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Abstract We demonstrate a technique of using artificial neural networks for optical performance monitoring of 
PSK data signals. Parameters for training are derived from delay-tap asynchronous diagrams using balanced 
detection. We also compare the results with the case of using direct detection. 

Introduction 
Given that data impairments of an optical channel can 
change over time, optical performance monitoring 
(OPM) has the potential of providing valuable 
information to aid in system diagnosis and repair via 
network control and management. An OPM should be 
cost-effective, isolate degradations due to various 
impairments, and accommodate multiple modulation 
formats1-3. 

One class of OPM uses the deformation of the data 
bits to identify different types of data impairments, 
such as optical-signal-to-noise ratio (OSNR), 
chromatic dispersion, (CD), and polarization-mode-
dispersion (PMD). Previous results using on-off 
keying (OOK) data have shown that bit deformation 
can be gleaned from clock-generated eye diagrams4 
and asynchronous-delay-tap plots5. Deformations 
have been used as inputs to a pattern recognition 
algorithm6,7 and an artificial neural network (ANN)4,8 
to identify the specific degradation effects based on 
prior training of the receivers. 

These bit-deformation approaches have also been 
used for phase shift keying (PSK) data, which include: 
(i) eye diagrams that require clocking4, and (ii) 
asynchronous diagrams from direct detection9,10. 

In this paper, we propose an OPM technique for 
PSK data signals that uses delay-tap asynchronous 
sampling after balanced detection. We extract 
parameters from the delay-tap plots and train the 
ANNs to simultaneously identify multiple impairments, 
including OSNR, CD and PMD. We show that 
sampling with balanced detection gives superior 
results compared to direct detection in a 40-Gbit/s 
return-to-zero binary PSK (RZ-BPSK) system. 

Concept 
With delay-tap asynchronous sampling, each sample 
point is comprised of two measurements separated 
by a specific time corresponding to the length of the 
delay5. For PSK signals, the loss of phase information 
in the directly-detected waveforms makes it difficult to 
simultaneously distinguish multiple impairments. Thus, 
we propose to generate the delay-tap plots using 
balanced detection. Fig. 1 illustrates simulated one-
half bit-period (B/2) delay-tap plots for a 40-Gbit/s RZ- 

BPSK signal at a few select combinations of OSNR, 
CD and first-order PMD (i.e., differential group delay 
(DGD)), including both direct detection (a) and 
balanced detection (b). Visually, it is obvious that 
these impairments produce more distinct features in 
the case of balanced detection.   

 
To simultaneously quantify the impairments, we 

use ANNs trained with parameters derived from 
delay-tap plots. ANNs are information-processing 
systems that learn from observations and generalize 
by abstraction11, which consist of multiple layers of 
processing elements called neurons. Each neuron is 
linked to other neurons in neighboring layers by 
varying coefficients, as shown in Fig. 2. ANNs learn 
the relationships among sets of input-output data that 
are characteristic of the device or system under 
consideration. After the input vectors are presented to 
the input neurons and output vectors are computed, 
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(a) B/2 delay-tap plot using direct detection. 
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(b) B/2 delay-tap plot using balanced detection. 

 

Fig. 1: B/2 (one-half bit-period) delay-tap plots of a 40-
Gbit/s RZ-BPSK signal with various impairments: the 
units of OSNR, CD and DGD are dB, ps/nm and ps, 

respectively. 
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the ANN outputs are compared to the desired outputs 
and errors are calculated. Error derivatives are then 
calculated and summed for each weight until all of the 
training sets have been presented to the network. The 
error derivatives are used to update the weights for 
the neurons, and training continues until the errors 
reach prescribed values. After training, the ANN can 
be tested by use of other sets of data.  

 

Results and Discussions 
To quantify the distinct features due to different 
impairments, we derived parameters calculated from 
the delay-tap plots. As in [8], we divided the plots into 
four quadrants. Quadrant 4 was not used since it 
contained data that were mirror images of quadrant 2. 
With three quadrants defined, we performed some 
basic statistical calculations on the data within each 
quadrant, including means and standard deviations. 
One other parameter we used is similar to the Q-
factor, which we define as 31 3 1 1 3( )/( )r rQ r r σ σ= − + , 
where ir  and riσ  are the means and standard 

deviations of the magnitudes in the i th quadrant. 
The ANN architecture used in this work was a feed-

forward, three-layer perceptron (MLP3) structure. The 
ANN consisted of 7 inputs ( 1 1 2 2 3 3 31, , , , , ,r r rr r r Qσ σ σ ), 

3 outputs (OSNR, CD, and DGD), and 12 hidden 
neurons. The ANN was trained by use of a software 
package developed by Zhang et al.11. We verified the 
concept via simulation in a 40-Gbit/s RZ-BPSK 
system, using a conjugate gradient method for 

training. The training data were obtained from the 
delay-tap sampling data by use of one set of 125 
samples (OSNR = 32, 28, 24, 20, 16 dB; CD = 0, 15, 
30, 45, 60 ps/nm; DGD = 0, 2.5, 5, 7.5, 10 ps).  

Once the model was trained, we validated its 
accuracy with a different set of testing data with 64 
samples (OSNR = 30, 26, 22, 18 dB; CD = 7.5, 22.5, 
37.5, 52.5 ps/nm; DGD = 1.25, 3.75, 6.25, 8.75 ps). 
The software reported a correlation coefficient of 
0.998 for the testing data. Fig. 3 (a) compares the 
testing and ANN-modeled data for OSNR, CD, and 
DGD. For comparison purposes, we performed the 
same modeling for the case of direct detection, which 
gave a correlation coefficient of only 0.89, as shown 
in Fig. 3 (b). Thus, we can clearly see balanced 
detection provides superior results, which shows ANN 
with delay-tap asynchronous sampling via balanced 
detection is more suitable for PSK optical links. 
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Fig. 2: A 3-layer perceptron (MLP3) ANN model.
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(a) 40-Gbit/s RZ-BPSK ANN testing results from balanced detection. 
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(b) 40-Gbit/s RZ-BPSK ANN testing results from direct detection. 

 

Fig. 3: Comparison of testing and ANN-modeled data for a 40-Gbit/s RZ-BPSK channel. 
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