
INTEROPERABLE SUPPLY-CHAIN APPLICATIONS: MESSAGE METAMODEL-BASED
SEMANTIC RECONCILIATION OF B2B MESSAGES

Marko Vujasinovic1, Edward Barkmeyer1, Nenad Ivezic1, Zoran Marjanovic2

1Manufacturing Engineering Laboratory

National Institute of Standards and Technology

100 Bureau Drive, Gaithersburg, MD 20899, USA

{marko.vujasinovic, edward.barkmeyer, nenad.ivezic}@nist.gov

2Department of Information Systems

Faculty of Organizational Sciences, University of Belgrade

Jove Ilica 154, 11000 Belgrade, Serbia

marjanovic.zoran@fon.rs

Abstract. Supply-chain applications exchange numerous electronic business-to-business (B2B) messages of varied
types. Often, the supply-chain applications need to interact even though the applications use different message
specifications and different message-representation standards. The paper discusses an approach to achieve such
interactions by using the Message Metamodel-based semantic reconciliation of messages conformant to different
message specifications, yet supporting the same B2B scenario. The Message Metamodel is a novel, neutral form
for representing B2B messages and their specifications that may be based on different message-representation
standards , such as Electronic Data Interchange (EDI), Extensible Markup Language (XML) or Abstract Syntax
Notation One (ASN.1). Experimental investigation showed that a semantic reconciliation architecture, discussed in
this paper, if enhanced with the Message Metamodel, enables seamless interoperable message exchange in
heterogeneous supply-chain environments. The Message Metamodel-enhanced semantic reconciliation architecture
supports the reconciliation of B2B messages irrespective of the message exchange standard used and insulates
reconciliation activities from the specific physical message-representation syntaxes.

Keywords: semantic reconciliation, business-to-business interoperability, message model, supply-chain integration

1. Introduction

In a typical business-to-business (B2B) scenario, the involved software applications interact with
each other by exchanging business documents in a form of electronic messages that carry structured
business data. The structure and content of the messages (i.e., message instances) are defined by
message specifications (i.e., message schemas). The partners involved in such a business scenario
implement respective application’s message interfaces either by adopting standard message schemas,
such as Universal Business Language (UBL) [3] and Electronic Data Interchange for Administration,
Commerce and Transport (EDIFACT) [4] multi-industry standard schemas, or such as Standards for
Technology in Automotive Retail (STAR) [1] and Automotive Industry Action Group (AIAG) [2]
industry-specific standard schemas, or by developing proprietary message schemas.

The B2B environment is heterogeneous as involved partners adopt different message schemas
that use different vocabularies to name the message elements, different structures to organize the
data, or different data types to represent the data. Also, the message schemas may differ in the syntax
that represent and encode the message instances (e.g., XML [6], EDI [5], ASN.1 [7] syntaxes) which

 1

makes the B2B environment even more heterogeneous. Such syntactical, terminological, structural,
and data-representational mismatches between message schemas lead to non-interoperable message
exchanges between business partners, even though the message schemas are designed for the same
B2B scenario.

Such a heterogeneous B2B environment requires a capability to reconcile these mismatches so the
applications may exchange message instances regardless of their different specifications and
representations. Presently, the prominent architectures for interoperable B2B message exchange use a
reference ontology-based semantic reconciliation [10, 11, 12, 13, 23, 34]. The reference ontology is
an explicit and formal representation of a set of business concepts and business concept relationships
for a specific business domain; moreover, it is a shared vocabulary and a shared conceptual model of
the data exchanged between collaborating business partners. The semantic reconciliation is a
transformation of the content of message instances from the message instance form used by the
sending application to the message instance form expected by the receiving application, using
reconciliation rules that are based on a reference ontology as the mediating reconciliation point.

The semantic reconciliation of the mismatches between different message schemas unfolds at
both design-time and run-time. The design-time semantic reconciliation is an activity of specifying
the transformation of message instance content to and from the reference ontology form, while the
run-time semantic reconciliation is the execution of the transformation of the message instance
content.

The message instance content transformation may be specified either 1) directly – by defining the
executable reconciliation rules (also called the mapping rules) that transform data from the
terminology and structure of a message instance to the reference terminology and structure (i.e., to
instances of the concepts from the reference ontology) and vice-versa; or (2) indirectly – by
establishing explicit and machine-processable semantic expressions between the message elements
and their business meanings as captured in a reference ontology (i.e., by annotating the meaning of
message elements using the reference ontology concepts) and, then, by deriving the executable
reconciliation rules automatically from the semantic annotation expressions.

Irrespective of whether the direct or indirect approach above is adopted, it is obvious that a model
that abstracts the message from underlying specific message-representation syntax is needed to
ensure that semantic reconciliation (both design-time and run-time) is independent of the physical
message-representation syntax and message specification standards. Thus, the reconciliation rules and
semantic annotations are to be defined on such model of a message. The model has to insulate
message content transformation activities from the specific physical message-representation syntaxes
and to allow the semantic reconciliation software to be reused with different physical message-
representation syntaxes.

This paper presents one model of the message that provides a solid base for design-time and run-
time semantic reconciliation of business messages. The next section presents the motivation for the
research of such message model for semantic reconciliation and discusses issues with current
approaches. The third section proposes and describes the Message Metamodel, which is the novel
message model for semantic reconciliation. The fourth section describes the application of the
Message Metamodel in the semantic-reconciliation architecture and details the activities and steps of
the proposed semantic reconciliation. The fifth section presents an experimental scenario and an
implementation of the model. The final sections of the paper discuss the related work and offer
concluding remarks. Additionally, as detailed later, the implemented toolset and example schemas

 2

and messages used in the experimental scenario are available for download, so the reader can
reproduce the example results presented in this paper.

2. Research motivation

Our investigation of the current semantic reconciliation approaches [10, 12, 19, 20, 22, 23, 33]
showed that these approaches use a local conceptual model of the message elements as the model of
the message for the reconciliation purpose.

The local conceptual model is a local ontology created by interpreting semantics of message
elements from structural organization of elements given in a message schema and, if available, from
message schema naming and design guidelines. This means that a semantics extraction software re-
engineers the conceptual model of the message elements from message schemas and captures that
model using an ontology representation language such as Web Ontology Language (OWL) [8] or
Resource Description Framework Vocabulary Description Language (RDFS) [9]. For example,
XML Schemas transformed to OWL local conceptual models [32] or to RDFS local conceptual
models [25]. Once a local conceptual model of the message is available, the reconciliation rules are
defined between the local conceptual model of the message and the reference ontology, and, at
runtime, the output of the semantic reconciliation process produces a message as a set of instances of
corresponding local conceptual model concepts.

However, a local conceptual model proved insufficient to capture required information about
messages to enable effective mapping between syntactic elements and content concepts, which makes
it insufficient for reconstructing message schema-conforming message instances from the output of
the semantic reconciliation. As the local conceptual model of the message retains only the “semantic
gist” of the message, it does not preserve information about the original message structure, elements
order, names of message elements, namespaces definitions, data concept granularity (element vs.
attribute), and formatting rules. Elsewhere, it was demonstrated and reported that a semantic
reconciliation approach that uses a local conceptual model as a model of message needs an elaborate
work-around to capture these structural and syntactic details in order to produce message schema-
conforming message instance from the local ontology instance [11, 25].

When the local conceptual model represents a model of the message, a message syntax-specific
transformation tool creates a local ontology from the message schema (e.g. EDI-to-RDFS, XML-
Schema-to-RDFS, or ASN.1-to-RDFS transformations) and also transforms actual message instances
to instances of the local ontologies (e.g., XML-to-RDF or EDI-to-RDF transformations) and vice-
versa (e.g., RDF-to-XML or RDF-to-EDI transformations). In such syntax-specific transformation
tools, the necessary information needed to produce schema-conforming message instances from the
reconciliation output is usually maintained by (1) embedding the structural and concept granularity
characteristics in naming conventions (e.g., a ‘path-name’ naming convention for labeling the
concepts of a local ontology and their instances to reflect message-structure definition, or, for an
example, by adding _attr suffix to a concept name to distinguish attributes from elements), and (2)
creating additional reconciliation rules that generate axioms for the reconciled message to carry
purely data-representation and formatting rules through the entire semantic reconciliation.
Significantly, creating such additional reconciliation rules requires undesired effort on behalf of a rule
expert and, moreover, requires additional knowledge about message-representation and formatting
rules, beyond understanding the message semantics, as reported in [11].

 3

All these issues are shortcomings of a local conceptual model as a model of the message for
semantic reconciliation. Furthermore, depending on a transformation strategy applied to the
extraction of local conceptual model from message schemas, the transformation may produce
different local conceptual models of the same message schema (as discussed in [25]). That practically
means that the rule expert, when creating the rules, may be faced with unfamiliar message structure
that is now captured in local conceptual model and that likely differs from the original message
structure captured by the message schema.

Although the local conceptual model provides a model of the message that allows the semantic
reconciliation software to be reused with different message-representation syntaxes, its insufficiency
for reconstructing message schema-conforming message instances from the output of the semantic
reconciliation process makes that model inadequate for reconciliation.

That outcome led us to the view that a model of the message, besides capturing the original
message structure instead of interpreted one, should be also rich enough to accommodate the
syntactic distinctions made in different message-representation standards (i.e., syntactic concepts of
messages such are naming, structure, occurrences, and value representation) in order to reconstruct
message schema-conforming message instances from the output of the semantic reconciliation. The
model of a message should be represented using an ontology language as the ontological
representation allows rule-based reasoning and inferencing over the model and its components.
Ontological representation of the model of a message actually opens the door to defining semantic
reconciliation between the model of a particular message on one side, and a reference ontology on
other side, which is specified using an ontological language (e.g., OWL or RDFS).

