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Abstract. Supply-chain applications exchange numerous electronic business-to-business (B2B) messages of varied 
types. Often, the supply-chain applications need to interact even though the applications use different message 
specifications and different message-representation standards. The paper discusses an approach to achieve such 
interactions by using the Message Metamodel-based semantic reconciliation of messages conformant to different 
message specifications,  yet supporting the same B2B scenario. The Message Metamodel  is a novel, neutral form 
for representing B2B messages and their specifications that may be based on different message-representation 
standards , such as Electronic Data Interchange (EDI), Extensible Markup Language (XML) or Abstract Syntax 
Notation One (ASN.1). Experimental investigation showed that a semantic reconciliation architecture, discussed in 
this paper, if enhanced with the Message Metamodel, enables seamless interoperable message exchange in 
heterogeneous supply-chain environments. The Message Metamodel-enhanced semantic reconciliation architecture 
supports the reconciliation of B2B messages irrespective of the message exchange standard used and insulates 
reconciliation activities from the specific physical message-representation syntaxes. 

Keywords: semantic reconciliation, business-to-business interoperability, message model, supply-chain integration 

1.   Introduction 

In a typical business-to-business (B2B) scenario, the involved software applications interact with 
each other by exchanging business documents in a form of electronic messages that carry structured 
business data. The structure and content of the messages (i.e., message instances) are defined by 
message specifications (i.e., message schemas). The partners involved in such a business scenario 
implement  respective application’s message interfaces either by adopting standard message schemas, 
such as Universal Business Language (UBL) [3] and Electronic Data Interchange for Administration, 
Commerce and Transport (EDIFACT) [4] multi-industry standard schemas, or such as Standards for 
Technology in Automotive Retail (STAR) [1]  and Automotive Industry Action Group (AIAG) [2] 
industry-specific standard schemas, or by developing proprietary message schemas. 

The B2B environment is heterogeneous as involved partners adopt different message schemas 
that use different vocabularies to name the message elements, different  structures to organize the 
data, or different data types to represent the data. Also, the message schemas may differ in the syntax 
that represent and encode the message instances (e.g., XML [6], EDI [5], ASN.1 [7] syntaxes) which 
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makes the B2B environment even more heterogeneous. Such syntactical, terminological, structural, 
and data-representational mismatches between message schemas lead to non-interoperable message 
exchanges between business partners, even though the message schemas are designed for the same 
B2B scenario.  

Such a heterogeneous B2B environment requires a capability to reconcile these mismatches so the 
applications may exchange message instances regardless of their different specifications and 
representations. Presently, the prominent architectures for interoperable B2B message exchange use a  
reference ontology-based semantic reconciliation [10, 11, 12, 13, 23, 34]. The reference ontology is 
an explicit and formal representation of a set of business concepts and business concept relationships 
for a specific business domain; moreover, it is a shared vocabulary and a shared conceptual model of 
the data exchanged between collaborating business partners. The semantic reconciliation is a 
transformation of the content of message instances from the message instance form used by the 
sending application to the message instance form expected by the receiving application, using 
reconciliation rules that are based on a reference ontology as the mediating reconciliation point.  

The semantic reconciliation of the mismatches between different message schemas unfolds at 
both design-time and run-time. The design-time semantic reconciliation is an activity of specifying 
the transformation of message instance content to and from the reference ontology form, while the 
run-time semantic reconciliation is the execution of the transformation of the message instance 
content. 

The message instance content transformation may be specified either 1) directly – by defining the 
executable reconciliation rules (also called the mapping rules) that transform data from the 
terminology and structure of a message instance to the reference terminology and structure (i.e., to 
instances of the concepts from the reference ontology) and vice-versa; or (2) indirectly – by 
establishing explicit and machine-processable semantic expressions between the message elements 
and their business meanings as captured in a reference ontology (i.e., by annotating the meaning of 
message elements using the reference ontology concepts) and, then, by deriving the executable 
reconciliation rules automatically from the semantic annotation expressions.  

Irrespective of whether the direct or indirect approach above is adopted, it is obvious that a model 
that abstracts the message from underlying specific message-representation syntax is needed to 
ensure that semantic reconciliation (both design-time and run-time) is independent of the physical 
message-representation syntax and message specification standards. Thus, the reconciliation rules and 
semantic annotations are to be defined on such model of a message. The model has to insulate 
message content transformation activities from the specific physical message-representation syntaxes 
and to allow the semantic reconciliation software to be reused with different physical message-
representation syntaxes. 

This paper presents one model of the message that provides a solid base for design-time and run-
time semantic reconciliation of business messages. The next section presents the motivation for the 
research of such message model for semantic reconciliation and discusses issues with current 
approaches. The third section proposes and describes the Message Metamodel, which is the novel 
message model for semantic reconciliation. The fourth section describes the application of the 
Message Metamodel in the semantic-reconciliation architecture and details the activities and steps of 
the proposed semantic reconciliation. The fifth section presents an experimental scenario and an 
implementation of the model. The final sections of the paper discuss the related work and offer 
concluding remarks.  Additionally, as detailed later, the implemented toolset and example schemas 
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and messages used in the experimental scenario are available for download, so the reader can 
reproduce the example results presented in this paper. 

2.   Research motivation 

Our investigation of the current semantic reconciliation approaches [10, 12, 19, 20, 22, 23, 33] 
showed that these approaches use a local conceptual model of the message elements as the model of 
the message for the reconciliation purpose.  

The local conceptual model is a local ontology created by interpreting semantics of message 
elements from structural organization of elements given in a message schema and, if available, from 
message schema naming and design guidelines. This means that a semantics extraction software re-
engineers the conceptual model of the message elements from message schemas and captures that 
model using an ontology representation language such as Web Ontology Language (OWL) [8] or 
Resource Description Framework Vocabulary Description Language (RDFS) [9]. For example,  
XML Schemas transformed to OWL local conceptual models [32] or to RDFS local conceptual 
models [25]. Once a local conceptual model of the message is available, the reconciliation rules are 
defined between the local conceptual model of the message and the reference ontology, and, at 
runtime, the output of the semantic reconciliation process produces a message as a set of instances of 
corresponding local conceptual model concepts. 

However, a local conceptual model proved insufficient to capture required information about 
messages to enable effective mapping between syntactic elements and content concepts, which makes 
it insufficient for reconstructing message schema-conforming message instances from the output of 
the semantic reconciliation. As the local conceptual model of the message retains only the “semantic 
gist” of the message, it does not preserve information about the original message structure, elements 
order, names of message elements, namespaces definitions, data concept granularity (element vs. 
attribute), and formatting rules. Elsewhere, it was demonstrated and reported that a semantic 
reconciliation approach that uses a local conceptual model as a model of message needs an elaborate 
work-around to capture these structural and syntactic details in order to produce message  schema-
conforming message instance from the local ontology instance [11, 25]. 

When the local conceptual model represents a model of the message, a message syntax-specific 
transformation tool creates a local ontology from the message schema (e.g. EDI-to-RDFS, XML-
Schema-to-RDFS, or ASN.1-to-RDFS transformations) and also transforms actual message instances 
to instances of the local ontologies (e.g., XML-to-RDF or EDI-to-RDF transformations) and vice-
versa (e.g., RDF-to-XML or RDF-to-EDI transformations). In such syntax-specific transformation 
tools, the necessary information needed to produce schema-conforming message instances from the 
reconciliation output is usually maintained by (1) embedding the structural and concept granularity 
characteristics in naming conventions (e.g., a ‘path-name’ naming convention for labeling the 
concepts of a local ontology and their instances to reflect message-structure definition, or, for an 
example, by adding _attr suffix to a concept name to distinguish attributes from elements), and (2) 
creating additional reconciliation rules that generate axioms for the reconciled message to carry 
purely data-representation and formatting rules through the entire semantic reconciliation. 
Significantly, creating such additional reconciliation rules requires undesired effort on behalf of a rule 
expert and, moreover, requires additional knowledge about message-representation and formatting 
rules, beyond understanding the message semantics, as reported in [11].  
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All these issues are shortcomings of a local conceptual model as a model of the message for 
semantic reconciliation. Furthermore, depending on a transformation strategy applied to the 
extraction of local conceptual model from message schemas, the transformation may produce 
different local conceptual models of the same message schema (as discussed in [25]). That practically 
means that the rule expert, when creating the rules, may be faced with unfamiliar message structure 
that is now captured in local conceptual model and that likely differs from the original message 
structure captured by the message schema. 

Although the local conceptual model provides a model of the message that allows the semantic 
reconciliation software to be reused with different message-representation syntaxes, its insufficiency 
for reconstructing message schema-conforming message instances from the output of the semantic 
reconciliation process makes that model inadequate for reconciliation. 

That outcome led us to the view that a model of the message, besides capturing the original 
message structure instead of interpreted one, should be also rich enough to accommodate the 
syntactic distinctions made in different message-representation standards (i.e., syntactic concepts of 
messages such are naming, structure, occurrences, and value representation) in order to reconstruct 
message schema-conforming message instances from the output of the semantic reconciliation. The 
model of a message should be represented using an ontology language as the ontological 
representation allows rule-based reasoning and inferencing over the model and its components. 
Ontological representation of the model of a message actually opens the door to defining semantic 
reconciliation between the model of a particular message on one side, and a reference ontology on 
other side, which is specified using an ontological language (e.g., OWL or RDFS).  

We have developed a novel model of message that is a concise model for both actual message 
schemas and message instances that supports the primary syntactic concepts – naming, structure, 
occurrences, and value representation – and is just rich enough to accommodate the syntactic 
distinctions made in XML Schema, ASN.1, EDIFACT, North American EDI X12 [38], and 
EXPRESS [45] (as the model for Clear Text Exchange) standards.  The novel model of a message is 
defined by the Message Metamodel. The Message Metamodel concepts are summarized in the next 
section and detailed in [18]. 

3.   (Ontological) Message Metamodel  

The Message Metamodel captures message structure and message content in a form that 
intermediates between well established message-representation standards (e.g. XML, ASN.1 or EDI), 
as shown in Figure 1.  The Message Metamodel  form is an abstract syntax for the messages, devoid 
of the specific representation rules for specific syntaxes. 

