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In this paper we explore the combined action of large thermal fluctuations and spin transfer
torques on the behavior of magnetic layers in spin valves. We find that at temperatures near Tc,
spin currents can measurably change the size of the magnetization (i.e. there is a longitudinal
spin transfer effect), and we propose an experimental signature for this effect. We also find the
temperature dependence of the applied-field applied-current phase diagram for a free magnetic
layer, valid for temperatures near the Curie temperature Tc. In this study we employ both an
atomistic stochastic Landau-Lifshitz-Slonczewski simulation at high temperatures, and also find
the thermally averaged magnetic dynamics within mean field theory, yielding a Landau-Lifshitz-
Bloch + Slonczewski equation. We show that this simplified equation describes the full stochastic
model reasonably well. We also show how the Landau-Lifshitz-Gilbert equation describing a fixed
magnetization size can be modified to describe the magnetic dynamics in this temperature regime.

I. INTRODUCTION

Spin transfer torque describes the interaction between
the spin of itinerant, current-carrying electrons and the
spins of the equilibrium electrons which comprise the
magnetization of a ferromagnet. This torque results
from the spin-dependent exchange-correlation electron-
electron interaction, and leads to the mutual precession
of equilibrium and non-equilibrium spin around the total
spin. In spin valves with sufficiently high current density,
spin transfer torque can excite a free ferromagnetic layer
to irreversibly switch between two stable configurations
(typically along an easy-axis, parallel or anti-parallel to
an applied magnetic field), or to undergo microwave os-
cillations. Previous considerations of spin transfer torque
mostly focus on the transverse response of the magnetiza-
tion to spin currents. This is appropriate since the tem-
peratures used in spin valve experiments are substantially
below the Curie temperature Tc of the ferromagnets, so
that longitudinal fluctuations can be ignored.

Even far from the Curie temperature, temperature
plays an important role in quantitatively analyzing the
dependence of the magnetic orientation on the applied
field and applied current. Previous works on the effect
of finite temperature on spin dynamics in the presence of
spin transfer torque utilize the macrospin approximation,
which assumes that the size of the magnetization is fixed.
Refs. 1 and 2 add a Sloncewski torque to the Langevin
equation describing the stochastic spin dynamics, while
Ref. 3 solves the Focker-Planck equation for a single spin,
with the spin transfer torque term added to the deter-
ministic dynamics. Ref. 4 uses the Keldysh formalism to
formally derive the stochastic equation of motion for the
non-equilibrium (i.e., current-carrying) system, and also
considers a single spin of fixed magnitude. These treat-
ments have been successful in describing thermal charac-
teristic of nanomagnets under the action of spin torques,
such as dwell times and other details of thermally acti-
vated switching.

For materials like GaMnAs, experiments are done near

Tc, so that the size of the magnetization is substantially
reduced from its 0 temperature value, and undergoes
sizeable fluctuations. In this case, the applicability of a
macrospin model is not clear. For field-driven dymamics,
there is theoretical work which accounts for longitudinal
fluctuations near Tc [5]. This formal treatment culmi-
nates in the construction of the Landau-Lifshitz-Bloch
equation (LLB), which is an extension of the familiar
Landau-Lifshitz equation with an addition longitudinal
degree of freedom. In this work, we consider tempera-
tures near the Curie temperature and include both lon-
gitudinal fluctuations and the influence of spin transfer
torque.

There are a number of open questions regarding mag-
netic dynamics near Tc, including the temperature de-
pendence of the spin transfer torque itself, and the
temperature dependence of more basic magnetic prop-
erties such as magnetic damping, magneto-crystalline
anisotropy, etc. We want to consider only the influence of
the spin torque (understood in its 0 temperature sense)
on the thermally reduced magnetization. To do so, we use
an atomistic approach for the stochastic dynamics of a lo-
cal moment ferromagnet with the inclusion of spin trans-
fer torque. Rather than attempt to deal with all of the
high-temperature behaviors of magnetic properties, we
make simple assumptions about the temperature depen-
dence of the magnetic anisotropy, demagnetization field,
and damping. Using this model we show that spin cur-
rents can change the size of the magnetization, and give
an expression for this “spin-current longitudinal suscepti-
bility”, and propose an experimental scheme to measure
this effect.