We have developed a novel model of message that is a concise model for both actual message
schemas and message instances that supports the primary syntactic concepts – naming, structure,
occurrences, and value representation – and is just rich enough to accommodate the syntactic
distinctions made in XML Schema, ASN.1, EDIFACT, North American EDI X12 [38], and
EXPRESS [45] (as the model for Clear Text Exchange) standards. The novel model of a message is
defined by the Message Metamodel. The Message Metamodel concepts are summarized in the next
section and detailed in [18].

3. (Ontological) Message Metamodel

The Message Metamodel captures message structure and message content in a form that
intermediates between well established message-representation standards (e.g. XML, ASN.1 or EDI),
as shown in Figure 1. The Message Metamodel form is an abstract syntax for the messages, devoid
of the specific representation rules for specific syntaxes.

Figure 1 Message Metamodel as an intermediate form for representing messages of different syntactic varieties

Conceptually, the Message Metamodel has two parts: the schema part (the Message Schema
Metamodel part), and the message instance part (the Message Instance Metamodel part). The schema

 4

part captures the naming, structure, and value concepts that are present in the corresponding message
schema language (e.g. XML Schema) The message instance part captures the elements present in
each runtime message instance, and their association to the modeled schema elements. (The Message
Metamodel is presented in the Unified Modeling Language (UML) notation in Figures 2 and 3, but
captured as an OWL ontology as we discuss later).

Figure 2 UML representation of Message Schema Metamodel part

The Message Schema Metamodel part defines concepts that are commonly used in the message
schema representation standards in order to describe constraints on the message structure and content.
The root concept is a Schema. Schemas define ContentModels (StructuredContents and
SimpleContents) and Components (AttributeModels and ElementModels).
StructuredContent represents a content that contains zero or more other ContentModels (e.g.,
xs:complexTypes, ASN.1 sequence and set types, and the structure of EDI segments and segment
groups). SimpleContents represent datatypes (e.g., integer, string, date, float, enumeration,
identifier, etc) defined or used in a message schema (e.g., xs:simpleType, or EDI data element). If a
SimpleContent represents an enumeration (or an EDI Code list), it owns Values. Value represents
and stores actual (enumerated or other) value. The ElementModels define the elements of a
message. The content of an ElementModel can be either StructuredContent or SimpleContent

(e.g., in XML Schema, xs:element has a type that is an xs:complexType or an xs:simpleType). The
AttributeModel defines the element attributes. The ContentModels and Components may have
names, which is captured by Name concept. The Names are defined either in a SchemaNamespace or
locally (LocalNamespace). Also, ContentModels and Components can be defined locally by
other ContentModels and Components (e.g., XML schema inner complexTypes or inner-defined
xs:elements). The RepositorySet is a collection of schemas and message definitions that are used
in a common application and typically refer to each other. A message definition is an ElementModel

that defines a model of the root element of a message instance.

 5

The Message Instance Metamodel part defines the concepts that are typically present in an actual
runtime message instance. We consider that every message instance is an Element, more specifically
a StructuredElement. A StructuredElement contains other Elements (either
StructuredElements or SimpleElements) or structures of values (ValueItems). A ValueItem
represents an occurrence of a Value in a given place (but the Value itself may or may not be
modeled.) A SimpleElement contains a SimpleValue, while an empty element of either kind has
no content (i.e., no Items). A SimpleValue is a value treated as atomic in the message definition.
Its primary representation is the string that is the text attribute. SimpleValues store the message
content. Every SimpleValue has a SimpleContent model (i.e., datatype), but it is usually
unnecessary to specify it directly at runtime (It is stated in the model of the Element that has the
Value). A SimpleValue is an occurrence of a Value in a given place, but that may not be specified
directly at runtime, either. A ListValue is actually a sequence of SimpleValues of a given type.
The only reason for having this concept is to support the idea that XML Attributes can have fixed or
default values that are ListValues.

The definition of an Element is specified by its ElementModel (which provides the name/tag
and expected properties). In some cases, the ElementModel does not completely (or actually)
specify the content of the Element instance, and in that case, the datatype of the Element must be
specified. Elements may contain Attributes, and each Attribute is identified by its
AttributeModel (which owns the Name). Attributes may have assumed values, specified by the
AttributeModel, even when they are not physically present.

Figure 3 UML representation of Message Instance Metamodel part

A particular message schema information is captured as an instance of the Message Schema
Metamodel while a particular runtime message instance and its content are captured as an instance of
the Message Instance Metamodel.

 6

In the terminology of Meta-Object Facility (MOF) [31], that means the particular message
schema information is captured as an M1 instance of the M2 Message Schema Metamodel, which is
shown in Figure 2, while the particular message instance and its content are captured as an M1
instance of the M2 Message Instance Metamodel, which is shown in Figure 3. (Hereafter, when we
refer to the M1 instances of the Message Metamodel we will use a “message-schema model”,
“message-instance model”, or “message model” for both).

A corresponding message model is one MOF-level higher than that actual message schema and
message instance (e.g. an XML Schema message schema and XML message instance) as the model
actually represents message concepts, structure and content model (Figure 4).1 The example of a
message-schema model is given in the Section 5.1, Listing 2; that model corresponds to the XML
message schema in the Section 5.1, Listing 1. The example of a message-instance model is given in
the Section 5.3, Listing 8; that model corresponds to the XML message instance given in the Section
5.3, Listing 7.

Figure 4 Message Metamodel within MOF layering architecture

It is important to mention that the information captured in a particular message-schema model is not
sufficient to generate the original message schema, as some schema information is ignored (e.g.,
XML simple type minInclusive or maxInclusive restrictions are not captured) and some schema
constructs are generalized (e.g., xs:group and xs:complexType are both StructuredContent).
However, it would be possible to generate a message schema that contains the same validation
requirements as the original schema with respect to conformance of the message structure, message
elements names, elements order, and unrestricted datatypes, with the definitions given in the schema.

On the other hand, the message-schema model and the message instance-model together contain
sufficient information to reconstruct the message schema-conforming and syntax-specific message
instance from the message-instance model corresponding to that message instance. That is why this
concept is named the Message Metamodel; its M1 instance represents a model of the message
(because of the message-instance model part), and furthermore, captures all the primary message
syntactic concepts – naming, structure, occurrences, and value representation - (because of the

1 In the terms of an ontology, this means that Message Metamodel is a set of TBox statements (i.e., set of terms of controlled
vocabulary) while message-schema model and message-instance model are a set of ABox statements (i.e., set of assertion
associated with the controlled terminological vocabulary).

 7

message-schema model part), which are needed to construct a message schema-conforming message
instance in a target representation language (e.g. XML, EDI). That is, the intent of the Message
Metamodel is to be a solid model of the message for the semantic reconciliation of that message.

The Message Metamodel as an intermediate model for representing messages and their schemas
(for well-established syntactic varieties) insulates the content transformation activities from a specific
message syntax, and allows the semantics reconciliation software to be reused with different physical
representation syntaxes. As was the case with local conceptual model, the Message Metamodel also
necessitates the construction of the software libraries to transform message schema and message
content to and from the Message Metamodel form. For an example, the ‘XML Schema to Message
Schema Model transformer’ that would transform an actual XML Schema message schema to a
corresponding message-schema model, and the ‘XML to Message Instance Model transformation
tool’ that would transform an actual XML message to a corresponding message-instance model. Yet,
the Message Metamodel may allow other types of software, such as ones that interpret or annotate
the message semantics, to be reused with different physical message representation syntaxes.

Finally, a particular message model (M1 instance), can be physically represented and exchanged
in numerous ways, for an example as XML Metadata Interchange (XMI) file, set of OWL
individuals, set of RDF statements, or MOF database population. In this work we use OWL
representation for message models as that ontologization of the message model gives a form suitable
for defining reconciliation between the particular message model on one side, and an OWL reference
ontology on other side.

4. Application of the Message Metamodel in the semantic reconciliation architecture

A semantic-reconciliation architecture enhanced with the Message Metamodel is shown in Figure 5.
The semantic-reconciliation architecture employs a reference ontology, the semantic reconciliation
tools (reconciliation rules definition tool, which are not shown, and reconciliation rule engine) and
message-representation transformation tools.

The reference ontology captures the shared conceptualization and business meaning of messages
involved in a particular B2B scenario. The reconciliation rule engine provides the functionality to
execute the forward reconciliation rules when applications are sending a message instance and
backward reconciliation rules when applications are receiving a message instance.

The forward rules specify message content transformation from of a message instance to a
reference ontology instance, while backward rules specify transformation from the reference ontology
instance to a message instance.

The message-representation transformer tools provide transformations of the message schemas
and message instances to corresponding models in a form of the Message Metamodel. The
reconciliation rule engine and runtime message-representation transformer tools may be assembled
into a single software component (e.g., semantic mediator). The architecture supports message
content transformation between independently developed applications (applications A and B in
Figure 5) that differ either due to differently specified message schemas (a proprietary or standard-
based), or different message-representation standards, or both.