 

Figure 1 Message Metamodel  as an intermediate form for representing messages of different syntactic varieties 

Conceptually, the Message Metamodel has two parts:  the schema part (the Message Schema 
Metamodel part), and the message instance part (the Message Instance Metamodel  part). The schema 
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part captures the naming, structure, and value concepts that are present in the corresponding message 
schema language (e.g. XML Schema) The message instance part captures the elements present in 
each runtime message instance, and their association to the modeled schema elements. (The Message 
Metamodel is presented in the Unified Modeling Language (UML) notation in Figures 2 and 3, but 
captured as an OWL ontology as we discuss later). 

 

Figure 2 UML representation of Message Schema Metamodel part 

The Message Schema Metamodel  part defines concepts that are commonly used in the message 
schema representation standards in order to describe constraints on the message structure and content. 
The root concept is a Schema. Schemas define ContentModels (StructuredContents and 
SimpleContents) and Components (AttributeModels and ElementModels). 
StructuredContent represents a content that contains zero or more other ContentModels (e.g., 
xs:complexTypes, ASN.1 sequence and set types, and the structure of EDI segments and segment 
groups). SimpleContents represent datatypes (e.g., integer, string, date, float, enumeration, 
identifier, etc) defined or used in a message schema (e.g., xs:simpleType, or EDI data element). If a 
SimpleContent represents an enumeration (or an EDI Code list), it owns Values. Value represents 
and stores actual (enumerated or other) value. The ElementModels define the elements of a 
message. The content of an ElementModel can be either StructuredContent or SimpleContent 

(e.g., in XML Schema, xs:element has a type that is an xs:complexType or an xs:simpleType). The 
AttributeModel defines the element attributes. The ContentModels and Components may have 
names, which is captured by Name concept. The Names are defined either in a SchemaNamespace or 
locally (LocalNamespace). Also, ContentModels and Components can be defined locally by 
other ContentModels and Components (e.g., XML schema inner complexTypes or inner-defined 
xs:elements). The RepositorySet is a collection of schemas and message definitions that are used 
in a common application and typically refer to each other. A message definition is an ElementModel 

that defines a model of the root element of a message instance.   
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The Message Instance Metamodel  part defines the concepts that are typically present in an actual 
runtime message instance. We consider that every message instance is an Element, more specifically 
a StructuredElement.  A StructuredElement contains other Elements (either 
StructuredElements or SimpleElements) or structures of values (ValueItems). A ValueItem 
represents an occurrence of a Value in a given place (but the Value itself may or may not be 
modeled.) A SimpleElement contains a SimpleValue, while an empty element of either kind has 
no content (i.e., no Items). A SimpleValue is a value treated as atomic in the message definition.  
Its primary representation is the string that is the text attribute. SimpleValues store the message 
content. Every SimpleValue has a SimpleContent model (i.e., datatype), but it is usually 
unnecessary to specify it directly at runtime (It is stated in the model of the Element that has the 
Value). A SimpleValue is an occurrence of a Value in a given place, but that may not be specified 
directly at runtime, either. A ListValue is actually a sequence of SimpleValues of a given type. 
The only reason for having this concept is to support the idea that XML Attributes can have fixed or 
default values that are ListValues. 

The definition of an Element is specified by its ElementModel (which provides the name/tag 
and expected properties). In some cases, the ElementModel does not completely (or actually) 
specify the content of the Element instance, and in that case, the datatype of the Element must be 
specified. Elements may contain Attributes, and each Attribute is identified by its 
AttributeModel (which owns the Name). Attributes may have assumed values, specified by the 
AttributeModel, even when they are not physically present.   

 

Figure 3 UML representation of  Message Instance Metamodel part 

A particular message schema information is captured as an instance of the Message Schema 
Metamodel while a particular runtime message instance and its content are captured as an instance of 
the Message Instance Metamodel.  
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In the terminology of Meta-Object Facility (MOF) [31], that means the particular message 
schema information is captured as an M1 instance of the M2 Message Schema Metamodel, which is 
shown in Figure 2, while the particular message instance and its content are captured as an M1 
instance of the M2 Message Instance Metamodel, which is shown in Figure 3. (Hereafter, when we 
refer to the M1 instances of the Message Metamodel we will use a “message-schema model”, 
“message-instance model”, or “message model” for both).  

A corresponding message model is one MOF-level higher than that actual message schema and 
message instance (e.g. an XML Schema message schema and XML message instance) as the model 
actually represents message concepts, structure and content model (Figure 4).1 The example of a 
message-schema model is given in the Section 5.1, Listing 2; that model corresponds to the XML 
message schema in the Section 5.1, Listing 1. The example of a message-instance model is given in 
the Section 5.3, Listing 8; that model corresponds to the XML message instance given in the Section 
5.3, Listing 7. 

 

Figure 4 Message Metamodel within MOF layering architecture 

It is important to mention that the information captured in a particular message-schema model is not 
sufficient to generate the original message schema, as some schema information is ignored (e.g.,  
XML simple type minInclusive or maxInclusive restrictions are not captured) and some schema 
constructs are generalized (e.g., xs:group and xs:complexType are both StructuredContent). 
However, it would be possible to generate a message schema that contains the same validation 
requirements as the original schema with respect to conformance of the message structure, message 
elements names, elements order, and unrestricted datatypes, with the definitions given in the schema.  

On the other hand, the message-schema model and the message instance-model together contain 
sufficient information to reconstruct the message schema-conforming and syntax-specific message 
instance from the message-instance model corresponding to that message instance. That is why this 
concept is named the Message Metamodel; its M1 instance represents a model of the message 
(because of the message-instance model part), and furthermore, captures all the primary message 
syntactic concepts – naming, structure, occurrences, and value representation -  (because of the 

                                                           
1 In the terms of an ontology, this means that Message Metamodel is a set of TBox statements (i.e., set of terms of controlled 
vocabulary)  while message-schema model and message-instance model are a set of ABox statements (i.e., set of assertion 
associated with the controlled terminological vocabulary). 
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message-schema model part), which are needed to construct a message schema-conforming message 
instance in a target representation language (e.g. XML, EDI).  That is, the intent of the Message 
Metamodel  is to be a solid model of the message for the semantic reconciliation of that message.  

The Message Metamodel  as an intermediate model for representing messages and their schemas 
(for well-established syntactic varieties) insulates the content transformation activities from a specific 
message syntax, and allows the semantics reconciliation software to be reused with different physical 
representation syntaxes. As was the case with local conceptual model, the Message Metamodel also 
necessitates the construction of the software libraries to transform message schema and message 
content to and from the Message Metamodel  form. For an example, the ‘XML Schema to Message 
Schema Model transformer’ that would transform an actual XML Schema message schema to a 
corresponding message-schema model, and the ‘XML to Message Instance Model  transformation 
tool’ that would transform an actual XML message to a corresponding message-instance model. Yet, 
the Message Metamodel  may allow other types of software, such as ones that interpret or annotate 
the message semantics, to be reused with different physical message representation syntaxes. 

Finally, a particular message model (M1 instance), can be physically represented and exchanged 
in numerous ways, for an example as XML Metadata Interchange (XMI) file, set of OWL 
individuals, set of RDF statements, or MOF database population. In this work we use OWL 
representation for message models as that ontologization of the message model gives a form suitable 
for defining reconciliation between the particular message model on one side, and an OWL reference 
ontology on other side. 

4.   Application of the Message Metamodel  in the semantic reconciliation architecture 

A semantic-reconciliation architecture enhanced with the Message Metamodel is shown in Figure 5. 
The semantic-reconciliation architecture employs a reference ontology, the semantic reconciliation 
tools (reconciliation rules definition tool, which are not shown, and reconciliation rule engine) and 
message-representation transformation tools. 

The reference ontology captures the shared conceptualization and business meaning of messages 
involved in a particular B2B scenario. The reconciliation rule engine provides the functionality to 
execute the forward reconciliation rules when applications are sending a message instance and 
backward reconciliation rules when applications are receiving a message instance.  

The forward rules specify message content transformation from of a message instance to a 
reference ontology instance, while backward rules specify transformation from the reference ontology 
instance to a message instance.  

The message-representation transformer tools provide transformations of the message schemas 
and message instances to corresponding models in a form of the Message Metamodel. The 
reconciliation rule engine and runtime message-representation transformer tools may be assembled 
into a single software component (e.g., semantic mediator). The architecture supports message 
content transformation between independently developed applications (applications A and B in 
Figure 5) that differ either due to differently specified message schemas (a proprietary or standard-
based), or different message-representation standards, or both. 
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Figure 5 A Message Metamodel enhanced semantic-reconciliation:  A conceptual architecture 

4.1.   The semantic-reconciliation methodology 

Within the architecture, the semantic-reconciliation activities take place at design-time and run-time. 
We assume here that the reference business ontology is already developed (and formally represented 
using an OWL or RDFS) by the business community and publicly available to the B2B participants. 
 At design-time, message schemas of all participating applications are transformed to the 

corresponding message-schema models; a specific transformer tool is applied, depending on the 
message-representation standard used for a particular message schema (e.g., XML Schema 
message schema  to message-schema model or EDI message specification to message-schema 
model transformation). The transformer tools produce OWL/RDF representations of the 
message-schema models, which is the representation form syntactically normalized with the 
language used to represent the reference ontology. Syntactical normalization of the 
representation of the message-schema models with the representation of the reference ontology 
provides an opportunity to use emerging Semantic Web technologies and rule-based reasoning 
over OWL/RDF documents. The rule-based reasoning over  the OWL/RDF documents is used to 
define forward rules that access the message instance content from the OWL/RDF message-
instance model and create instances of the OWL reference ontology concepts and populate the 
instances with the message instance content, as well as for the backward content transformation. 
For an example, we use the Jena rule language [16] to create executable rules that transform 
message instance content between the OWL reference ontology form and corresponding 
OWL/RDF message-instance model, as described in later sections.  After the message schemas 
are transformed in the OWL/RDF message-schema models, a reconciliation rule engineer uses 
the OWL/RDF message-schema models and the reference ontology to define rules for the 
forward and backward reconciliation between OWL/RDF message-instance models and the 
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Figure 6 Design-time semantic-reconciliation steps from the perspective of reconciliation rule engineer. 

