimental observations in this
Letter and Ref. [8]. It is interesting to note that a spinor
BEC represents a nominally isolated quantum system that
shows dissipation and does not display quantum rephasing
over our observation times.
The setup is similar to that of our previous work [8]. We

create a F ¼ 1 spinor BEC of N ¼ 1:50ð3Þ � 105 23Na
atoms through 6 s forced evaporation in a crossed optical
dipole trap using a multimode fiber laser at 1070 nm (all
quoted uncertainties are 1 standard deviation, combined
statistical and systematic). We apply a weak magnetic field
gradient during the evaporation to fully polarize the atoms
to the jF ¼ 1; mF ¼ þ1i state. The final trap oscillation

frequencies are !0ð
ffiffiffi
2

p
; 1; 1Þ in the three spatial directions.

We have performed experiments with measured values of
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!0=ð2�Þ ¼ 154ð5Þ Hz, 220(7) Hz, and 305(9) Hz. This
corresponds to mean Thomas-Fermi radii of 6 to 8 �m.
The density of the BEC is changed only by changing the
trap frequency and not by reducing the atom number, as
this causes a large loss in signal.

To prepare the initial state, we turn off the magnetic field
gradient and ramp to a magnetic field, B, less than 61 �T.
We apply an rf pulse resonant with the linear Zeeman
splitting (frequencies of hundreds of kHz) to rotate the
atomic spin. All of our experiments start with the same
initial atomic state which has �þ1 ¼ ��1 ¼ 1=4 and �0 ¼
1=2, where the �mF

are fractional populations for the three

Zeeman sublevels (mF ¼ 0, �1). This state has zero mag-
netization, where the magnetization is defined as m ¼
�þ1 � ��1. We use two methods to detect spin-mixing
dynamics: Faraday rotation spectroscopy and Stern-
Gerlach separation combined with absorption imaging
(SG-AI). Faraday rotation spectroscopy can be used for
continuous observation of spin oscillations of a single BEC
over short time scales, while SG-AI can directly measure
spin populations, albeit destructively [8].

The Mandel Q parameter is a common way to quantify
fluctuations in quantum systems, with Q> 0ð<0Þ repre-
senting super- (sub-) Poissonian distributions [22]. We use
a modified Q parameter to characterize population fluctua-
tions during spin mixing. ThisQ parameter of �0 is defined
as [15]

Q ¼ hNi h4�2
0i

h�0i � 1; (1)

where hNi is the mean value of the atom number in the
BEC. h4�2

0i and h�0i correspond to the variance and the

mean value of �0, respectively. At each delay time after
initialization, we extract the variance from 25–30 repeated
SG-AI measurements. We use �0 rather than the popula-
tion, because measurements of �0 and m are less sensitive
to the 2% fluctuations in the initial N.

Theoretically, our initial state, prepared from a single
component BEC, should be a coherent state with a
Poissonian atom number distribution (Q ¼ 0). The ob-
served Q at t ¼ 0 is equal to 4, while the minimum
observable Q at other times depends on the populations,
due to technical noise in atom counting. In particular, when
one of the spin populations is close to zero the minimum
value of, and the error in, Q are larger.

Figure 1 shows the time evolution ofQ form ¼ 0 at four
magnetic field strengths. Q has a value equal to the experi-
mental limit at t ¼ 0, increases to a peak at tc, then
decreases back to the experimental limit within 10 s. We
find that at t ¼ 10 s all the remaining atoms are in the
mF ¼ 0 state (�20% are lost). A Gaussian fit to QðtÞ is
applied to extract tc. We observe that the value of tc
decreases with increasing field. For high fields (e.g., B ¼
60:7 �T in Fig. 1) where the system is on the low energy
side of the separatrix at t ¼ 0, QðtÞ stays at the experimen-
tal limit during the whole evolution.

The single mode approximation (SMA) [10] appears to
be a suitable model to explain our data. In this approxima-
tion all the spin components share the same spatial wave

function �ðrÞ and the total wave function is �ðr; tÞ ¼
�ðrÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��1ðtÞ
p

ei��1ðtÞ;
ffiffiffiffiffiffiffiffiffiffiffi
�0ðtÞ

p
ei�0ðtÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ1ðtÞ

p
ei�þ1ðtÞÞ, where

�mF
represents the phase of each spin component. Taking

into account the conservation of m and N, the description
simplifies into a model with only two dynamical variables
�0 and �, where � ¼ ��1 þ �þ1 � 2�0. The classical
spinor energy is [10]