 8

Figure 5 A Message Metamodel enhanced semantic-reconciliation: A conceptual architecture

4.1. The semantic-reconciliation methodology

Within the architecture, the semantic-reconciliation activities take place at design-time and run-time.
We assume here that the reference business ontology is already developed (and formally represented
using an OWL or RDFS) by the business community and publicly available to the B2B participants.
 At design-time, message schemas of all participating applications are transformed to the

corresponding message-schema models; a specific transformer tool is applied, depending on the
message-representation standard used for a particular message schema (e.g., XML Schema
message schema to message-schema model or EDI message specification to message-schema
model transformation). The transformer tools produce OWL/RDF representations of the
message-schema models, which is the representation form syntactically normalized with the
language used to represent the reference ontology. Syntactical normalization of the
representation of the message-schema models with the representation of the reference ontology
provides an opportunity to use emerging Semantic Web technologies and rule-based reasoning
over OWL/RDF documents. The rule-based reasoning over the OWL/RDF documents is used to
define forward rules that access the message instance content from the OWL/RDF message-
instance model and create instances of the OWL reference ontology concepts and populate the
instances with the message instance content, as well as for the backward content transformation.
For an example, we use the Jena rule language [16] to create executable rules that transform
message instance content between the OWL reference ontology form and corresponding
OWL/RDF message-instance model, as described in later sections. After the message schemas
are transformed in the OWL/RDF message-schema models, a reconciliation rule engineer uses
the OWL/RDF message-schema models and the reference ontology to define rules for the
forward and backward reconciliation between OWL/RDF message-instance models and the

 9

Figure 6 Design-time semantic-reconciliation steps from the perspective of reconciliation rule engineer.

 At run-time, when an application sends a source message instance (e.g., XML or EDI), the
transformer tool (within a semantic-mediator) transforms the source message instance to the
corresponding source OWL/RDF message-instance model. Then, the reconciliation rule engine
takes the source OWL/RDF message-instance model and executes the forward ruleset for a
sending application (Application ‘A’ in Figure 7). This step generates a reference ontology
population of instances matching the content of the source message instance. Next, the
reconciliation rule engine takes that reference ontology population, and executes the backward
ruleset defined for a receiving application (application ‘B’ in Figure 7). This step generates a
target OWL/RDF message-instance model for the receiving application. Then, the syntax-
specific message-representation transformer tool transforms the target OWL/RDF message-
instance model to a message-schema conforming message instance in the syntax expected by the
receiving application.

 10

Figure 7 Run-time semantic reconciliation steps from the perspective of sending and receiving application.

5. Experimental scenario and implementation

To assess representational capabilities of the proposed architecture and the application of the
Message Metamodel within that architecture, we executed a scenario that involved two business
applications whose interfaces are based on different message-schema standards but the same
message-representation standard. The scenario is taken from the manufacturing industry, and deals
with the supply-chain situation in which the electronic Kanban (eKanban) business process regulates
the flow of goods from the supplier to match actual usage by the customer. In this scenario,
“inventory visibility” applications support manufacturers and their suppliers, and communicate with
each other by XML message instances to reach other suppliers.

A similar scenario with a semantic-reconciliation architecture, which, however, uses local
conceptual models to represent model of messages, was executed in the Advanced Technologies for
interoperability of Heterogeneous Enterprise Networks and their Applications (ATHENA) B5.10
validation project [14, 11]. In [11], it was reported that additional effort for message reconciliation
was needed because of the inadequacy of a local conceptual model as the model of message. So we
chose this scenario to compare the performance of the model of messages we introduce here.

Our experimental scenario involved two business applications with one-way, single message
communication between them. The proprietary version of the AuthorizeKanban business message
used by the General Motors manufacturer’s application (“GM” in Figure 8), had to be transformed to
the standard AuthorizeKanban Business Object Document (BOD) message used by the inventory
visibility application (“IV”). Both AuthorizeKanban message schemas are specified in XML Schema,
and there were several mismatches between the schemas, e.g., naming mismatches where message
elements have the same content but different names (gmSyncShipmentSchedule vs.

 11

SyncShipmentSchedule) or structural path mismatches where different sequences of message
elements and sub-elements (i.e., paths) exist from the root element to the element where content is
captured (gmSyncShipmentSchedule.documentId vs.
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.Docum

entId).

Figure 8 A fragments of the GM’s and BOD AuthorizeKanban XML schemas, respectively (in a tree-like view)

 12

The experiment involved following steps:
(a) transformation of the GM AuthorizeKanban and the BOD AuthorizeKanban XML message

schemas to the GM and BOD AuthorizeKanban message-schema models, respectively,
(b) definition of the forward reconciliation rules for the GM AuthorizeKanban message-instance

model,
(c) definition of the backward reconciliation rules for the BOD AuthorizeKanban message-instance

model, and
(d) execution of the message-exchange scenario.

In the experiment we used the eKanban Reference Ontology [17] that was also used in the ATHENA
B5.10 scenario. Figure 9 shows the fragment of the eKanban Reference Ontology. In the following
sections we detail steps (a-d).

Figure 9 A fragment of the eKanban Reference Ontology

5.1. Transformation of XML message schemas to OWL/RDF message schemas models

The transformation of the XML message schemas to the corresponding OWL/RDF message-schema
models is accomplished by the XML Schema to Message Schema Model transformer tool. The
Message Metamodel represented in Figures 1 and 2 is actually implemented as a set of Java classes
that represent Message Metamodel concepts and as an OWL Message Model Ontology2.
Transformation rules are defined at the MOF M2 level between XML Schema Definition concepts

2 The Message Metamodel Java API and Message Model OWL Ontology as well as the design-time and run-time ‘message to
model‘ transformer tools are available at http://meta-messager.sourceforge.net. Also provided are the XML schemas, XML
message files, and reconciliation rules to recreate example transformations and message reconciliations shown in this paper.

 13

and Message Schema Metamodel concepts, which provide transformation of any given XML
message schema to the corresponding message-schema model.

The transformation from a message schema to an OWL/RDF message-schema model involves
two phases. First, a given message schema is transformed to a message-schema model captured as in-
memory Java objects. Then, if an OWL/RDF form of a message-schema model is needed, the
transformer tool creates an OWL/RDF representation of the message-schema model, by creating an
equivalent OWL individual (an instance of the concept from the Message Model Ontology) for each
message-schema model object.

For the gmSyncShipmentSchedule and documentID elements of the GM XML message
schema, which fragment is shown in Listing 1, the corresponding OWL/RDF message-schema
model, in the RDF Turtle syntax [15], is shown in Listing 2. Note that only a part of the OWL/RDF
message-schema model is shown here.

Listing 1 A fragment of the GM XML schema

Listing 2 A fragment of the GM message-schema model that
corresponds to the GM XML schema in Listing 1.

@prefix p1: <http:///MessageMetamodel.ecore#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>.

:gmSchema

rdf:type p1:Schema ;
p1:defines :elementModel1 ;
p1:schemaNamespace :gmSchemaNamespace.

:gmSchemaNamespace
 rdf:type p1:SchemaNamespace ;
 p1:URI http://gm.com/gmSyncShipmentSchedule/
 ^^xsd:string ;
 p1:names :name1 .

:nsBinding1
 rdf:type p1:NSBinding ;
 p1:prefix "tns"^^xsd:string ;
 p1:refersTo :gmSchemaNamespace .

:elementModel1
 rdf:type p1:ElementModel ;
 p1:contentModel :structuredContent1 ;
 p1:defines :structuredContent1 ;
 p1:modelName :name1 .

:name1
 rdf:type p1:Name ;
 p1:definedIn :namespace1 ;
 p1:nameText
"gmSyncShipmentSchedule"^^xsd:string ;
 p1:refersTo :elementModel1 .

:structuredContent1
 rdf:type p1:StructuredContent ;
 p1:contains :cu1 ;
 p1:defines :elementModel2 ;
 p1:inModel :elementModel1 ;
 p1:localNamespace :localNamespace1 .

:cu1 rdf:type p1:ContentUse ;
 p1:content :elementModel2 ;
 p1:maxOccurs "1"^^xsd:int ;
 p1:minOccurs "1"^^xsd:int ;
 p1:seqId "1"^^xsd:int .

 14

:elementModel2
 rdf:type p1:ElementModel ;
 p1:contentModel :simpleContent1 ;
 p1:inModel :structuredContent1 ;
 p1:modelName :name2 .

:name2
 rdf:type p1:Name ;
 p1:nameText "documentID"^^xsd:string ;
 p1:refersTo :elementModel1 .
 p1:definedIn :localNamespace1 .

GM XML schema is captured by ‘:gmSchema’ which is an instance of Schema concept.
gmSyncShipmentSchedule XML element definition is transformed in ‘:elementModel1’ which
modelName is ‘:name1’. ‘:name1’ is an instance of Name concept, and its ‘nameText’ has
literal value gmSyncShipmentSchedule. ‘:name1’ is definedIn ‘:gmSchemaNamespace’,
which is a schemaNamespace of ‘:gmSchema’ and represents
http://gm.com/gmSyncShipmentSchedule namespace. ‘:elementModel1’ defines and
contains ‘:structuredContent1’. documentId XML element is captured by
‘:elementModel2’ ElementModel which is defined in ‘:structuredContent1’.
‘:structuredContent1’ represents complex type declared locally in the definition of XML
gmSyncShipmentSchedule element.

The XML Schema to Message Schema Model transformer tool successfully transformed the GM
AuthorizeKanban and BOD AuthorizeKanban XML Schemas to the GM AuthorizeKanban and BOD
AuthorizeKanban message-schema models, respectively. Ultimately, two OWL/RDF documents were
created: an OWL representation of the GM message-schema model, and an OWL representation of
the BOD message-schema model.

5.2. Reconciliation rules definition using OWL/RDF message-schema models and a
reference ontology

The definition of reconciliation between two differently specified messages involves defining the
forward and backward message content transformation rules for each message-schema model.

Forward rules formally describe how to construct instances of concepts in the reference ontology
by operational transformation of the message content of one or more message elements appearing in
the source message instance. The rules are defined based on elements in the message-schema model,
but they operate on corresponding elements of the message-instance model. Backward rules formally
describe how to construct message elements and message content of a target message instance by an
operational transformation on the instances of the reference ontology. There can be several message
content transformation patterns, such as one-to-one, many-to-one, one-to-many, or more complex
patterns including conversion functions.