 At run-time, when an application sends a source message instance (e.g., XML or EDI), the 
transformer tool (within a semantic-mediator) transforms the source message instance to the 
corresponding source OWL/RDF message-instance model. Then, the reconciliation rule engine 
takes the source OWL/RDF message-instance model and executes the forward ruleset for a 
sending application (Application ‘A’ in Figure 7). This step generates a reference ontology 
population of instances matching the content of the source message instance. Next, the 
reconciliation rule engine takes that reference ontology population, and executes the backward 
ruleset defined for a receiving application (application ‘B’ in Figure 7). This step generates a 
target OWL/RDF message-instance model for the receiving application. Then, the syntax-
specific message-representation transformer tool transforms the target OWL/RDF message-
instance model to a message-schema conforming message instance in the syntax expected by the 
receiving application.  
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Figure 7 Run-time semantic reconciliation steps from the perspective of  sending and receiving application. 

5.   Experimental scenario and implementation 

To assess representational capabilities of  the proposed architecture and the application of the 
Message Metamodel  within that architecture, we executed a scenario that involved two business 
applications whose interfaces are based on different message-schema standards but the same 
message-representation standard. The scenario is taken from the manufacturing industry, and deals 
with the supply-chain situation in which the electronic Kanban (eKanban) business process regulates 
the flow of goods from the supplier to match actual usage by the customer. In this scenario, 
“inventory visibility” applications support manufacturers and their suppliers, and communicate with 
each other by XML message instances to reach other suppliers. 

A similar scenario with a semantic-reconciliation architecture, which, however, uses local 
conceptual models to represent model of messages, was executed in the Advanced Technologies for 
interoperability of Heterogeneous Enterprise Networks and their Applications (ATHENA) B5.10 
validation project [14, 11]. In [11], it was reported that additional effort for message reconciliation 
was needed because of the inadequacy of a local conceptual model as the model of message. So we 
chose this scenario to compare the performance of the model of messages we introduce here.  

Our experimental scenario involved two business applications with one-way, single message 
communication between them. The proprietary version of the AuthorizeKanban business message 
used by the General Motors manufacturer’s application (“GM” in Figure 8), had to be transformed to 
the standard AuthorizeKanban Business Object Document (BOD) message used by the inventory 
visibility application (“IV”). Both AuthorizeKanban message schemas are specified in XML Schema, 
and there were several mismatches between the schemas, e.g., naming mismatches  where message 
elements have the same content but different names (gmSyncShipmentSchedule vs. 
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SyncShipmentSchedule) or structural path mismatches where different sequences of message 
elements and sub-elements (i.e., paths) exist from the root element to the element where content is 
captured (gmSyncShipmentSchedule.documentId vs. 
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.Docum

entId). 

 

 

Figure 8 A fragments of the GM’s and BOD AuthorizeKanban XML schemas, respectively  (in a tree-like view) 
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The experiment involved following steps:  
(a) transformation of the GM AuthorizeKanban and the BOD AuthorizeKanban XML message 

schemas to the GM and BOD AuthorizeKanban message-schema models, respectively,  
(b) definition of the forward reconciliation rules for the GM AuthorizeKanban message-instance 

model,  
(c) definition of the backward reconciliation rules for the BOD AuthorizeKanban message-instance 

model, and  
(d) execution of the message-exchange scenario. 
 
In the experiment we used the eKanban Reference Ontology [17] that was also used in the ATHENA 
B5.10 scenario. Figure 9 shows the fragment of the eKanban Reference Ontology. In the following 
sections we detail steps (a-d).   

 

Figure 9 A fragment of the eKanban Reference Ontology 

5.1.   Transformation of XML message schemas to OWL/RDF message schemas models  

The transformation of the XML message schemas to the corresponding OWL/RDF message-schema 
models is accomplished by the XML Schema to Message Schema Model transformer tool. The 
Message Metamodel  represented in Figures 1 and 2 is actually implemented as a set of  Java classes 
that represent Message Metamodel concepts and as an OWL Message Model Ontology2. 
Transformation rules are defined at the MOF M2 level between XML Schema Definition concepts 

                                                           
2 The Message Metamodel Java API and Message Model OWL Ontology as well as the design-time and run-time ‘message to 
model‘ transformer tools are available at http://meta-messager.sourceforge.net.  Also provided are the XML schemas, XML 
message files, and reconciliation rules to recreate example transformations and message reconciliations shown in this paper. 
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and Message Schema Metamodel concepts, which provide transformation of any given XML 
message schema to the corresponding message-schema model. 

The transformation from a message schema to an OWL/RDF  message-schema model involves 
two phases. First, a given message schema is transformed to a message-schema model captured as in-
memory Java objects. Then, if an OWL/RDF form of a message-schema model is needed, the 
transformer tool creates an OWL/RDF representation of the message-schema model, by creating an 
equivalent OWL individual (an instance of the concept from the Message Model Ontology) for each 
message-schema model object.  

For the gmSyncShipmentSchedule and documentID elements of the GM XML message 
schema, which fragment is shown in Listing 1, the corresponding OWL/RDF message-schema 
model, in the RDF Turtle syntax [15], is shown in Listing 2. Note that only a part of the OWL/RDF 
message-schema model is shown here.  

 
 

Listing 1 A fragment of the GM XML schema 

 

Listing 2 A fragment of the GM message-schema model that 
corresponds to the GM XML schema in Listing 1. 

@prefix p1: <http:///MessageMetamodel.ecore#>. 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>. 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>. 
 
:gmSchema   

rdf:type p1:Schema ; 
p1:defines :elementModel1 ; 
p1:schemaNamespace :gmSchemaNamespace. 

 
:gmSchemaNamespace 
      rdf:type p1:SchemaNamespace ; 
      p1:URI  http://gm.com/gmSyncShipmentSchedule/ 
      ^^xsd:string ; 
      p1:names :name1 . 
 
:nsBinding1 
      rdf:type p1:NSBinding ; 
      p1:prefix "tns"^^xsd:string ; 
      p1:refersTo :gmSchemaNamespace . 
 
:elementModel1 
      rdf:type p1:ElementModel ; 
      p1:contentModel :structuredContent1 ; 
      p1:defines :structuredContent1 ; 
      p1:modelName :name1 . 
 
:name1 
      rdf:type p1:Name ; 
      p1:definedIn :namespace1 ; 
      p1:nameText 
"gmSyncShipmentSchedule"^^xsd:string ; 
      p1:refersTo :elementModel1 . 
 
:structuredContent1 
      rdf:type p1:StructuredContent ; 
      p1:contains :cu1 ; 
      p1:defines :elementModel2 ; 
      p1:inModel :elementModel1 ; 
      p1:localNamespace :localNamespace1 . 
 
:cu1  rdf:type p1:ContentUse ; 
      p1:content :elementModel2 ; 
      p1:maxOccurs "1"^^xsd:int ; 
      p1:minOccurs "1"^^xsd:int ; 
      p1:seqId "1"^^xsd:int . 
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:elementModel2 
      rdf:type p1:ElementModel ; 
      p1:contentModel :simpleContent1 ; 
      p1:inModel :structuredContent1 ; 
      p1:modelName :name2 . 
 
:name2 
      rdf:type p1:Name ; 
      p1:nameText "documentID"^^xsd:string ; 
      p1:refersTo :elementModel1 . 
      p1:definedIn :localNamespace1 . 

GM XML schema is captured by ‘:gmSchema’ which is an instance of Schema concept. 
gmSyncShipmentSchedule XML element definition is transformed in ‘:elementModel1’ which 
modelName is ‘:name1’. ‘:name1’ is an instance of Name concept, and its ‘nameText’  has 
literal value gmSyncShipmentSchedule. ‘:name1’ is definedIn ‘:gmSchemaNamespace’, 
which is a schemaNamespace of ‘:gmSchema’ and represents 
http://gm.com/gmSyncShipmentSchedule namespace. ‘:elementModel1’ defines and 
contains ‘:structuredContent1’. documentId XML element is captured by 
‘:elementModel2’ ElementModel which is defined in ‘:structuredContent1’. 
‘:structuredContent1’ represents complex type declared locally in the definition of XML 
gmSyncShipmentSchedule element. 

The XML Schema to Message Schema Model transformer tool successfully transformed the GM 
AuthorizeKanban and BOD AuthorizeKanban XML Schemas to the GM AuthorizeKanban and BOD 
AuthorizeKanban message-schema models, respectively. Ultimately, two OWL/RDF documents were 
created: an  OWL representation of the GM message-schema model, and an OWL representation of 
the BOD message-schema model. 

5.2.   Reconciliation rules definition using OWL/RDF message-schema models and a 
reference ontology 

The definition of reconciliation between two differently specified messages involves defining the 
forward and backward message content transformation rules for each message-schema model.  

Forward rules formally describe how to construct instances of concepts in the reference ontology 
by operational transformation of the message content of one or more message elements appearing in 
the source message instance. The rules are defined based on elements in the message-schema model, 
but they operate on corresponding elements of the message-instance model. Backward rules formally 
describe how to construct message elements and message  content of a target message instance by an 
operational transformation on the instances of the reference ontology. There can be several message 
content transformation patterns, such as one-to-one, many-to-one, one-to-many, or more complex 
patterns including conversion functions. 

In the proposed architecture, semantic reconciliation is a transformation of data in one OWL/RDF 
document to another OWL/RDF document; it is a transformation of a message-instance model in 
OWL/RDF form to reference ontology instances in OWL/RDF form, or vice-versa.  