E ¼ Eqzð1� �0Þ þ c�0ðð1� �0Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �0Þ2 �m2

q
cos�Þ; (2)

where Eqz / B2 is the quadratic Zeeman shift [Eqz=h ¼
ð0:0277 Hz=ð�TÞ2ÞB2], c ¼ c2hni is the spin-dependent
interaction energy with the mean BEC density hni, and
c2=h ¼ 2:4� 10�13 Hz cm3 for 23Na (h is the Planck
constant) [7]. In the Thomas-Fermi approximation, hni
and c are proportional to N2=5!6=5

0 . The separatrix is the

contour in (�0, �) phase space with energy Esep, on which

there is a saddle point where _�0 ¼ _� ¼ 0. For an antifer-
romagnetic spinor BEC with m ¼ 0, Esep ¼ Eqz. The

mean-field ground state is �0 ¼ 1 for m ¼ 0 [8].
The energy of the system cannot be directly inferred

from SG-AI measurements. We can, however, use the
values of �0 and m to calculate an upper bound (Elimit) to
the classical spinor energy. In fact, Elimit is equal to ð1�
�max
0 ÞðEqz þ 2c�max

0 Þ for m ¼ 0, where �max
0 is the maxi-

mum value of �0 among the 25–30 repeated measure-
ments. The inset of Fig. 1 shows that Elimit decreases
over time and crosses the separatrix around tc at low fields.
This indicates that E is not conserved.
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FIG. 1 (color online). Time evolution of Q with hni ¼
1:37ð6Þ � 1014 cm�3 [c=h ¼ 33ð1Þ Hz] at four magnetic fields
as indicated in the figure. Inset: Time evolution of Elimit=Esep for

the same data (see text). Good agreement between the predic-
tions of Eqs. (3) and the data is found using a � that falls on the
line shown in the inset of Fig. 3. An example curve is shown for
B ¼ 21:2 �T (thick black line).
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One source of dissipation is loss of BEC atoms and the
corresponding decrease in density, resulting in a decrease

in c. The interaction energy evolves as cðtÞ / e�2�t=5 as
follows from the Thomas-Fermi approximation, with � �
0:02 s�1 estimated from the observed atom loss. Because
all observed tc are much smaller than 1=�, the evolution of
c does not explain our data and, hence, is ignored.

In Fig. 2 the evolution of Q is compared to several
theoretical models. The dashed line is a result of a non-
dissipative quantum simulation based on a quantized ver-
sion of Eq. (2) following the prescription in Ref. [15]. An
initial Gaussian wave packet with a standard deviation in
�0 of 0.8% mimics the fluctuations in initial population. A
classical Monte Carlo simulation based on Eq. (2) provides
a similar result (not shown). We average over 30 trajecto-
ries using a Gaussian probability distribution for the same
variance of �0. These two nondissipative simulations ap-
proach an identical steady-state value of Q; however, they
do not explain the observed Q. Moreover, the steady-state
spin populations of these models are different from experi-
mental observations.

We modify the equations of motion for �0 and � [10] by
adding a dissipation term inspired by the description of
Ohmic loss in Josephson junctions [23]. This leads to

_�0 ¼ �ð2=@Þ@E=@�; _� ¼ þð2=@Þ@E=@�0 þ � _�0;

(3)

which corresponds to an evolution of the energy given by
dE=dt ¼ �@�ð _�0Þ2=2. The solid line in Fig. 2 represents a

classical Monte Carlo simulation with this dissipation
mechanism. We sample two Gaussian distributions with
standard deviations of 0.8% and 1% for the initial values of
�0 and c, respectively. The deviation in c is due to the 2%
uncertainty in N, while the drift in !0 over these measure-
ments is negligible.
By assuming EðtcÞ ¼ Esep the coefficient � is obtained,

where tc is the observed critical time. For an extracted �,
we find agreement between the observed Elimit and the
energy derived from the dissipative model, as shown in
the inset of Fig. 1. Additionally, including the initial fluc-
tuations enables our model to reproduce the behavior of
QðtÞ in Fig. 2. The predictedQ, however, is almost twice as
large as the experimental value at tc. Several other phe-
nomenological dissipation terms were tested, but the term
� _�0 is the only one linear in �0, �, _�0, or _� that we found to
drive the system to the correct ground state [8].
We can understand the evolution of Q from considering