In the proposed architecture, semantic reconciliation is a transformation of data in one OWL/RDF
document to another OWL/RDF document; it is a transformation of a message-instance model in
OWL/RDF form to reference ontology instances in OWL/RDF form, or vice-versa.

The transformation between two OWL/RDF documents is a transformation schema (TSx) that
consists of a set of forward chaining rules (r), where the rules are defined over a set (S) of OWL/RDF
triplets (T (subject, predicate, object)) of a particular knowledge base L. Knowledge base L corresponds
to an OWL/RDF document. Each rule maps a set of Ti triples of one knowledge base LOLD into a set of
Tn triples of other knowledge base LNEW, whilst retaining the rest of L (Uk).

 15

TSx : LOLD LNEW by: for each r in TSx,
r: LOLD = {Ti (subject, predicate, object) } {Uk (subject, predicate, object) }

 LNEW = {Tn(subject, predicate, object) } {Uk (subject, predicate, object) }
TSF x LMM -> LRO {transformation schema for forward reconciliation from source message model (MM, for short) to

reference ontology (RO, for short)}

TSB x LRO -> LMM {transformation schema for backward reconciliation from reference ontology to target message model}

When a set of triplets Ti in the body of a rule holds, which means that set of triplets Ti belongs to

the knowledge base LOLD, then new knowledge LNEW is derived as a set of triplets Tn defined in the
head of the rule. This applies for any transformation pattern; however, in non-trivial cases (e.g.,
literal value splitting or merging), it is necessary to include built-in and custom functions in the body
of a rule. Ultimately, executing the TSF and TSB transformation schemas accomplish reconciliation
between two message models. The transformation may involve vocabulary substitution, property
deletion or creation, structural abstraction (replacing a sub-graph by a node), structure introduction,
structural rewriting, and literal value transformation.

A reconciliation rules engineer uses the OWL/RDF message-schema models to define the
forward and backward reconciliation rules that operate on OWL/RDF message-instance models. As
the reconciliation rules actually transform the message instance content captured in the OWL/RDF
message-instance models (forward rules) or populate the message instance content of the OWL/RDF
message-instance models (backward rules) it is necessary to produce a set of triples T (subject,
predicate, object) that formulates the structural path leading to the message instance content in the
OWL/RDF message-instance model. The set is named Spath. For the forward reconciliation, in the
case of one-to-one or one-to-many content transformation, only one Spath exists in a rule body, while
in the case of many-to-one or many-to-many content transformation, several different Spath sets may
exist in a rule body to access the content. For the backward reconciliation, in the case of many-to-one
or one-to-one content transformation, only one Spath set of triples exists in a rule head, while in the
case of one-to-many or many-to-many content transformations several different Spath sets may exist
in a rule head to populate the content depending. For an example, Listing 3, in the rule body, shows
the Spath for the gmSyncShipmentSchedule.documentId XML message path that leads to the
value of a documentId element.

To generate Spath sets needed to specify rules, a reconciliation rules engineer uses a tool that
generates an Spath set for a given message element path. The tool generates the Spath from
corresponding OWL/RDF message-schema models as the message-schema models capture original
message structure, and thus, information about the structural paths leading to a message content.
Starting from the root elementModel that represents the Message, the Spath is created by following
Component.contentModel.StructuredContent.contains.ContentUse.content
relationship for Components which content is StructuredContent, and by
Component.contentModel.SimpleContent relationship for Components which content is
SimpleContent.

In practice, this means:
 if elementModel has a structuredContent then a [(?xi rdf:type

m:StructuredElement)(?xi m:model modelUri)] is generated; further, that structured
element have items as defined by
Component.contentModel.StructuredContent.contains.ContentUse.content
relationship, which generates (?xi m:items ?xi+1).

 16

 If the ContentUse.content is another elementModel that has a structuredContent then
a [(?xi+1 rdf:type m:StructuredElement)(?xi+1 m:model modelUri)(?xi+1
m:inElement ?x)] is generated and the triples-generation-algorithm is executed again for that
elementModel.

 if the ContentUse.content is an elementModel that has a simpleContent then a
[(?xi+1 rdf:type m:SimpleElement)(?xi+1 m:model modelUri)(?xi+1
m:inElement ?x)(?xi+1 m:value ?v)(?v rdf:type m:SimpleValue)(?v m:text
?txt)] is generated.

 if the ContentUse.content is an attributeModel then [(?xi+1 rdf:type
m:Attribute)(?xi+1 m:model modelUri) (?xi+1 m:ofElement ?x) (?xi+1
m:value ?v)(?v rdf:type m:SimpleValue)(?v m:text ?txt)] is generated.

The reconciliation rule engineer generates needed Spaths, chooses corresponding reference

ontology concepts that message concepts map to, and then defines executable reconciliation rules. To
define executable reconciliation rules, Jena rule language is used as Jena provides inference over
OWL/RDF triples by executing the forward chaining rules.

The rule in Listing 3 defines the transformation of the GM
gmSyncShipmentSchedule.documentId concept to the
SyncShipmentSchedule.ids.DocumentId.identifier concept defined in the eKanban
reference ontology. There was a path-naming mismatch between these two concepts and simply one-
to-one mapping was needed.

Listing 3 Jena forward reconciliation rule for the GM gmSyncShipmentSchedule.documentId element; one-to-one
map to the SyncShipmentSchedule.BOD.ShipmentSchedule.ids.DocumentId.identifier ontology
concept

@prefix m: <http://MessageMetaModel.core#>
@prefix ro: <http://referenceOntology.eKanban#>
[
(?e1 rdf:type m:StructuredElement) (?e1 m:model d:_elementModel1)
(?e1 m:items ?e2) (?e2 m:inElement ?e1) (?e2 rdf:type m:SimpleElement)
(?e2 m:model d:_elementModel2) (?e2 m:svalue ?v) (?v rdf:type m:SimpleValue)
(?v m:text ?txt)
->
(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2)
(ro:e2 rdf:type ro:ShipmentSchedule)(ro:e2 ro:ids ro:e3)
(ro:e3 rdf:type ro:DocumentId)(ro:e3 ro:identifier ?txt)

]

The body of the rule in Listing 3 refers to gmSyncShipmentSchedule.documentId content

by referring to the literal value (?txt) of all the StructuredElements (?e3) whose model is
‘d:_elementModel1’, and whose items are SimpleElements (?e2) whose model is
‘d:_elementModel2’ and that have a SimpleValue (?v) with the text value ?txt. The
model is provided from corresponding message-schema model, and it is a link between an element of
the message-instance model and its definition captured in the message-schema model
(Element.model.ElementModel relationship shown in Figure 2). The link is established using the
resource’s description identifier rdf:ID, which is a unique identifier of the an actual
elementModel defined in the OWL/RDF message-schema model. For example, on the right side of
Figure 7, the ‘d:_elementModel1’ is the rdf:ID of the ElementModel that represents
gmSyncShipmentSchedule XML element, and ‘d:_elementModel2’ rdf:ID of the
ElementModel that represents documentId XML element.

 17

The rule in Listing 4 defines a transformation for the Kanban Status concept, which was missing
in the GM message, by setting the corresponding element of the eKanban ontology to the
‘Authorized’ literal value. This actually was a coverage mismatch, which occurs either when a
concept in a message has no match in the reference ontology or when reference ontology has a
concept not used in a message. In the first case, the corresponding information will be lost in
outbound message instances and missing from inbound message instances. When that information is
optional and seldom used, it may not be a problem; but, when it is important to the application, it
means that the reference ontology is inadequate. The reverse case, in which the reference ontology
has a concept not used in the application message, is usually harmless – the reference ontology may
well support many different messages, only some of which use any given concept. But if it is a
mandatory property of a required object, the application may not be suitable for the use envisaged in
the standard.

Listing 4 Jena forward reconciliation rule for the GM message where Kanban Status concept is missing; sets default
‘Authorized’ value to the
SyncShipmentSchedule_Message.ShipmentSchedule.lines.ScheduleLine.loopServed.
KanbanLoop.hasKanban.Kanban.status.KanbanStatus.KanbanStatusCode ontology concept.

@prefix m: <http://MessageMetaModel.core#>
@prefix ro: <http://referenceOntology.eKanban#>
[
->
(ro:e1 rdf:type ro:SyncShipmentSchedule)
(ro:e1 ro:BOD ro:e2)
(ro:e2 rdf:type ro:ShipmentSchedule)
(ro:e2 ro:lines ro:e3)
(ro:e3 rdf:type ro:ScheduleLine)
(ro:e3 ro:loopServed ro:e4)
(ro:e4 rdf:type ro:KanbanLoop)
(ro:e4 ro:hasKanban ro:e5)
(ro:e5 rdf:type ro:Kanban)
(ro:e5 ro:status ro:e6)
(ro:e6 rdf:type ro:KanbanStatus)
(ro:e6 ro:KanbanStatusCode 'Authorized')
]

The rule in Listing 5 defines the one-to-many transformation of the GM
gmSyncShipmentSchedule.part.name concept to the
SyncShipmentSchedule.ShipmentSchedule.lines.ScheduleLine.shippedItem.Item.d

escription.ItemDescription.Description.Text and
SyncShipmentScheduleMessage.ShipmentSchedule.lines.ScheduleLine.shippedItem

.Item.ids.ItemID.PartID concept. There was a path-name and an attribute-granularity
mismatch between these two concepts and the literal value of the GM’s concept needed to be split
into two literal values. Attribute-granularity mismatches exist when the granularity of data is
different. The split operation is supported by the Jena Split built-in function.