The transformation between two OWL/RDF documents is a transformation schema (TSx) that 
consists of a set of forward chaining rules (r), where the rules are defined over a set (S) of OWL/RDF 
triplets (T (subject, predicate, object) ) of a particular knowledge base L. Knowledge base L corresponds 
to an OWL/RDF document. Each rule maps a set of Ti triples of one knowledge base LOLD into a set of 
Tn triples of other knowledge base LNEW, whilst retaining the rest of L (Uk ). 
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TSx : LOLD  LNEW by: for each r in TSx,  
r: LOLD = {Ti (subject, predicate, object) }  {Uk (subject, predicate, object) }  

  LNEW = {Tn(subject, predicate, object) }  {Uk (subject, predicate, object) } 
TSF  x  LMM  -> LRO {transformation schema for forward reconciliation from source message model  (MM, for short) to 

reference ontology (RO, for short)}  

TSB  x  LRO  -> LMM {transformation schema for backward reconciliation from reference ontology to target message model}  

 
When a set of triplets Ti  in the body of a rule holds, which means that set of triplets Ti  belongs to 

the knowledge base LOLD, then new knowledge LNEW is derived as a set of triplets Tn defined in the 
head of the rule. This applies for any transformation pattern; however,  in non-trivial cases (e.g., 
literal value splitting or merging), it is necessary to include built-in and custom functions in the body 
of a rule. Ultimately, executing the TSF and TSB  transformation schemas accomplish reconciliation 
between two message models. The transformation may involve vocabulary substitution, property 
deletion or creation, structural abstraction (replacing a sub-graph by a node), structure introduction, 
structural rewriting, and literal value transformation. 

A reconciliation rules engineer uses the OWL/RDF message-schema models to define the 
forward and backward reconciliation rules that operate on OWL/RDF message-instance models. As 
the reconciliation rules actually transform the message instance content captured in the OWL/RDF 
message-instance models (forward rules) or populate the message instance content of the OWL/RDF 
message-instance models (backward rules)  it is necessary to produce a set of triples T (subject, 
predicate, object) that formulates the structural path leading to the message instance content in the 
OWL/RDF message-instance model. The set is named Spath.  For the forward reconciliation, in the 
case of one-to-one or one-to-many content transformation, only one Spath exists in a rule body, while 
in the case of many-to-one or many-to-many content transformation, several different Spath  sets may 
exist in a rule body  to access the content. For the backward reconciliation, in the case of many-to-one 
or one-to-one content transformation, only one Spath set of triples exists in a rule head, while  in the 
case of one-to-many or many-to-many content transformations several different Spath  sets may exist 
in a rule head to populate the content depending. For an example, Listing 3, in the rule body, shows 
the Spath for the gmSyncShipmentSchedule.documentId XML message path that leads to the 
value of a documentId element. 

To generate Spath sets needed to specify rules, a reconciliation rules engineer uses a tool that 
generates an Spath set for a given message element path. The tool generates the Spath  from 
corresponding OWL/RDF message-schema models as the message-schema models capture original 
message structure, and thus, information about the structural paths leading to a message content. 
Starting from the root elementModel that represents the Message, the Spath  is created by following 
Component.contentModel.StructuredContent.contains.ContentUse.content 
relationship for Components which content is StructuredContent, and by 
Component.contentModel.SimpleContent relationship for Components which content is 
SimpleContent. 

In practice, this means: 
 if elementModel has a structuredContent then a [(?xi rdf:type 

m:StructuredElement)(?xi m:model modelUri)] is generated; further, that structured 
element have items as defined by  
Component.contentModel.StructuredContent.contains.ContentUse.content 
relationship, which generates (?xi m:items ?xi+1). 
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 If the ContentUse.content is another elementModel that has a structuredContent then 
a [(?xi+1 rdf:type m:StructuredElement)(?xi+1 m:model modelUri)(?xi+1 
m:inElement ?x)]  is generated and the triples-generation-algorithm is executed again for that 
elementModel.  

 if the ContentUse.content is an elementModel that has a simpleContent then a 
[(?xi+1 rdf:type m:SimpleElement)(?xi+1 m:model modelUri)(?xi+1  
m:inElement ?x)(?xi+1 m:value ?v)(?v rdf:type m:SimpleValue)(?v m:text 
?txt)] is generated.  

 if the ContentUse.content is an attributeModel  then [(?xi+1 rdf:type 
m:Attribute)(?xi+1 m:model modelUri) (?xi+1 m:ofElement ?x) (?xi+1 
m:value ?v)(?v rdf:type m:SimpleValue)(?v m:text ?txt)] is generated. 

 
The reconciliation rule engineer generates needed Spaths, chooses corresponding reference 

ontology concepts that message concepts map to, and then defines executable reconciliation rules. To 
define executable reconciliation rules, Jena rule language is used as Jena provides inference over 
OWL/RDF triples by executing the forward chaining rules. 

The rule in Listing 3 defines the transformation of  the GM 
gmSyncShipmentSchedule.documentId concept to the 
SyncShipmentSchedule.ids.DocumentId.identifier concept defined in the eKanban 
reference ontology. There was a path-naming mismatch between these two concepts and simply one-
to-one mapping was needed. 

Listing 3 Jena forward reconciliation rule for the GM gmSyncShipmentSchedule.documentId element; one-to-one 
map to the SyncShipmentSchedule.BOD.ShipmentSchedule.ids.DocumentId.identifier ontology 
concept 

@prefix m: <http://MessageMetaModel.core#> 
@prefix ro: <http://referenceOntology.eKanban#> 
[ 
(?e1 rdf:type m:StructuredElement) (?e1 m:model d:_elementModel1) 
(?e1 m:items ?e2) (?e2 m:inElement ?e1) (?e2 rdf:type m:SimpleElement)  
(?e2 m:model d:_elementModel2) (?e2 m:svalue ?v) (?v rdf:type m:SimpleValue)  
(?v m:text ?txt) 
-> 
(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2)  
(ro:e2 rdf:type ro:ShipmentSchedule)(ro:e2 ro:ids ro:e3)  
(ro:e3 rdf:type ro:DocumentId)(ro:e3 ro:identifier ?txt) 

 ] 

 
The body of the rule in Listing 3 refers to gmSyncShipmentSchedule.documentId content 

by referring to the literal value (?txt) of all the StructuredElements (?e3) whose model is 
‘d:_elementModel1’, and whose items are SimpleElements (?e2) whose model is 
‘d:_elementModel2’ and that have a SimpleValue (?v) with the text value ?txt. The 
model is provided from corresponding message-schema model, and it is a link between an element of 
the message-instance model and its definition captured in the message-schema model 
(Element.model.ElementModel relationship shown in Figure 2). The link is established using the 
resource’s description identifier rdf:ID, which is  a unique identifier of the an actual 
elementModel defined in the OWL/RDF message-schema model. For example, on the right side of 
Figure 7, the ‘d:_elementModel1’ is the rdf:ID of the ElementModel that represents 
gmSyncShipmentSchedule XML element, and ‘d:_elementModel2’ rdf:ID of the 
ElementModel that represents documentId XML element. 
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The rule in Listing 4 defines a transformation for the Kanban Status concept, which was missing 
in the GM message, by setting the corresponding element of the eKanban ontology to the 
‘Authorized’ literal value. This actually was a coverage mismatch, which occurs either when a 
concept in a message has no match in the reference ontology or when reference ontology has a 
concept not used in a message. In the first case, the corresponding information will be lost in 
outbound message instances and missing from inbound message instances. When that information is 
optional and seldom used, it may not be a problem; but, when it is important to the application, it 
means that the reference ontology is inadequate.  The reverse case, in which the reference ontology 
has a concept not used in the application message, is usually harmless – the reference ontology may 
well support many different messages, only some of which use any given concept.  But if it is a 
mandatory property of a required object, the application may not be suitable for the use envisaged in 
the standard. 

Listing 4 Jena forward reconciliation rule for the GM message where Kanban Status concept is missing; sets default 
‘Authorized’ value to the 
SyncShipmentSchedule_Message.ShipmentSchedule.lines.ScheduleLine.loopServed. 
KanbanLoop.hasKanban.Kanban.status.KanbanStatus.KanbanStatusCode ontology concept. 

@prefix m: <http://MessageMetaModel.core#> 
@prefix ro: <http://referenceOntology.eKanban#> 
[ 
-> 
(ro:e1 rdf:type ro:SyncShipmentSchedule)  
(ro:e1 ro:BOD ro:e2) 
(ro:e2 rdf:type ro:ShipmentSchedule) 
(ro:e2 ro:lines ro:e3) 
(ro:e3 rdf:type ro:ScheduleLine)  
(ro:e3 ro:loopServed ro:e4) 
(ro:e4 rdf:type ro:KanbanLoop)  
(ro:e4 ro:hasKanban ro:e5) 
(ro:e5 rdf:type ro:Kanban)  
(ro:e5 ro:status ro:e6) 
(ro:e6 rdf:type ro:KanbanStatus)  
(ro:e6 ro:KanbanStatusCode 'Authorized') 
] 

The rule in Listing 5 defines the one-to-many transformation of  the GM 
gmSyncShipmentSchedule.part.name concept to the 
SyncShipmentSchedule.ShipmentSchedule.lines.ScheduleLine.shippedItem.Item.d

escription.ItemDescription.Description.Text and 
SyncShipmentScheduleMessage.ShipmentSchedule.lines.ScheduleLine.shippedItem

.Item.ids.ItemID.PartID concept. There was a path-name and an attribute-granularity 
mismatch between these two concepts and the literal value of the GM’s concept needed to be split 
into two literal values. Attribute-granularity mismatches exist when the granularity of data is 
different. The split operation is supported by the Jena Split built-in function. 

Listing 5 Jena forward reconciliation rule for GM gmSyncShipmentSchedule.part.name concept; one-to-many 
transformation. 