the trajectory in the inset of Fig. 2. It shows a simulated
path through phase space based on Eqs. (3). The dissipa-
tion leads to a gradual decrease of energy, which results in
a larger oscillation amplitude in �0 as the trajectory ap-
proaches the separatrix. Paths starting from slightly differ-
ent initial conditions separate after several oscillations.
Larger oscillation amplitudes in �0 in these separated paths
lead to a larger variance and thus an increasing Q. As the
energy decreases past the separatrix, the oscillation ampli-
tude decreases until it goes to zero at the ground state. This
reducesQ back to a minimum. ThusQ reaches a maximum
as the ensemble crosses the separatrix at time tc. The
energy dissipation is deterministic and does not explain
the observed Q by itself. The evolution of Q is a conse-
quence of dephasing due to the spread of initial conditions
and the change in oscillation amplitude during the evolu-
tion of the system.
Figure 3 shows the measured tc as a function of B for

three densities (and thus for three values of c). The solid
lines show exponential fits to the data. Uncertainties are
larger for data at the smallest density because we find that
QðtÞ shows a broader and asymmetric peak and thus it is
hard to extract tc from a single Gaussian fit to QðtÞ.
The inset of Fig. 3 shows � determined from Eqs. (3) as

a function of Eqz=c. The coefficient � fits to a linear

function with a (dimensionless) slope of 0.22(1). The
relation holds for different B and hni; hence, a single
function seems to describe all the data in terms of a single
parameter Eqz=c. It is important to note that this same ratio

completely determines the shape of the energy surface in
phase space for a given m. For very small fields, the fit
extrapolates to an unphysical negative �. This indicates
that either the dissipation term or the functional form of �
are perhaps incomplete or not appropriate. For example,
our analysis does not include the coupling of the single
BECmode to other degrees of freedom, such as elementary
excitations (whose energies are on the order of @!0), which
are indicated to be important by Ref. [21].
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FIG. 2 (color online). Time evolution of Q with hni ¼
2:02ð8Þ � 1014 cm�3 [c=h ¼ 48ð2Þ Hz] at B ¼ 21:2ð1Þ �T.
Red (or gray) dots represent experimental data. The dashed
(black) line is the result of the nondissipative quantum simula-
tion. The solid (blue or dark gray) line represents a classical
Monte Carlo simulation using Eqs. (3) with � � 0. Inset: A
classical simulated path including energy dissipation through
phase space. The black dot represents the initial state. The (blue)
dashed line is the contour with energy Esep.
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We have also studied the phase-space dynamics using
Faraday rotation spectroscopy. This method can reveal
evidence of the separatrix crossing from a single BEC
realization. As outlined in Ref. [8], a BEC on the high
energy side of the separatrix produces an oscillating
Faraday signal with nonzero minima, while on the low
energy side the Faraday signal reaches zero. Figure 4
shows an example of the Faraday signal from a single
BEC at B ¼ 36:3ð1Þ �T and m ¼ 0. The trace shows a
transition from nonzero minima to minima near zero, thus
providing a clear signature of crossing the separatrix in
phase space between 35 and 45 ms. While the details of
repeated traces vary, the system always crosses the sepa-
ratrix during this narrow time interval.

Figure 4 confirms our assumption that tc corresponds to
a crossing of the separatrix, and tc from the Faraday signal
agrees with the extrapolated value of tc from Fig. 3. Light-
induced atom loss limits our Faraday detection to 100 ms,
making it hard to observe the separatrix crossing using
Faraday detection for smaller values of B.
In Fig. 4 the rapid reduction of the oscillation amplitude

with time is due to atom losses generated by the Faraday
beam and not, as might be expected, to energy dissipation.
The Faraday beam gradually destroys the spin dynamics by
off-resonant light scattering and tensor light-shift dephas-
ing, and thus the Faraday detection is only effective over
short observation times.
In conclusion, we have studied spin population fluctua-

tions and energy dissipation in a spinor BEC. Population
fluctuations peak at a critical time where the energy of the
system equals that of the separatrix in phase space and we
have confirmed the separatrix crossing using Faraday ro-
tation spectroscopy. We present a dissipation model with a
single phenomenological coefficient that describes our
data. While the underlying physics requires further study,
this work sheds new light on dissipation mechanisms in a
nominally isolated spinor BEC.
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FIG. 4 (color online). Faraday signal for a single evolving
BEC with hni ¼ 1:37ð6Þ � 1014 cm�3 [c=h ¼ 33ð1Þ Hz]. For
this specific case, the initial �0 is 0.45. The transition from the
oscillating phase solution to the running phase solution happens
between 35 and 45 ms, as shown by the signal periodically
approaching zero at the minima afterwards. This is in good
agreement with the predicted tc from Fig. 3.
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