Listing 5 Jena forward reconciliation rule for GM gmSyncShipmentSchedule.part.name concept; one-to-many
transformation.

@prefix m: <http://MessageMetaModel.core#>
@prefix ro: <http://referenceOntology.eKanban#>
[
(?e1 rdf:type m:StructuredElement)(?e1 m:model d:elementModel1)
(?e1 m:items ?e2)(?e2 m:inElement ?e1)
(?e2 rdf:type m:StructuredElement) (?e2 m:model delementModel5)
(?e2 m:items ?e3)(?e3 m:inElement ?e2)
(?e3 rdf:type m:SimpleElement)(?e3 m:model d:elementModel8)
(?e3 m:svalue ?v)(?v rdf:type m:SimpleValue)(?v m:text ?txt)
->
 Split(?txt,?y1, ?y2, '-')
(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2)
(ro:e2 rdf:type ro:ShipmentSchedule) (ro:e2 ro:lines ro:e3)
(ro:e3 rdf:type ro:ScheduleLine)(ro:e3 ro:shippedItem ro:l1)
(ro:l1 rdf:type ro:Item) (ro:l1 ro:description ro:12)

 18

(ro:12 rdf:type ro:Description)(ro:12 ro:Text ?y1)

(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2)
(ro:e2 rdf:type ro:ShipmentSchedule) (ro:e2 ro:lines ro:e3)
(ro:e3 rdf:type ro:ScheduleLine) (ro:e3 ro:Item ro:l1)
(ro:l1 rdf:type ro:Item) (ro:l1 ro:ids ro:l2)
(ro:l2 rdf:type ro:ItemId) (ro:l2 ro:partId ?y2)
]

The rules shown in Listings 3, 4, and 5 are examples of forward reconciliation rules for the GM
message model. Listing 6 shows an example of a backward rule, which is defined for an element of
the BOD message model.

Listing 6 Jena backward reconciliation rule for BOD’s
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.DocumentID.ID
concept; one-to-one map from the SyncShipmentSchedule.BOD.
ShipmentSchedule.ids.DocumentId.identifier ontology concept. The rule head corresponds to the Spath for
the BOD’s ID element.

@prefix m: <http://MessageMetaModel.core#>
@prefix ro: <http://referenceOntology.eKanban#>
[
(?e1 rdf:type ro:SyncShipmentSchedule)
(?e1 ro:BOD ?e2) (?e2 rdf:type ro: ShipmentSchedule)
(?e2 ro:ids ?e3)(?e3 rdf:type ro:DocumentId)
(?e3 ro:identifier ?txt)
->
(m:e1 rdf:type m:StructuredElement) (m:e1 m:model d:elementModel10)
(m:e1 m:items m:e2) (m:e2 rdf:type m:StructuredElement)
(m:e2 m:model d:elementModel20)(m:e2 m:inElement m:e1)
(m:e2 m:items m:e3)(m:e3 rdf:type m:StructuredElement)
(m:e3 m:model d:elementModel30) (m:e3 m:inElement m:e2)
(m:e3 m:items m:e4) (m:e4 rdf:type m:StructuredElement)
(m:e4 m:model d:elementModel40) (m:e4 m:inElement m:e3)
(m:e4 m:items m:e10)(m:e10 rdf:type m:StructuredElement)
(m:e10 m:model d:elementModel50) (m:e10 m:inElement m:e4)
(m:e10 m:items m:e20)(m:e20 rdf:type m:SimpleElement)
(m:e20 m:model d:elementModel60) (m:e20 m:inElement m:e10)
(m:e20 m:svalue m:wsv1) (m:wsv1 rdf:type m:SimpleValue)
(m:wsv1 m:text ?txt)
]

5.3. Semantic-reconciliation execution

At run-time, several message-representation transformations and a message content transformation
occur when applications exchange message instances. In the experimental scenario, at first, the GM
AuthorizeKanban XML message instance is transformed to the OWL/RDF GM message-instance
model using the XML message to Message Instance Model transformer tool. Then, the Jena rule
engine executed the TSF x LGM_MM -> LRO transformation schema on the OWL/RDF GM message-
instance model (GM_MM), which produced an instance of the reference ontology (RO). Afterwards,
the rule engine executed the TSF x LRO -> LBOD_MM transformation schema on the instances of the
reference ontology, which produced an OWL/RDF BOD message-instance model (BOD_MM).
Finally, the Message Instance Model to XML transformer tool generated a BOD AuthorizeKanban
XML message instance. Figure 10 shows message instance transformation and reconciliation flow.

 19

Figure 10 GM to BOD message instance transformation and reconciliation flow

Listings 7, 8, 9, 10, and 11 show message-representation transformations and message-content
transformation of the gmSyncShipmentSchedule.documentId element in the GM message
instance to the
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.Docum

entID.ID element in the BOD instance. The message-instance models and RO instance are
presented in RDF Turtle syntax.

Listing 7 The fragment of the GM XML message:
semantic reconciliation input

Listing 8 The fragment of the OWL/RDF GM message-
instance model

@prefix p1: <http:///MessageMetamodel.ecore#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .

…
:structuredElement1
 rdf:type p1:StructuredElement ;
 p1:items :simpleElement1 ;
 p1:model :elementModel1 .
:simpleElement1
 rdf:type p1:SimpleElement ;
 p1:actualValue :value1 ;
 p1:inElement :structuredElement1 ;
 p1:model :elementModel2 .
:value1
 rdf:type p1:SimpleValue ;
 p1:text "100"^^xsd:string .
…

 20

Listing 9 The fragment of the RO instance

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .
@prefix ro: <http://referenceOntology.eKanban#>
.

….
ro:e1
 rdf:type ro:SyncShipmentSchedule ;
 ro:BOD ro:e2 .
ro:e2
 rdf:type ro:ShipmentSchedule ;
 ro:ids ro:e3 .
ro:e3
 rdf:type ro:DocumentId ;
 ro:identifier "100"^^xsd:string .
….

Listing 10 The fragment of the BOD XML message:
semantic reconciliation output

Listing 11 The fragment of the OWL/RDF BOD message-
instance model

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>.
@prefix p1: <http:///MessageMetamodel.ecore#> .
@prefix bmsd:
<http://localhost/BODMessageSchemaMOdel#>
…
p1:e1
 rdf:type p1:StructuredElement ;
 p1:items p1:e2 ;
 p1:model bmsd:elementModel10 .

p1:e2
 rdf:type p1:StructuredElement ;
 p1:inElement p1:e1 ;
 p1:items p1:e3 ;
 p1:model bmsd:elementModel20.

p1:e3
 rdf:type p1:StructuredElement ;
 p1:inElement p1:e2 ;
 p1:items p1:e4 ;
 p1:model bmsd:elementModel30 .

p1:e4
 rdf:type p1:StructuredElement ;
 p1:inElement p1:e3 ;
 p1:items p1:w5 ;
 p1:model bmsd:elementModel40.

p1:e10
 rdf:type p1:StructuredElement ;
 p1:inElement p1:e4 ;
 p1:items p1:e20 ;
 p1:model bmsd:elementModel50 .

p1:e20
 rdf:type p1:SimpleElement ;
 p1:inElement p1:e10 ;
 p1:model bmsd:elementModel60;
 p1:actualValue p1:wsv1 .

p1:wsv1
 rdf:type p1:SimpleValue ;
 p1:text "100" .

6. Discussion

Execution of the experimental scenario showed that the proposed architecture successfully supported
semantic reconciliation from a source message instance to a schema-conforming target message
instance. The Message Metamodel form provided required data-representation information for the
message reconciliation.

 At design-time, for a given message schema, the corresponding message-schema model
provided (1) a definition of each message concept; and (2) a model of a message structure. The
definition and model are used for the semantic reconciliation rules definition.

At run-time, for a given message instance, the corresponding message-instance model (1)
assigned definition of a concept to each message concept; (2) carried the content of the original
message instance; (3) provided access to the message instance content; and (4) through the definition
of each message concept, provided information about the syntactic concepts of messages such as
naming, structure, occurrences, value representation, and encoding language of the message (i.e., the
language attribute of Schema concept in Figure 2).

The experiment showed that the Message Metamodel form captures necessary information to
reconcile a message instance of application A to a message schema-conforming message instance of
application B. Although our experiment was based on XML-to-XML message exchange, the

 21

Message Metamodel would work as well for an EDI-to-XML scenario (e.g. EDIFACT Order to UBL
Order message).

6.1. Minimum set vs. maximum set of available message information to the semantic
reconciliation and mappings correspondence discovery

The necessary set of information about a message that the Message Metamodel form explicitly
provides to the semantic reconciliation is the minimum set of explicitly available information to the
semantic-reconciliation. In contrast to that, the maximum set of explicitly available information to the
semantic reconciliation exists if a local conceptual model of the message is also explicitly available.

The semi-automatic mapping algorithms explore similarities between model of a message and
reference ontology by comparing the respective naming and structural characteristics. The minimum
set of explicitly available information that Message metamodel form provides may be used in support
of semi-automatic mapping correspondences discovery, as the structural organization and naming
rules of the message are contained in the minimum set of explicitly available information. The
Message Metamodel form does not provide the maximum set of explicitly available information, per
se; the Message Metamodel form is not the local conceptual model of message elements. However,
when the local conceptual model of a message is also explicitly available, it provides an additional
knowledge that may be used in support of semi-automatic mapping correspondences discovery (the
additional techniques from ontology matching domain may be applied). Nevertheless, our experiment
showed that the presence of the local conceptual model is not mandatory for actual reconciliation –
only the minimum set of explicitly available information is necessary and mandatory for successful
reconciliation.