@prefix m: <http://MessageMetaModel.core#> 
@prefix ro: <http://referenceOntology.eKanban#> 
[ 
(?e1 rdf:type m:StructuredElement)(?e1 m:model d:elementModel1) 
(?e1 m:items ?e2)(?e2 m:inElement ?e1)  
(?e2 rdf:type m:StructuredElement) (?e2 m:model delementModel5) 
(?e2 m:items ?e3)(?e3 m:inElement ?e2) 
(?e3 rdf:type m:SimpleElement)(?e3 m:model d:elementModel8)  
(?e3 m:svalue ?v)(?v rdf:type m:SimpleValue)(?v m:text ?txt) 
->    
 Split(?txt,?y1, ?y2, '-') 
(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2) 
(ro:e2 rdf:type ro:ShipmentSchedule) (ro:e2 ro:lines ro:e3) 
(ro:e3 rdf:type ro:ScheduleLine)(ro:e3 ro:shippedItem ro:l1) 
(ro:l1 rdf:type ro:Item) (ro:l1 ro:description ro:12) 
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(ro:12 rdf:type ro:Description)(ro:12 ro:Text ?y1) 
 
(ro:e1 rdf:type ro:SyncShipmentSchedule) (ro:e1 ro:BOD ro:e2) 
(ro:e2 rdf:type ro:ShipmentSchedule) (ro:e2 ro:lines ro:e3) 
(ro:e3 rdf:type ro:ScheduleLine) (ro:e3 ro:Item ro:l1) 
(ro:l1 rdf:type ro:Item) (ro:l1 ro:ids ro:l2) 
(ro:l2 rdf:type ro:ItemId) (ro:l2 ro:partId ?y2) 
]  

The rules shown in Listings 3, 4, and 5 are examples of forward reconciliation rules for the GM 
message model. Listing 6 shows an example of a backward rule, which is defined for an element of 
the BOD message model. 

Listing 6 Jena backward reconciliation rule for BOD’s  
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.DocumentID.ID 
concept; one-to-one map from the SyncShipmentSchedule.BOD. 
ShipmentSchedule.ids.DocumentId.identifier ontology concept. The rule head corresponds to the Spath for 
the BOD’s ID element. 

@prefix m: <http://MessageMetaModel.core#> 
@prefix ro: <http://referenceOntology.eKanban#> 
[ 
(?e1 rdf:type ro:SyncShipmentSchedule)  
(?e1 ro:BOD ?e2) (?e2 rdf:type ro: ShipmentSchedule) 
(?e2 ro:ids ?e3)(?e3 rdf:type ro:DocumentId) 
(?e3 ro:identifier ?txt) 
-> 
(m:e1 rdf:type m:StructuredElement) (m:e1 m:model d:elementModel10)  
(m:e1 m:items m:e2) (m:e2 rdf:type m:StructuredElement)  
(m:e2 m:model d:elementModel20)(m:e2 m:inElement m:e1)  
(m:e2 m:items m:e3)(m:e3 rdf:type m:StructuredElement)  
(m:e3 m:model d:elementModel30) (m:e3 m:inElement m:e2)  
(m:e3 m:items m:e4) (m:e4 rdf:type m:StructuredElement)  
(m:e4 m:model d:elementModel40)  (m:e4 m:inElement m:e3)  
(m:e4 m:items m:e10)(m:e10 rdf:type m:StructuredElement)  
(m:e10 m:model d:elementModel50)  (m:e10 m:inElement m:e4)  
(m:e10 m:items m:e20)(m:e20 rdf:type m:SimpleElement)  
(m:e20 m:model d:elementModel60)  (m:e20 m:inElement m:e10)  
(m:e20 m:svalue m:wsv1) (m:wsv1 rdf:type m:SimpleValue)  
(m:wsv1 m:text ?txt) 
] 

5.3.   Semantic-reconciliation execution 

At run-time, several message-representation transformations and a message content transformation 
occur when applications exchange message instances. In the experimental scenario, at first, the GM 
AuthorizeKanban XML message instance is transformed to the OWL/RDF GM message-instance 
model using the XML message to Message Instance Model transformer tool. Then, the Jena rule 
engine executed the TSF x LGM_MM -> LRO  transformation schema on the OWL/RDF GM message-
instance model (GM_MM), which produced an instance of the reference ontology (RO). Afterwards, 
the rule engine executed the TSF x LRO -> LBOD_MM  transformation schema on the instances of the 
reference ontology, which produced an OWL/RDF BOD message-instance model (BOD_MM). 
Finally, the Message Instance Model to XML transformer tool generated a BOD AuthorizeKanban 
XML message instance. Figure 10 shows message instance transformation and reconciliation flow. 
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Figure 10 GM to BOD message instance transformation and reconciliation flow 

Listings 7, 8, 9, 10, and 11 show message-representation transformations and message-content 
transformation of the gmSyncShipmentSchedule.documentId element in the GM message 
instance to the 
SyncShipmentSchedule.DataArea.ShipmentSchedule.ShipmentScheduleHeader.Docum

entID.ID element in the BOD instance. The message-instance models and RO instance are 
presented in RDF Turtle syntax. 

Listing 7 The fragment of the GM XML message: 
semantic reconciliation input 

 

Listing 8 The fragment of  the OWL/RDF GM message-
instance model 

@prefix p1:      <http:///MessageMetamodel.ecore#> . 
@prefix xsd:     <http://www.w3.org/2001/XMLSchema#> 
. 
@prefix rdf:     <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> . 
 
… 
:structuredElement1 
      rdf:type p1:StructuredElement ; 
      p1:items :simpleElement1 ; 
      p1:model :elementModel1 . 
:simpleElement1 
      rdf:type p1:SimpleElement ; 
      p1:actualValue :value1 ; 
      p1:inElement :structuredElement1 ; 
      p1:model :elementModel2 . 
:value1 
      rdf:type p1:SimpleValue ; 
      p1:text "100"^^xsd:string . 
… 
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Listing 9 The fragment of  the RO instance 

@prefix rdf:     <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> . 
@prefix ro:      <http://referenceOntology.eKanban#> 
. 
 
…. 
ro:e1 
      rdf:type ro:SyncShipmentSchedule ; 
      ro:BOD ro:e2 . 
ro:e2 
      rdf:type ro:ShipmentSchedule ; 
      ro:ids ro:e3 . 
ro:e3 
      rdf:type ro:DocumentId ; 
      ro:identifier "100"^^xsd:string . 
…. 

 

Listing 10 The fragment of the BOD XML message: 
semantic reconciliation output 

 

Listing 11 The fragment of the OWL/RDF BOD message-
instance model 

@prefix rdf:     <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>. 
@prefix p1:      <http:///MessageMetamodel.ecore#> . 
@prefix bmsd:    
<http://localhost/BODMessageSchemaMOdel#> 
… 
p1:e1 
      rdf:type p1:StructuredElement ; 
      p1:items p1:e2 ; 
      p1:model bmsd:elementModel10 . 
 
p1:e2 
      rdf:type  p1:StructuredElement ; 
      p1:inElement  p1:e1 ; 
      p1:items p1:e3 ; 
      p1:model bmsd:elementModel20. 
 
p1:e3 
      rdf:type p1:StructuredElement ; 
      p1:inElement  p1:e2 ; 
      p1:items  p1:e4 ; 
      p1:model  bmsd:elementModel30  . 
 
p1:e4 
      rdf:type p1:StructuredElement ; 
      p1:inElement p1:e3 ; 
      p1:items p1:w5 ; 
      p1:model bmsd:elementModel40. 
 
p1:e10 
      rdf:type p1:StructuredElement ; 
      p1:inElement p1:e4 ; 
      p1:items p1:e20 ; 
      p1:model  bmsd:elementModel50 . 
 
 
p1:e20 
      rdf:type p1:SimpleElement ; 
      p1:inElement   p1:e10 ; 
      p1:model bmsd:elementModel60; 
      p1:actualValue   p1:wsv1 . 
 
p1:wsv1 
      rdf:type p1:SimpleValue ; 
      p1:text    "100" . 

6.   Discussion 

Execution of the experimental scenario showed that the proposed architecture successfully supported 
semantic reconciliation from a source message instance to a schema-conforming target message 
instance. The Message Metamodel form provided required data-representation information for the 
message reconciliation. 

 At design-time,  for a given message schema, the corresponding message-schema model 
provided (1) a definition of each message concept; and (2) a model of a message structure. The 
definition and model are used for the semantic reconciliation rules definition.   

At run-time, for a given message instance, the corresponding message-instance model (1) 
assigned definition of a concept to each message concept; (2) carried the content of the original 
message instance; (3) provided access to the message instance content; and (4) through the definition 
of each message concept, provided information about the syntactic concepts of messages such as 
naming, structure, occurrences, value representation, and encoding language of the message (i.e., the 
language attribute of Schema concept in Figure 2). 

The experiment showed that the Message Metamodel form captures necessary information to 
reconcile a message instance of application A to a message schema-conforming message instance of 
application  B. Although our experiment was based on XML-to-XML message exchange, the 
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Message Metamodel would work as well for an EDI-to-XML scenario (e.g. EDIFACT Order to UBL 
Order message). 

6.1.   Minimum set vs. maximum set of available message information to the semantic 
reconciliation and mappings correspondence discovery  

The necessary set of information about a message that the Message Metamodel  form explicitly 
provides to the semantic reconciliation is the minimum set of explicitly available  information to the 
semantic-reconciliation. In contrast to that, the maximum set of explicitly available  information to the 
semantic reconciliation exists if a local conceptual model of the message is also explicitly available. 

The semi-automatic mapping algorithms explore similarities between model of a message and 
reference ontology by comparing the respective naming and structural characteristics. The minimum 
set of explicitly available information that Message metamodel form provides may be used in support 
of semi-automatic mapping correspondences discovery, as the structural organization and naming 
rules of the message are contained in the minimum set of explicitly available  information. The 
Message Metamodel  form does not provide the maximum set of explicitly available  information, per 
se; the Message Metamodel form is not the local conceptual model of message elements. However, 
when the local conceptual model of a message is also explicitly available, it provides an additional 
knowledge that may be used in support of semi-automatic mapping correspondences discovery (the 
additional techniques from ontology matching domain may be applied). Nevertheless, our experiment 
showed that the presence of the local conceptual model is not mandatory for actual reconciliation – 
only the minimum set of explicitly available information is necessary and mandatory for successful 
reconciliation.  

Other approaches for semantic reconciliation of messages assume that a local conceptual model 
of message elements should be the model of a message used for reconciliation rules definition. 
However, the local conceptual model of message elements is free of all message-format and data-
representation rules, which are needed for the semantic reconciliation of a message - for constructing 
a message schema-conforming message for the intended recipient.  