Other approaches for semantic reconciliation of messages assume that a local conceptual model
of message elements should be the model of a message used for reconciliation rules definition.
However, the local conceptual model of message elements is free of all message-format and data-
representation rules, which are needed for the semantic reconciliation of a message - for constructing
a message schema-conforming message for the intended recipient.

Therefore, this paper argues that the Message Metamodel (or some similar model) should be
used as the model of a message for semantic reconciliation. Besides the fact that the Message
Metamodel form captures the minimum set of explicitly available information for semantic
reconciliation, it also may serve as a model from which a semantics extraction software can re-
engineer the local conceptual model of a message, if the domain knowledge (such are schema naming
and design rules) is accessible and if the local conceptual model is needed by other technologies
included in the reconciliation process.

6.2. Message Metamodel and message semantics annotation

The Message Metamodel is also envisioned as a model of message for the semantics annotation of
business message. The semantics annotation of business messages is needed as existing standards for
message schemas define only the syntactic structure of messages without any explicit, formal, and
machine-processable representation of the message elements’ meaning. The semantics annotation of
message elements clarifies a message element semantics by associating explicit and machine-
processable semantic annotation expressions to the message element. A semantic annotation
expression represents the business meaning of a message element in terms of the adopted reference
ontology concepts and their relationships.

 22

The semantics annotation is an indirect approach to the reconciliation definition as the semantics
annotation expressions are a knowledge base for automated reconciliation rules generation. Besides
that, the semantics annotation expressions shall also be a knowledge base for semantic querying over
the business messages, for message schema components discovery and components reusability,
regardless of message-schema and message-representation standards. Thus, the semantics annotation
activity needs to be transparent with respect to the different message-schema and message-
representation standards by providing the unified approach to annotate message elements defined in
message schemas. To achieve the transparency and unification of the semantics annotation, the
Message Metamodel may be used.

In contrast to a local conceptual model, the Message Metamodel, as a model of message schema
and message instance, captures enough information about messages to enable effective mapping
between syntactic elements and content concepts, captures original message elements definition as
given in message schemas, and captures definition of core and derived components from message
schemas. This entire information collection is needed for semantics annotation of message schemas.

7. Related work and assessment

Semantic reconciliation between messages defined by different message schemas may take on several
alternative forms, depending on whether the reference ontology is present or not, and on a
reconciliation approach applied. Hameed et.al., in [19], and Vetere & Lenzerini in [21] categorize the
different architectural models for the semantic reconciliation between local ontologies, which are
local conceptual models of message schemas, into: (1) any-to-any model, which does not employ a
reference ontology and which reconciles local ontologies pair-wise as needed; (2) any-to-one model,
which does employ a single reference ontology that serves as an “interlingua” to which any local
ontology may be translated and vice-versa; and (3) hybrid model, which employs multiple reference
ontologies in different clusters, providing for reconciliation between the local ontologies and a
reference ontology in each cluster, and among the reference ontologies of different clusters.

In these models, the reconciliation may be achieved by the merging or mapping of the ontologies.
Merging unifies two or more ontologies with overlapping parts into a joint ontology that includes all
information from the sources. Mapping builds executable mapping rules that specify transformation
from source ontology to the target ontology.

There are several demonstrations of the any-to-any model in the literature. For an example,
Anicic [20] demonstrated an any-to-any model where local OWL ontologies are merged and source
OWL individuals classified and transformed into target OWL individuals by description-logic
reasoners. Artemis [22] demonstrated any-to-any model based on crosswise mappings among local
OWL ontologies. In Artemis, the OWLmt tool (http://sourceforge.net/projects/owlmt) was used for
ontology mappings. Oh and Yee [12] described a semantic reconciliation of XML-based messages in
a web-services-based manufacturing applications environment by using the Jena rule-based mapping
between corresponding local RDFS ontologies.

In the any-to-any models, when many local ontologies are involved, the number and complexity
of joint pair-wise ontologies is increased if merging is applied, or the number of crosswise mappings
is increased if mapping is applied. In contrast to the any-to-any model, the any-to-one mapping
models significantly reduce number of mappings, and there is no need for the ontology merging. The
approach proposed in this paper is an instance of the any-to-one model in which the mappings are
defined as a set of transformation (reconciliation) rules.

 23

We have found several related demonstrations of the any-to-one model in the literature. The
Harmonise project [23] demonstrated semantic-mediation in a tourist B2B network to allow
participants to keep the proprietary XML-based message interfaces and still be able to exchange
messages. Harmonise defined a reference Harmonisation RDFS Ontology and used the Mafra tool
[24] for establishing the mappings between RDFS ontologies. In contrast to the forward-chaining
rules used in this work, Mafra provides a proprietary Semantic Bridge Meta-Ontology (SBO) for
establishing the mappings by bridging axioms. Mafra transforms source RDF documents to the target
RDF documents by evaluating the defined bridge axioms and executing pre-defined functions
assigned to each bridge axiom.

Ye and Yang [33] introduced a general Supply Chain Ontology (SCO) that captured concepts and
relationships common to the supply chain management, and also used a forward chaining rule-based
approach to map between the SCO and local OWL ontologies. The mappings in their work are
represented in Semantic Web Rule Language (SWRL) [30].

The ATHENA project [10] introduced toolset for semantic reconciliation of RDF documents: the
Astar tool for annotation of the concepts of local RDFS ontologies with their meaning as captured by
concepts and its relationship in reference ontology; the Argos tool for RDF-to-RDF document
reconciliation definition; and the Ares tool for RDF-to-RDF reconciliation execution. Argos performs
either semi-automatically, supported by annotation expressions from the Astar tool, or manually, with
the engineer directly instantiating and specifying the rules.

The work in this paper differs from approaches in [10, 12, 20, 22, 23, 33] as we propose the use
of Message Metamodel as an ontological model of messages for the reconciliation definition and
reconciliation executions, and demonstrate its capability for reconstructing message schema-
conforming message instances from the output of the semantic reconciliation. The approaches in [10,
12, 20, 22, 23, 33] assume a local conceptual model in form of local ontology as the model of
message, which is insufficient for reconstructing message schema-conforming message instance from
the output of the semantic reconciliation.

There are already proposed generic models of information structures in the field of model
management [28, 29] that can represent artifacts such as XML schema (or a relational database
schema and UML conceptual schema). However, these approaches provide models of schemas only,
and do not consider the requirement for providing a neutral-intermediate model of message instances
on which reconciliation rules actually operate in a run-time, and whose elements are for that purpose
associated with its definition captured in the message-schema models.

 Bowers [27] approach relates to ours as he introduced a generic approach for representing and
transforming model-based information with the focus on supporting interoperability. Bowers’
superimposed-information metamodel is a model of a wide variety of models or schemas including
XML Schema, EDI, UML, RDFS, etc. Bowers’ superimposed-information metamodel is a single
generic representation schema based on RDF that represent the superimposed models, schemas and
instances. The metamodel is, however, one MOF layer above the Message metamodel , and
therefore, not appropriate as a model of message schema and message instances for the purpose of
semantic reconciliation between business messages.

Also, there are several proposed XML metamodels, e.g., XML Schema Definition [47] or
Document Object Model [48]. However they are XML-specific. Besides being XML-specific, they
may be too expensive in terms of processing as they usually capture all XML syntax-specific details.

 24

Other less expensive XML metamodels are also proposed, such as JavaScript Object Notation
(JSON) [49]; however they are insufficient to capture details needed for semantic reconciliation.

Ontological metamodel for EDI-based messages has been reported in [35]. In [35], authors
propose ontologization for X12 EDI specs in two phases: the syntax and semantics ontologization. To
ontologize syntax, authors in the [35] define and encode a vocabulary for specifying the formats of
the EDI concepts: Transaction Sets, Data Segment groups, Data Segments, Composite Data
Elements, simple Data Elements, Data Element codes, and Code Sets. Through the use of that
vocabulary, the syntax of each of the components is defined. The semantics ontologization involves
specifying the semantics of each Transaction Set, Data Segment group, Data Segment, Composite
Data Element, simple Data Element, and code in each code set of a chosen X12 subset. The
vocabulary defined in [35] is EDI-specific and no effort was made to ontologize the semantics of the
X12 terms.

Ontological metamodel for XML-based messages has been reported in [37]. In [37], Yarimagan
introduces a Component Ontology for UBL XML message schemas that allows capturing UBL
message element definitions and its structural relationships. In Yarimagan’s approach, core and
custom message components defined in UBL schemas are transformed in corresponding Component
Ontologies, and the reconciliation between messages of different customized UBL schemas is
accomplished by using description-logic reasoning, similar to [20]. Further, in [36], authors propose
the transformation of XML schemas to Web Service Modeling Language (SWML) [39] based local
ontologies. However, the [36] proposes the transformation of XML message concepts to the local
conceptual model, so it inappropriately captures the needed message schema and message details.

In contrast to [35, 36, 37], the Message Metamodel form syntactic ontologizes relevant concepts
of both EDI-based and XML–based message schema or message instance, irrespective of message-
specification standard.

The Semantic Annotation for WSDL and XML Schema (SAWSDL) standard [40, 43] also relates
to this work. SAWSDL defines a set of XML Schema extension attributes that ‘add’ semantics to
XML schemas. Actually, SAWSDL provides “liftingSchemaMapping” and
“loweringSchemaMapping” extension attributes that associate XML schema types or element
definitions with a mapping to an ontology. These attributes refer to executable mapping rules that
translate XML documents to and from business ontology.