Therefore, this paper  argues that the Message Metamodel  (or some similar model) should be 
used as the model of a message for semantic reconciliation. Besides the fact that the Message 
Metamodel form captures the minimum set of explicitly available  information for semantic 
reconciliation, it also may serve as a model from which a semantics extraction software can re-
engineer the local conceptual model of a message, if the domain knowledge (such are schema naming 
and design rules) is accessible and if the local conceptual model  is needed by other technologies 
included in the reconciliation process. 

6.2.   Message Metamodel and message semantics annotation 

The Message Metamodel is also envisioned as a model of message for the semantics annotation of 
business message. The semantics annotation of business messages is needed as existing standards for 
message schemas define only the syntactic structure of messages without any explicit, formal, and 
machine-processable representation of the message elements’ meaning. The semantics annotation of 
message elements clarifies a message element semantics by associating explicit and machine-
processable semantic annotation expressions to the message element. A semantic annotation 
expression represents the business meaning of a message element in terms of the adopted reference 
ontology concepts and their relationships. 
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The semantics annotation is an indirect approach to the reconciliation definition as the semantics 
annotation expressions are a knowledge base for automated reconciliation rules generation. Besides 
that, the semantics annotation expressions shall also be a knowledge base for semantic querying over 
the business messages, for message schema components discovery and components reusability, 
regardless of message-schema and message-representation standards. Thus, the semantics annotation 
activity needs to be transparent with respect to the different message-schema and message-
representation standards by providing the unified approach to annotate message elements defined in 
message schemas. To achieve the transparency and unification of the semantics annotation, the 
Message Metamodel may be used. 

In contrast to a local conceptual model,  the Message Metamodel, as a model of message schema 
and message instance, captures enough information about messages to enable effective mapping 
between syntactic elements and content concepts, captures original message elements definition as 
given in message schemas, and captures definition of core and derived components from message 
schemas. This entire information collection is needed for semantics annotation of message schemas. 

7.   Related work and assessment  

Semantic reconciliation between messages defined by different message schemas may take on several 
alternative forms, depending on whether the reference ontology is present or not, and on a 
reconciliation approach applied. Hameed et.al., in [19], and Vetere & Lenzerini in [21] categorize the 
different architectural models for the semantic reconciliation between local ontologies, which are 
local conceptual models of message schemas, into: (1) any-to-any model, which does not employ a 
reference ontology and which reconciles local ontologies pair-wise as needed; (2) any-to-one model, 
which does employ a single reference ontology that serves as an “interlingua” to which any local 
ontology may be translated and vice-versa; and (3) hybrid model, which employs multiple reference 
ontologies in different clusters, providing for reconciliation between the local ontologies and a 
reference ontology in each cluster, and among the reference ontologies of different clusters.  

In these models, the reconciliation may be achieved by the merging or mapping of the ontologies. 
Merging unifies two or more ontologies with overlapping parts into a joint ontology that includes all 
information from the sources. Mapping builds executable mapping rules that specify transformation 
from source ontology to the target ontology. 

There are several demonstrations of the any-to-any model in the literature. For an example, 
Anicic [20] demonstrated an any-to-any model where local OWL ontologies are merged and source 
OWL individuals classified and transformed into target OWL individuals by description-logic 
reasoners. Artemis [22] demonstrated any-to-any model based on crosswise mappings among local 
OWL ontologies. In Artemis, the OWLmt tool (http://sourceforge.net/projects/owlmt) was used for 
ontology mappings. Oh and Yee [12] described a semantic reconciliation of XML-based messages in 
a web-services-based manufacturing applications environment by using the Jena rule-based mapping 
between corresponding local RDFS ontologies. 

In the any-to-any models, when many local ontologies are involved, the number and complexity 
of joint pair-wise ontologies is increased if merging is applied, or the number of crosswise mappings 
is increased if mapping is applied. In contrast to the any-to-any model, the any-to-one mapping 
models significantly reduce number of mappings, and there is no need for the ontology merging. The 
approach proposed in this paper is an instance of the any-to-one model in which the mappings are 
defined as a set of transformation (reconciliation) rules.  
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We have found several related demonstrations of the any-to-one model in the literature. The 
Harmonise project [23] demonstrated semantic-mediation in a tourist B2B network to allow 
participants to keep the proprietary XML-based message interfaces and still be able to exchange 
messages. Harmonise defined a reference Harmonisation RDFS Ontology and used the Mafra tool 
[24] for establishing the mappings between RDFS ontologies. In contrast to the forward-chaining 
rules used in this work, Mafra provides a proprietary Semantic Bridge Meta-Ontology (SBO) for 
establishing the mappings by bridging axioms. Mafra transforms source RDF documents to the target 
RDF documents by evaluating the defined bridge axioms and executing pre-defined functions 
assigned to each bridge axiom.  

Ye and Yang [33] introduced a general Supply Chain Ontology (SCO) that captured concepts and 
relationships common to the supply chain management, and also used a forward chaining rule-based 
approach to map between the SCO and local OWL ontologies. The mappings in their work are 
represented in Semantic Web Rule Language (SWRL) [30].  

The ATHENA project [10] introduced toolset for semantic reconciliation of RDF documents: the 
Astar tool for annotation of the concepts of local RDFS ontologies with  their meaning as captured by 
concepts and its relationship in reference ontology; the Argos tool for RDF-to-RDF document 
reconciliation definition; and the Ares tool for RDF-to-RDF reconciliation execution. Argos performs 
either semi-automatically, supported by annotation expressions from the Astar tool, or manually, with 
the engineer directly instantiating and specifying the  rules. 

The work in this paper differs from approaches in [10, 12, 20, 22, 23, 33] as we propose the use 
of Message Metamodel as an ontological model of messages for the reconciliation definition and 
reconciliation executions, and demonstrate its capability for reconstructing message schema-
conforming message instances from the output of the semantic reconciliation. The approaches in [10, 
12, 20, 22, 23, 33] assume a local conceptual model in form of local ontology as the model of 
message, which is insufficient for reconstructing message schema-conforming message instance from 
the output of the semantic reconciliation. 

There are already proposed generic models of information structures in the field of model 
management [28, 29] that can represent artifacts such as XML schema (or a relational database 
schema and UML conceptual schema).  However, these approaches provide models of schemas only, 
and do not consider the requirement for providing a neutral-intermediate model of message instances 
on which reconciliation rules actually operate in a run-time, and whose elements are for that purpose 
associated with its definition captured in the message-schema models. 

 Bowers [27] approach relates to ours as he introduced a generic approach for representing and 
transforming model-based information with the focus on supporting interoperability. Bowers’ 
superimposed-information metamodel  is a model of a wide variety of models or schemas including 
XML Schema, EDI, UML, RDFS, etc. Bowers’ superimposed-information metamodel is a single 
generic representation schema based on RDF that represent the superimposed models, schemas and 
instances. The metamodel  is, however, one MOF layer above the Message metamodel , and 
therefore, not appropriate as a model of message schema and message instances for the purpose of 
semantic reconciliation between business messages. 

Also, there are several proposed XML metamodels, e.g., XML Schema Definition [47] or 
Document Object Model [48]. However they are XML-specific. Besides being XML-specific, they 
may be too expensive in terms of processing as they usually capture all XML syntax-specific details. 

 24



Other less expensive XML metamodels are also proposed, such as JavaScript Object Notation 
(JSON) [49]; however they are insufficient to capture details needed for semantic reconciliation. 

Ontological metamodel for EDI-based messages has been reported in [35]. In [35], authors 
propose ontologization for X12 EDI specs in two phases: the syntax and semantics ontologization. To 
ontologize syntax, authors in the [35] define and encode a vocabulary for specifying the formats of  
the EDI concepts: Transaction Sets, Data Segment groups, Data Segments, Composite Data 
Elements, simple Data Elements, Data Element codes, and Code Sets. Through the use of that 
vocabulary, the syntax of each of the components is defined. The semantics ontologization involves 
specifying the semantics of each Transaction Set, Data Segment group, Data Segment, Composite 
Data Element, simple Data Element, and code in each code set of a chosen X12 subset. The 
vocabulary defined in [35] is EDI-specific and no effort was made to ontologize the semantics of the 
X12 terms. 

Ontological metamodel for XML-based messages has been reported in [37]. In [37], Yarimagan 
introduces a Component Ontology for UBL XML message schemas that allows capturing UBL 
message element definitions and its structural relationships. In Yarimagan’s approach, core and 
custom message components defined in UBL schemas are transformed in corresponding Component 
Ontologies, and the reconciliation between messages of different customized UBL schemas is 
accomplished by using description-logic reasoning, similar to [20]. Further, in [36], authors propose 
the transformation of XML schemas to Web Service Modeling Language (SWML) [39] based local 
ontologies. However, the [36] proposes the transformation of XML message concepts to the local 
conceptual model, so it inappropriately captures the needed message schema and message details. 

In contrast to [35, 36, 37],  the Message Metamodel form syntactic ontologizes relevant concepts 
of both EDI-based and XML–based message schema or message instance, irrespective of message-
specification standard. 

The Semantic Annotation for WSDL and XML Schema (SAWSDL) standard [40, 43] also relates 
to this work. SAWSDL defines a set of XML Schema extension attributes that ‘add’ semantics to 
XML schemas. Actually, SAWSDL provides “liftingSchemaMapping” and 
“loweringSchemaMapping” extension attributes that associate XML schema types or element 
definitions with a mapping to an ontology. These attributes refer to executable mapping rules that 
translate XML documents to and from business ontology.  

SAWSDL is agnostic to representation language that business ontology is captured in, and it does 
not prescribe use of any particular mapping representation language. The METEOR-S framework 
[44] provides for SAWSDL-based reconciliation between XML messages by using Extensible 
Stylesheet Language Transformation (XSLT) [51] to implement “liftingSchemaMapping” and 
“loweringSchemaMapping” rules. For the lifting, METEOR-S uses XML Query Language (XQuery) 
[52] to extract the message content from XML message instance and XSLT to generate a reference 
ontology population of instances matching the content of the message instance. When lowering, 
METEOR-S uses RDF Query Language (SPARQL) [53] to extract the content from reference 
ontology instance, and XSLT to generate a message instance matching the content reference ontology 
instance. 