SAWSDL is agnostic to representation language that business ontology is captured in, and it does
not prescribe use of any particular mapping representation language. The METEOR-S framework
[44] provides for SAWSDL-based reconciliation between XML messages by using Extensible
Stylesheet Language Transformation (XSLT) [51] to implement “liftingSchemaMapping” and
“loweringSchemaMapping” rules. For the lifting, METEOR-S uses XML Query Language (XQuery)
[52] to extract the message content from XML message instance and XSLT to generate a reference
ontology population of instances matching the content of the message instance. When lowering,
METEOR-S uses RDF Query Language (SPARQL) [53] to extract the content from reference
ontology instance, and XSLT to generate a message instance matching the content reference ontology
instance.

The approach presented in this paper can also provide support for SAWSDL-based reconciliation
between XML messages. The Message Metamodel captures all the XML Schema concepts relevant
to SAWSDL (e.g., data types or element definition) and forward and backward reconciliation rules
are actually “lifting” and “lowering” rules. The “liftingSchemaMapping” and

 25

 26

“loweringSchemaMapping” extension attributes, which refer to external resource where
reconciliation rules are stored, may be added to the original schemas by using the knowledge
captured in message-schema model and the reconciliation rule base. However, in this case, an actual
run-time “lifting” and “lowering” must be supported by the run-time semantic reconciliation
architecture proposed in this paper.

The SAWSDL-like reconciliation for non-XML message representation (e.g. EDI) can also be
supported by applying the approach in this paper. The proposed Message Metamodel-enhanced
semantic reconciliation is agnostic to message-representation language and the
“liftingSchemaMapping” and “loweringSchemaMapping” may be applied to non-XML message
representations. However, the extensional attributes are not yet defined for other message
specification standards but only for XML Schema.

The work in this paper mostly follows the Automated Methods for Integrating Systems (AMIS)
project [26] that studied automated methods for supply-chain integration, and it is directly motivated
by the results of the ATHENA B5.10 validation project [14]. AMIS proposed the any-to-one model
for semantics-based integration, and introduced a model of a message as a Local Conceptual Model
(LCM) together with a Local Engineered Interface Model (LEM). LCM identifies business entities,
properties, and relationships referenced in services, while LEM identifies functions or services
provided by a tool, services it expects to use, specification models for those interfaces, and
identification of the interface technologies (such as Webservices or ebMS). The work in this paper
focuses only on the software applications with message-based interfaces.

In AMIS, the LEM concepts are mapped to the local conceptual models concepts , and the local
conceptual models concepts are mapped to the reference ontology concepts for semantic
reconciliation. In fact, we developed the LEM for the business messages – the Message Metamodel ,
and captured it as an OWL ontology. However, in contrast to AMIS idea, in this work the
“engineered interface” is directly used to define mappings to the reference ontology for semantic
reconciliation. That is, OWL/RDF message-schema models are used to define logic rules-based
transformations to the reference ontology to demonstrate operational reconciliation between two
message-based applications. The use of the message-schema models for the reconciliation rules
definition was possible as a message-schema model captures the message structure, which is actually
the essential intent of the Local Conceptual Model when it is considered as the model of messages for
the semantic reconciliation.

Semantic web services (SWS) also have become a key technology for enabling the workflow
integration of supply chains [41]. The SWS frameworks, such is Web Service Execution
Environment [42], may provide automated web service discovery, execution, composition and
interoperation in the supply chains environments. This paper, however, is only concerned with the
semantic reconciliation of business messages in the traditional web-service environments.

Table 1 summarizes this comparison of related semantic reconciliation architectures and
approaches.

Table 1 The comparison of the approaches

 Architectural
Model

Demonstrated

(ATO Any-to-
one)

 (ATA any-to-
any)

Toolset
supports other
architectural

models
 (Y-yes, N-no)

Model of a
message

(LCM –local
conceptual

model)

Supported
message-

representation
language

(XML,/EDI, or

A when
agnostic)

Suitable for the
creation of schema-

conformant
messages from

semantic
reconciliation output

(Y-yes, N-no)

Reconciliation
specification

Reconciliation
execution

Ontological
language

Message-
schema

components
annotation

(S-supports)

(M-may support)
(N- cannot
support)

Suitable for
SAWSDL

framework

(Y-yes, N-no, E
is can be
extended)
(B-based)

Supports non-
standard based

message
schemas

reconciliation

 (Y-yes, N-no)

Harmonize
[23]

(Mafra)
ATO Y LCM A N

bridge axioms defined
by

Semantic Bridge
Ontology

bridge axioms
interpretation

RDFS N N Y

Artemis
[22]

(OWLmt)
ATA Y LCM A N

bridge axioms defined
by

Mapping Schema
Definition Ontology

OWL-QL/
bridge axioms
interpretation

OWL, RDFS N N Y

ATHENA
A3

(Astar/
Argos)

ATO N LCM A
Y

(used [25] as a
workaround)

annotations between
LCM and RO

Jena
rule-based
reasoning

OPAL-based[50]
OWL, RDFS

N N Y

METEOR-S
[44]

ATO N - XML Y SAWSDL
XQuery/
XSLT

OWL, RDFS S Y Y

Yarimagan
[37]

ATA N
Component

ontology
A N

no specification

description-logic
reasoning

OWL DL M E N

Anicic
[20]

ATA N LCM A N
No

specification(merging)

description-logic
reasoning

OWL DL N N N

Ye and Yang
[33]

ATO Y LCM A N
no specification

(executable mapping)

SWRL
rule-based
reasoning

OWL N N Y

Oh and Yee
[12]

ATA Y LCM A
Y

(used [25])
no specification

(executable mapping)

Jena
rule-based
reasoning

RDFS N N Y

AMIS
[26]

ATO N LCM A not discussed
composition of software

patterns [46]
generated code

(C)
not discussed N not discussed Y

Our approach ATO Y
Message

Metamodel
A Y

no specification
(executable mapping)

Annotation future work

Jena
rule-based
reasoning

OWL, RDFS M E Y

 27

8. Conclusion

The Message Metamodel provides a unique contribution toward the design-time and run-time
activities of the proposed semantic reconciliation architecture.

The experimental results showed that the proposed semantic reconciliation architecture,
enhanced with the Message Metamodel as the model of business message, contributes to the
semantic reconciliation by ensuring that (1) the reconciliation tasks are isolated from and
independent of differently specified and represented messages, and (2) the proposed solution
ultimately produces message schema-conforming message instance from reconciliation
output, in the syntax of target message instance.

This is in opposition to approaches based on a local conceptual model of business
messages as a highly abstract model that proved insufficient to capture the required
information about messages and to enable effective mapping between syntactic elements and
content concepts, and thus, insufficient for the semantic reconciliation and semantic
annotation of business messages.

Also, the proposed model of a message does not require additional reconciliation rules that
generate axioms for the reconciled message to carry purely data-representation and formatting
rules through the entire semantic reconciliation, which was reported as an unwanted behavior
when a local conceptual model is used as the model of message.

As the Message Metamodel form captures the original structure of a message, a
reconciliation rules definition tool may visualize the original message structure to the
reconciliation engineer when rules are being specified. The original message structure is likely
to be more familiar to the reconciliation engineer then a structure of the message captured in a
local conceptual model (when a local conceptual model is used as a model of message).

However, writing reconciliation rules, which are detailed and formal, is definitely not an
easy task, even for a highly skilled rule engineer. The future work will be focused on the
development of a tool for the reconciliation rules definition. The plan is to take the approach
where reconciliation rules are being derived from semantic annotation expressions, as the
semantic annotation expressions that describe the meaning of message elements may be
reused for different purposes in heterogeneous B2B environments, not only for reconciliation
rules generation. Most of the forward reconciliation rules can be derived directly from the
annotation expressions and the reverse forward rules can provide most of the backward rules.

In summary, we believe that the Message Metamodel and the semantic reconciliation and
message semantics annotation based on the Message Metamodel, as the model of message
schemas and message instances, may provide significant support for industry integration
requirements. This is, a common ontological representation of the present well-established
message-representation standards (XML, EDI, ASN.1); a transparent reconciliation and
annotation approach for the well-established message-representation standards; an improved
runtime reconciliation capabilities; and an approach to multi-purpose reuse of annotation
expressions (e.g., reconciliation, semantic querying, schema component discovery and
reusability).

 28

Disclaimer: Certain commercial and open source software products are identified in this paper. These

products were used only for demonstration purposes. This use does not imply approval or endorsement

by NIST, nor does it imply these products are necessarily the best available for the purpose.