The approach presented in this paper can also provide support for SAWSDL-based reconciliation 
between XML messages. The Message Metamodel captures all the XML Schema concepts relevant 
to SAWSDL (e.g., data types or element definition) and forward and backward reconciliation rules 
are actually “lifting” and “lowering” rules. The “liftingSchemaMapping” and 
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“loweringSchemaMapping” extension attributes, which refer to external resource where 
reconciliation rules are stored, may be added to the original schemas by using the knowledge 
captured in message-schema model and the reconciliation rule base. However, in this case, an actual 
run-time “lifting” and “lowering” must be supported by the run-time semantic reconciliation 
architecture proposed in this paper.  

The SAWSDL-like reconciliation for non-XML message representation (e.g. EDI) can also be 
supported by applying the approach in this paper. The proposed Message Metamodel-enhanced 
semantic reconciliation is agnostic to message-representation language and the 
“liftingSchemaMapping” and “loweringSchemaMapping” may be applied to non-XML message 
representations. However, the extensional attributes are not yet defined for other message 
specification standards but only for XML Schema. 

The work in this paper mostly follows the Automated Methods for Integrating Systems (AMIS) 
project [26] that studied automated methods for supply-chain integration, and it is directly motivated 
by the results of the ATHENA B5.10 validation project [14]. AMIS proposed the any-to-one model 
for semantics-based integration, and  introduced a model of a message as a Local Conceptual Model 
(LCM) together with a Local Engineered Interface Model (LEM). LCM identifies business entities, 
properties, and relationships referenced in services,  while LEM identifies functions or services 
provided by a tool, services it expects to use, specification models for those interfaces, and 
identification of the interface technologies (such as Webservices or ebMS). The work in this paper 
focuses only on the software applications with message-based interfaces. 

In AMIS, the LEM concepts are mapped to the local conceptual models concepts , and the local 
conceptual models concepts are mapped to the reference ontology concepts for semantic 
reconciliation. In fact, we developed the LEM for the business messages – the Message Metamodel , 
and captured it as an OWL ontology. However, in contrast to AMIS idea, in this work the 
“engineered interface” is directly used to define mappings to the reference ontology for semantic 
reconciliation. That is, OWL/RDF message-schema models are used to define logic rules-based 
transformations to the reference ontology to demonstrate operational reconciliation between two 
message-based applications. The use of the message-schema models for the reconciliation rules 
definition was possible as a message-schema model captures the message structure, which is  actually 
the essential intent of the Local Conceptual Model when it is considered as the model of messages for 
the semantic reconciliation.  

Semantic web services (SWS) also have become a key technology for enabling the workflow 
integration of supply chains [41]. The SWS frameworks, such is Web Service Execution 
Environment [42], may provide automated web service discovery, execution, composition and 
interoperation in the supply chains environments. This paper, however, is only concerned with the 
semantic reconciliation of business messages in the traditional web-service environments. 

Table 1 summarizes this comparison of related semantic reconciliation architectures and 
approaches. 



Table 1 The comparison of the approaches 

 Architectural 
Model 

Demonstrated 
 

(ATO Any-to-
one) 

 (ATA any-to-
any) 

Toolset 
supports other 
architectural 

models 
 (Y-yes, N-no) 

Model of a 
message 

 
(LCM –local 
conceptual 

model) 

Supported  
message- 

representation 
language 

 
(XML,/EDI, or 

A when 
agnostic) 

Suitable for  the 
creation of schema-

conformant 
messages from 

semantic 
reconciliation output 

 
(Y-yes, N-no) 

Reconciliation 
specification 

Reconciliation  
execution 

Ontological  
language 

 

Message-
schema 

components 
annotation 

 
(S-supports)  

(M-may support) 
(N- cannot 
support) 

Suitable for 
SAWSDL 

framework   
 

(Y-yes, N-no, E 
is can be 
extended)  
(B-based)  

Supports non-
standard based 

message 
schemas 

reconciliation  
 

 ( Y-yes, N-no) 

 

Harmonize 
[23] 

(Mafra) 
ATO Y LCM A N 

bridge axioms defined 
by 

Semantic Bridge 
Ontology 

bridge axioms 
interpretation 

RDFS N N Y 

Artemis 
[22] 

(OWLmt) 
ATA Y LCM A N 

bridge axioms defined 
by 

Mapping Schema 
Definition Ontology 

OWL-QL/ 
bridge axioms 
interpretation 

OWL, RDFS N N Y 

ATHENA 
A3 

(Astar/ 
Argos) 

ATO N LCM A 
Y 

(used [25] as a 
workaround) 

annotations between 
LCM and RO 

Jena 
rule-based 
reasoning 

OPAL-based[50] 
OWL, RDFS 

N N Y 

METEOR-S 
[44] 

ATO N - XML Y SAWSDL 
XQuery/ 
XSLT 

OWL, RDFS S Y Y 

Yarimagan 
[37] 

ATA N 
Component 

ontology 
A N 

no specification 
 

description-logic 
reasoning 

OWL DL M E N 

Anicic 
[20] 

ATA N LCM A N 
No 

specification(merging) 
 

description-logic 
reasoning 

OWL DL N N N 

Ye and Yang 
[33] 

ATO Y LCM A N 
no specification 

(executable mapping) 

SWRL 
rule-based 
reasoning 

OWL N N Y 

Oh and Yee 
[12] 

ATA Y LCM A 
Y 

(used [25]) 
no specification 

(executable mapping) 

Jena 
rule-based 
reasoning 

RDFS N N Y 

AMIS 
[26] 

ATO N LCM A not discussed 
composition of software 

patterns [46] 
generated code 

(C) 
not discussed N not discussed Y 

Our approach ATO Y 
Message 

Metamodel 
A Y 

no specification 
(executable mapping) 

Annotation  future work 

Jena 
rule-based 
reasoning 

OWL, RDFS M E Y 

 

 27



8.   Conclusion 

The Message Metamodel provides a unique contribution toward the design-time and run-time  
activities of the proposed semantic reconciliation architecture.  

The experimental results showed that the proposed semantic reconciliation architecture, 
enhanced with the Message Metamodel as the model of business message, contributes to the 
semantic reconciliation by ensuring that (1) the reconciliation tasks are isolated from and 
independent of differently specified and represented messages, and (2) the proposed solution 
ultimately produces message schema-conforming message instance from reconciliation 
output, in the syntax of target message instance.   

This is in opposition to approaches based on a local conceptual model of business 
messages as a highly abstract model that proved insufficient to capture the required 
information about messages and to enable effective mapping between syntactic elements and 
content concepts, and thus, insufficient for the semantic reconciliation and semantic 
annotation of business messages. 

Also, the proposed model of a message does not require additional reconciliation rules that 
generate axioms for the reconciled message to carry purely data-representation and formatting 
rules through the entire semantic reconciliation, which was reported as an unwanted behavior 
when a local conceptual model is used as the model of message.  

As the Message Metamodel form captures the original structure of a message, a 
reconciliation rules definition tool may visualize the original message structure to the 
reconciliation engineer when rules are being specified. The original message structure is likely 
to be more familiar to the reconciliation engineer  then a structure of the message captured in a 
local conceptual model (when a local conceptual model is used as a model of message). 

However, writing reconciliation rules, which are detailed and formal, is definitely not an 
easy task, even for a highly skilled rule engineer. The future work will be focused on the 
development of a tool for the reconciliation rules definition. The plan is to take the approach 
where reconciliation rules are being derived from semantic annotation expressions, as the 
semantic annotation expressions that describe the meaning of message elements may be 
reused for different purposes in heterogeneous B2B environments, not only for reconciliation 
rules generation.  Most of the forward reconciliation rules can be derived directly from the 
annotation expressions and the reverse forward rules can provide most of the backward rules.  

In summary, we believe that the Message Metamodel and the semantic reconciliation and 
message semantics annotation based on the Message Metamodel, as the model of message 
schemas and message instances, may provide significant support for industry integration 
requirements. This is, a common ontological representation of the present well-established 
message-representation standards (XML, EDI, ASN.1); a transparent reconciliation and 
annotation approach for the well-established message-representation standards; an improved 
runtime reconciliation capabilities; and an approach to multi-purpose reuse of annotation 
expressions (e.g., reconciliation, semantic querying, schema component discovery and 
reusability).  
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Disclaimer: Certain commercial and open source software products are identified in this paper. These 

products were used only for demonstration purposes. This use does not imply approval or endorsement 

by NIST, nor does it imply these products are necessarily the best available for the purpose. 

 
References 
 
1. Standards for Technology in Automotive Retail (STAR), online at  www.starstandard.org/, 

accessed August 2008 
2. Automotive Industry Action Group (AIAG), online at  www.aiag.org/, accessed August 2008 
3. OASIS Universal Business Language (UBL), online at www.oasis-open.org/committees/ubl/, 

accessed August 2008 
4. United Nations Directories for Electronic Data Interchange for Administration, Commerce and 

Transport (EDIFACT), online at  www.unece.org/trade/untdid/, accessed August 2008 
5. Kantor, M,  James H., B., (1996). Electronic Data Interchange (EDI). National Institute of 

Standards and Technology, online at www.itl.nist.gov/fipspubs/fip161-2.htm/, accessed August 
2008 

6. Extensible Markup Language (XML), online at www.w3.org/XML/, accessed August 2008 
7. Abstract Syntax Notation One (ASN.1), online at http://asn1.elibel.tm.fr/, accessed August 2008 
8. Web ontology Language (OWL), online at www.w3.org/TR/owl-features/, accessed August 2008 
9. RDF Vocabulary Description Language (RDF Schema), online at www.w3.org/TR/rdf-schema/,  

accessed August 2008. 
10. ATHENA Knowledge Support and Semantic Mediation Solutions - Deliverables D.A3.2-D.A3.5, 

January 2006, online at www.modelbased.net/aif/, accessed August 2008 
11. Vujasinovic, M., Ivezic, N., Kulvatunyou, B., Barkmeyer, E., Missikoff, M., Taglini, F., 

Marjanovic, Z., Miletic, I., (2009). Semantic-Mediation Architecture for Interoperable Supply-
Chain Applications, to appear in Int’l Journal of Computer Integrated Manufacturing, accepted 
October 2008 

12. Oh, S-C., Yee, S-T., (2008), Manufacturing interoperability using a semantic mediation, Int’l 
Journal of Advanced Manufacturing Technology, Vol. 39, pp. 199-210 

13. Ray, S., Jones, A., (2006),  Manufacturing interoperability, Journal of Intelligent Manufacturing, 
Vol. 17, Number 6, pp. 681–688 

14. ATHENA B5.10 - Inventory Visibility Sub-Project: IV&I End-to-End Interoperability 
Demonstration including Conformance Testing Demonstration, online at 
http://xml.aiag.org/athena/resources/WD.B5.7.6--InteropAndConformanceTestDemo.pdf/, accessed 
August 2008 

15. Turtle - Terse RDF Triple Language, online at www.dajobe.org/2004/01/turtle/, accessed August 
2008 

16. Jena rule language, online at http://jena.sourceforge.net/, accessed August 2008 
17. Barkmeyer, E., Kulvatunyou, B., (2007). An Ontology for the e-Kanban Business Process, NIST 

Internal Report 7404, National Institute of Standards and Technology, online at 
www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf/, accessed August 2008 

18. Vujasinovic, M., Barkmeyer, E., (2009). Message Metamodel, NIST Internal Report, National 
Institute of Standards and Technology 

19. Hameed, A., Preece, A.D., Sleeman. D.H., (2004). Ontology Reconciliation, Handbook on 
ontologies, Springer, pp. 231– 250 

20. Anicic, N., Marjanovic, Z., Ivezic, N., Jones, A., (2007). Semantic Enterprise Application 
Integration Standards, Int’l Journal of Manufacturing and Technology, Vol. 10(2-3), pp. 205-226 

21. Vetere, G., Lenzerini, M., (2005). Models for semantic interoperability in service-oriented 
architectures, IBM Systems Journal, Vol. 44(4), pp. 887-903 

 29

http://www.starstandard.org/
http://www.aiag.org/
http://www.oasis-open.org/committees/ubl
http://www.unece.org/trade/untdid/
http://www.itl.nist.gov/fipspubs/fip161-2.htm
http://www.w3.org/XML/
http://asn1.elibel.tm.fr/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/,
http://www.modelbased.net/aif/
http://xml.aiag.org/athena/resources/WD.B5.7.6--InteropAndConformanceTestDemo.pdf
http://www.dajobe.org/2004/01/turtle/
http://jena.sourceforge.net/
http://www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf


22. Bicer, V., Laleci, B.G., Dogac, A., Kabak, Y., (2005). Artemis Message Exchange Framework: 
Semantic Interoperability of Exchanged Messages in the Healthcare Domain, SIGMOD Record 
Vol. 34(3), pp. 71-76 

23. Fodor, O., Werthner, H., (2004). Harmonise: A Step Toward an Interoperable E-Tourism 
Marketplace, Int’l Journal of Electronic Commerce, Vol. 9(2), pp. 11-39 

24. Maedche, A., Motik, B., Silva N., Volz, R., (2002). MAFRA - A MApping FRAmework for 
Distributed Ontologies, Proc. of the EKAW 2002, LNCS 2473, Springer, pp. 235–250 

25. Miletic, I., Vujasinovic, M., Ivezic, N., Marjanovic, Z., (2007). Enabling Semantic Mediation for 
Business Applications: XML-RDF, RDF-XML, and XSD-RDFS Transformation,  Proc. of the Int’l 
Conf. IESA, Springer,  pp. 483-494 

26. D. Libes, Barkmeyer, E., Denno, P., Flater, D., Steves, M.P., Wallace, E., Feeney, A.B., (2004). 
The AMIS Approach to Systems Integration, NIST Internal Report 7101, National Institute of 
Standards and Technology, online at www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf/, accessed 
August 2008 

27. Bowers S., Delcamre L., (2000). Representing and transforming model based information, Proc. of 
the 4th European conference on research and advanced technology for digital library (ECDL-2000), 
Lisbon, Portugal, pp. 5–18 

28. Kensche, D., Quix. C., Chatti, M.A., Jarke, M., (2005). GeRoMe: A generic role based metamodel 
for model management, Proc. of the 4th Int’l Conf. on Ontologies, Databases, and Applications of 
Semantics (ODBASE), LNCS Vol. 3761,  pp. 1206–1224 

29. Melnik, S., Rahm, E., Bernstein, P.A., (2003). Rondo: A programming platform for model 
management, Proc. of the 22nd Int’l Conf. on Management of Data (SIGMOD), pp. 193–204 

30. Horrocks, I., Patel-Schneider, Boley, H., Tabet, S., Grosf, B., Dean, M., (2004).  SWRL: a semantic 
web rule language combining OWL and RuleML, WWW Consortium Member Submission, online 
at www.w3.org/Submission/SWRL/, accessed August 2008 

31. ISO/IEC 19502 Meta Object Facility (MOF), online at www.omg.org/spec/MOF/, accessed August 
2008  

32. Bohring, H., Auer, S., (2005). Mapping XML to OWL Ontologies. Marktplatz Internet: Von e-
Learning bis e- Payment. Leipziger Informatik-Tage (LIT2005), Leipzig, Germany, pp.147-156 

33. Ye, Y., Yang, D., Jiang, Z.,  Tong., L., (2007). An ontology-based architecture for implementing 
semantic integration of supply chain management, Int’l Journal of Computer Integrated 
Manufacturing, Vol. 21(1), pp. 1-18 

34. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R., (1999). What are ontologies, and why do we 
need them?, IEEE Intelligent Systems, Vol. 14(1), pp. 20-26 

35. Foxvog, D., Bussler, C., (2005). Ontologizing EDI: first steps and initial experience, Proc. of the 
Int’l Workshop on Data Engineering Issues in E-Commerce, pp: 49 - 58 

36. Karthick, S., (2006). Ontologizing XML Using Mediation Patterns, First International Workshop 
on Ontologizing Industrial Standards OIS 2006 

37. Yarimagan, Y., (2008). Semantic Enrichment for the Automated Customization and 
Interoperability of UBL Schemas, PhD Thesis, Dept. of Computer Engineering, METU, March 
2008 

38. American National Standards Institute Accredited Standards Committee X12 (ANSI ASC X12), 
online at www.x12.org/, accessed August 2008 

39. The Web Service Modeling Language WSML, online at www.wsmo.org/TR/d16/d16.1/v0.2/, 
accessed August 2008 

40. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J., (2007). SAWSDL: Semantic Annotations for 
WSDL and XML Schema, IEEE Internet Computing, Vol 11(6), pp. 60-67 

41. McIlraith, S.A., Son, T.C. et.al., (2001). Semantic Web services, IEEE Intelligent Systems, Vol. 
16(2), pp. 46-53 

42. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C., (2005). WSMX - a semantic service-
oriented architecture,  Proc. of the 2005 Int’l Conf. on Web Services, Vol. 1, pp. 321-328 

 30

http://www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf
http://www.w3.org/Submission/SWRL/
http://www.omg.org/spec/MOF/
http://www.x12.org/
http://www.wsmo.org/TR/d16/d16.1/v0.2/


 31

43. Verma, K., Sheth, A., (2007). Semantically Annotating a Web Service, IEEE Internet Computing, 
Vol. 11(2), pp. 83-85 

44. Patil, A., Oundhakar, S., Sheth, A., Verma, K., (2004), Meteor-s web service annotation 
framework, Proc. of the 13 Int’l Conf. on WWW, pp. 553-562 

45. ISO 10303-11:2004 Industrial automation systems and integration -- Product data representation 
and exchange -- Part 11: Description methods: The EXPRESS language reference manual, online at 
www.iso.org/, accessed August 2008 

46. Flater, D., (2004). Automated Composition of Conversion Software, NIST Internal Report 7099, 
National Institute of Standards and Technology, online at 
www.mel.nist.gov/msidlibrary/doc/nistir7099.pdf/, accessed August 2008 

47. XML Schema Definition API, online at www.eclipse.org/xsd/, accessed August 2008 
48. Document Object Model (DOM), online at www.w3.org/DOM/, accessed August 2008 
49. JavaScript Object Notation (JSON), online at www.json.org/, accessed August 2008 
50. D’Antonio, F., Missikoff, M., Taglino, F., (2007). Formalizing the OPAL eBusiness ontology 

design patterns with OWL,  Proc. of the Int’l Conf. IESA, Springer,  pp. 345-356 
51. XSL Transformations (XSLT) Version 1.0, online at http://www.w3.org/TR/xslt, accessed August 

2008 
52. XQuery 1.0: An XML Query Language, online at http://www.w3.org/TR/xquery/, accessed August 

2008 
53. SPARQL Query Language for RDF, online at http://www.w3.org/TR/rdf-sparql-query/, accessed 

August 2008 

http://www.iso.org/
http://www.mel.nist.gov/msidlibrary/doc/nistir7099.pdf
http://www.eclipse.org/xsd/
http://www.w3.org/DOM/
http://www.json.org/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/rdf-sparql-query/

	1.    Introduction
	2.    Research motivation
	3.    (Ontological) Message Metamodel 
	4.    Application of the Message Metamodel  in the semantic reconciliation architecture
	4.1.    The semantic-reconciliation methodology

	5.    Experimental scenario and implementation
	5.1.    Transformation of XML message schemas to OWL/RDF message schemas models 
	5.2.    Reconciliation rules definition using OWL/RDF message-schema models and a reference ontology
	5.3.    Semantic-reconciliation execution

	6.    Discussion
	6.1.    Minimum set vs. maximum set of available message information to the semantic reconciliation and mappings correspondence discovery 
	6.2.    Message Metamodel and message semantics annotation

	7.    Related work and assessment 
	8.    Conclusion