References

1. Standards for Technology in Automotive Retail (STAR), online at www.starstandard.org/,

accessed August 2008
2. Automotive Industry Action Group (AIAG), online at www.aiag.org/, accessed August 2008
3. OASIS Universal Business Language (UBL), online at www.oasis-open.org/committees/ubl/,

accessed August 2008
4. United Nations Directories for Electronic Data Interchange for Administration, Commerce and

Transport (EDIFACT), online at www.unece.org/trade/untdid/, accessed August 2008
5. Kantor, M, James H., B., (1996). Electronic Data Interchange (EDI). National Institute of

Standards and Technology, online at www.itl.nist.gov/fipspubs/fip161-2.htm/, accessed August
2008

6. Extensible Markup Language (XML), online at www.w3.org/XML/, accessed August 2008
7. Abstract Syntax Notation One (ASN.1), online at http://asn1.elibel.tm.fr/, accessed August 2008
8. Web ontology Language (OWL), online at www.w3.org/TR/owl-features/, accessed August 2008
9. RDF Vocabulary Description Language (RDF Schema), online at www.w3.org/TR/rdf-schema/,

accessed August 2008.
10. ATHENA Knowledge Support and Semantic Mediation Solutions - Deliverables D.A3.2-D.A3.5,

January 2006, online at www.modelbased.net/aif/, accessed August 2008
11. Vujasinovic, M., Ivezic, N., Kulvatunyou, B., Barkmeyer, E., Missikoff, M., Taglini, F.,

Marjanovic, Z., Miletic, I., (2009). Semantic-Mediation Architecture for Interoperable Supply-
Chain Applications, to appear in Int’l Journal of Computer Integrated Manufacturing, accepted
October 2008

12. Oh, S-C., Yee, S-T., (2008), Manufacturing interoperability using a semantic mediation, Int’l
Journal of Advanced Manufacturing Technology, Vol. 39, pp. 199-210

13. Ray, S., Jones, A., (2006), Manufacturing interoperability, Journal of Intelligent Manufacturing,
Vol. 17, Number 6, pp. 681–688

14. ATHENA B5.10 - Inventory Visibility Sub-Project: IV&I End-to-End Interoperability
Demonstration including Conformance Testing Demonstration, online at
http://xml.aiag.org/athena/resources/WD.B5.7.6--InteropAndConformanceTestDemo.pdf/, accessed
August 2008

15. Turtle - Terse RDF Triple Language, online at www.dajobe.org/2004/01/turtle/, accessed August
2008

16. Jena rule language, online at http://jena.sourceforge.net/, accessed August 2008
17. Barkmeyer, E., Kulvatunyou, B., (2007). An Ontology for the e-Kanban Business Process, NIST

Internal Report 7404, National Institute of Standards and Technology, online at
www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf/, accessed August 2008

18. Vujasinovic, M., Barkmeyer, E., (2009). Message Metamodel, NIST Internal Report, National
Institute of Standards and Technology

19. Hameed, A., Preece, A.D., Sleeman. D.H., (2004). Ontology Reconciliation, Handbook on
ontologies, Springer, pp. 231– 250

20. Anicic, N., Marjanovic, Z., Ivezic, N., Jones, A., (2007). Semantic Enterprise Application
Integration Standards, Int’l Journal of Manufacturing and Technology, Vol. 10(2-3), pp. 205-226

21. Vetere, G., Lenzerini, M., (2005). Models for semantic interoperability in service-oriented
architectures, IBM Systems Journal, Vol. 44(4), pp. 887-903

 29

http://www.starstandard.org/
http://www.aiag.org/
http://www.oasis-open.org/committees/ubl
http://www.unece.org/trade/untdid/
http://www.itl.nist.gov/fipspubs/fip161-2.htm
http://www.w3.org/XML/
http://asn1.elibel.tm.fr/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/,
http://www.modelbased.net/aif/
http://xml.aiag.org/athena/resources/WD.B5.7.6--InteropAndConformanceTestDemo.pdf
http://www.dajobe.org/2004/01/turtle/
http://jena.sourceforge.net/
http://www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf

22. Bicer, V., Laleci, B.G., Dogac, A., Kabak, Y., (2005). Artemis Message Exchange Framework:
Semantic Interoperability of Exchanged Messages in the Healthcare Domain, SIGMOD Record
Vol. 34(3), pp. 71-76

23. Fodor, O., Werthner, H., (2004). Harmonise: A Step Toward an Interoperable E-Tourism
Marketplace, Int’l Journal of Electronic Commerce, Vol. 9(2), pp. 11-39

24. Maedche, A., Motik, B., Silva N., Volz, R., (2002). MAFRA - A MApping FRAmework for
Distributed Ontologies, Proc. of the EKAW 2002, LNCS 2473, Springer, pp. 235–250

25. Miletic, I., Vujasinovic, M., Ivezic, N., Marjanovic, Z., (2007). Enabling Semantic Mediation for
Business Applications: XML-RDF, RDF-XML, and XSD-RDFS Transformation, Proc. of the Int’l
Conf. IESA, Springer, pp. 483-494

26. D. Libes, Barkmeyer, E., Denno, P., Flater, D., Steves, M.P., Wallace, E., Feeney, A.B., (2004).
The AMIS Approach to Systems Integration, NIST Internal Report 7101, National Institute of
Standards and Technology, online at www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf/, accessed
August 2008

27. Bowers S., Delcamre L., (2000). Representing and transforming model based information, Proc. of
the 4th European conference on research and advanced technology for digital library (ECDL-2000),
Lisbon, Portugal, pp. 5–18

28. Kensche, D., Quix. C., Chatti, M.A., Jarke, M., (2005). GeRoMe: A generic role based metamodel
for model management, Proc. of the 4th Int’l Conf. on Ontologies, Databases, and Applications of
Semantics (ODBASE), LNCS Vol. 3761, pp. 1206–1224

29. Melnik, S., Rahm, E., Bernstein, P.A., (2003). Rondo: A programming platform for model
management, Proc. of the 22nd Int’l Conf. on Management of Data (SIGMOD), pp. 193–204

30. Horrocks, I., Patel-Schneider, Boley, H., Tabet, S., Grosf, B., Dean, M., (2004). SWRL: a semantic
web rule language combining OWL and RuleML, WWW Consortium Member Submission, online
at www.w3.org/Submission/SWRL/, accessed August 2008

31. ISO/IEC 19502 Meta Object Facility (MOF), online at www.omg.org/spec/MOF/, accessed August
2008

32. Bohring, H., Auer, S., (2005). Mapping XML to OWL Ontologies. Marktplatz Internet: Von e-
Learning bis e- Payment. Leipziger Informatik-Tage (LIT2005), Leipzig, Germany, pp.147-156

33. Ye, Y., Yang, D., Jiang, Z., Tong., L., (2007). An ontology-based architecture for implementing
semantic integration of supply chain management, Int’l Journal of Computer Integrated
Manufacturing, Vol. 21(1), pp. 1-18

34. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R., (1999). What are ontologies, and why do we
need them?, IEEE Intelligent Systems, Vol. 14(1), pp. 20-26

35. Foxvog, D., Bussler, C., (2005). Ontologizing EDI: first steps and initial experience, Proc. of the
Int’l Workshop on Data Engineering Issues in E-Commerce, pp: 49 - 58

36. Karthick, S., (2006). Ontologizing XML Using Mediation Patterns, First International Workshop
on Ontologizing Industrial Standards OIS 2006

37. Yarimagan, Y., (2008). Semantic Enrichment for the Automated Customization and
Interoperability of UBL Schemas, PhD Thesis, Dept. of Computer Engineering, METU, March
2008

38. American National Standards Institute Accredited Standards Committee X12 (ANSI ASC X12),
online at www.x12.org/, accessed August 2008

39. The Web Service Modeling Language WSML, online at www.wsmo.org/TR/d16/d16.1/v0.2/,
accessed August 2008

40. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J., (2007). SAWSDL: Semantic Annotations for
WSDL and XML Schema, IEEE Internet Computing, Vol 11(6), pp. 60-67

41. McIlraith, S.A., Son, T.C. et.al., (2001). Semantic Web services, IEEE Intelligent Systems, Vol.
16(2), pp. 46-53

42. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C., (2005). WSMX - a semantic service-
oriented architecture, Proc. of the 2005 Int’l Conf. on Web Services, Vol. 1, pp. 321-328

 30

http://www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf
http://www.w3.org/Submission/SWRL/
http://www.omg.org/spec/MOF/
http://www.x12.org/
http://www.wsmo.org/TR/d16/d16.1/v0.2/

 31

43. Verma, K., Sheth, A., (2007). Semantically Annotating a Web Service, IEEE Internet Computing,
Vol. 11(2), pp. 83-85

44. Patil, A., Oundhakar, S., Sheth, A., Verma, K., (2004), Meteor-s web service annotation
framework, Proc. of the 13 Int’l Conf. on WWW, pp. 553-562

45. ISO 10303-11:2004 Industrial automation systems and integration -- Product data representation
and exchange -- Part 11: Description methods: The EXPRESS language reference manual, online at
www.iso.org/, accessed August 2008

46. Flater, D., (2004). Automated Composition of Conversion Software, NIST Internal Report 7099,
National Institute of Standards and Technology, online at
www.mel.nist.gov/msidlibrary/doc/nistir7099.pdf/, accessed August 2008

47. XML Schema Definition API, online at www.eclipse.org/xsd/, accessed August 2008
48. Document Object Model (DOM), online at www.w3.org/DOM/, accessed August 2008
49. JavaScript Object Notation (JSON), online at www.json.org/, accessed August 2008
50. D’Antonio, F., Missikoff, M., Taglino, F., (2007). Formalizing the OPAL eBusiness ontology

design patterns with OWL, Proc. of the Int’l Conf. IESA, Springer, pp. 345-356
51. XSL Transformations (XSLT) Version 1.0, online at http://www.w3.org/TR/xslt, accessed August

2008
52. XQuery 1.0: An XML Query Language, online at http://www.w3.org/TR/xquery/, accessed August

2008
53. SPARQL Query Language for RDF, online at http://www.w3.org/TR/rdf-sparql-query/, accessed

August 2008

http://www.iso.org/
http://www.mel.nist.gov/msidlibrary/doc/nistir7099.pdf
http://www.eclipse.org/xsd/
http://www.w3.org/DOM/
http://www.json.org/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/rdf-sparql-query/

	1. Introduction
	2. Research motivation
	3. (Ontological) Message Metamodel
	4. Application of the Message Metamodel in the semantic reconciliation architecture
	4.1. The semantic-reconciliation methodology

	5. Experimental scenario and implementation
	5.1. Transformation of XML message schemas to OWL/RDF message schemas models
	5.2. Reconciliation rules definition using OWL/RDF message-schema models and a reference ontology
	5.3. Semantic-reconciliation execution

	6. Discussion
	6.1. Minimum set vs. maximum set of available message information to the semantic reconciliation and mappings correspondence discovery
	6.2. Message Metamodel and message semantics annotation

	7. Related work and assessment
	8. Conclusion