We then construct a Landau-Lifshitz-Bloch + Slon-
czewski (LLBS) equation to describe both longitudinal
fluctuations and spin transfer torques. Following Ref.
6, we verify the applicability of the LLBS equation by
comparing its results to the atomistic results. We then
analyze the LLBS equation to find the applied field-
applied current phase diagram for different temperatures.
We find that critical switching currents are reduced by
the same mechanism exploited in heat assisted magnetic
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recording, namely the temperature-induced reduction in
the magnetic anisotropy [7]. We also find that regions
of the phase diagram which have been experimentally
unattainable become relevant at high temperatures. The
dependence of critical currents versus temperature in
these regions can provide quantitative details about the
temperature dependence of spin transfer torque.

II. METHOD

To study the interplay between temperature and spin
transfer torque, we consider a spin valve with a fixed
layer magnetization in the +ẑ-direction with Curie tem-
perature T 1

c , and a free layer with a smaller Curie tem-
perature T 2

c (see Fig. (1)). This allows for a nearly
temperature independent spin current flux incident on
the free layer. The details of how spin current propa-
gates through a ferromagnet which is undergoing large
thermal fluctuations is an interesting question in its own
right, and is the subject of future work. For now we
make the simplest assumption, namely that all of the
incoming spin current is absorbed uniformly throughout
the free layer magnetization. This is certainly an over-
estimation, so that our results represent an upper bound
on the temperature-dependent effects. But it is likely not
a gross over-estimation: substantial spatial and tempo-
ral inhomogeneities in the magnetization should induce
rather irregular spatial patterns in the spin currents car-
ried by propagating states. This will lead to large dephas-
ing effects, so that the total spin current should rapidly
decay away from the interface as in the conventional pic-
ture of spin transfer torques. We also suppose that the
spin transfer torque is uniformly distributed throughout
the layer. It is known that the torque is generally lo-
calized near the interface [8]. However in this tempera-
ture regime, and for thin layers (∼ 3 nm), magnetic non-
uniformities in the direction transverse to current flow
should be more substantial than non-uniformities along
the current flow resulting from a localized spin transfer
torque.

FIG. 1: Schematic of system, two ferromagnetic layers with
different Curie temperatures. We suppose that T 1

c > T 2
c .

A. Stochastic LL with spin transfer

We adopt three approaches to model the system. The
first is an atomistic lattice model of normalized spins S.
We include nearest-neighbor Heisenberg coupling with
exchange constant J , and an easy-axis anisotropy field of
magnitude Han in the ẑ-direction. To model the temper-
ature dependence of the anisotropy, we make the simple
ansatz that the magnitude of anisotropy is proportional
to the reduced magnetization m(T ) = Ms(T )/Ms(T =
0):

Han(T ) = Han(T = 0)m(T ), (1)

so that the anisotropy field on spin i is given by Hi
an(T ) =

Han(T = 0)|〈S〉|Sz
i , where the brackets here indicate a

spatial average. A hard-axis anisotropy field with magni-
tude Hd in the ŷ-direction is added to model the demag-
netization field of the thin layer. We again make a simpli-
fied ansatz for the form of this field to avoid evaluating
a non-local field, making the numerics more tractable.
We take the demagnetization field to be uniform on all
spins and given by Hi

d(T ) = −Hd(T = 0)〈Sy〉ŷ. This
form of the hard-axis field ensures that Hd ∝ Ms(T ), and
roughly captures the nonlocal nature of the field. Finally,
we include an applied field Happ in the ẑ-direction. The
Hamiltonian for spin i is then:

Hi = J
∑

j∈n.n.

Si · Sj +
Han(T = 0)|〈S〉|

2
(Sz

i )2

−Hd(T = 0)Sy
i 〈Sy〉+ HappSz

i . (2)

To model nonzero temperatures, we add damping α
and a stochastic field Hfl to the equation of motion im-
plied by Eq. (2), with the standard statistical properties:

〈Hfl(t)〉 = 0, (3)

〈Hi
fl(t)Hj

fl(t′)〉 =
α

1 + α2

2kBT

γz
δijδ(t− t′). (4)

where z is the spin on each lattice site (in units of µB ,
z is typically of order 1). We numerically integrate the
equation of motion using a second-order Heun scheme,
as described in Ref. 9. We add a Slonczewski-like spin
transfer torque term to the equation of motion for the
ith spin, which is given finally as:

Ṡi = −γSi × (Heff + Hfl)− γα (Si × Si ×Heff)
+ Hst (Si × Si × ẑ) . (5)

where Heff = Happẑ + Han|〈S〉|Sz
i ẑ −Hd〈Sy〉ŷ, γ is the

gyromagnetic ratio, and we characterize the spin trans-
fer torque with Hst = pJea3/ez`γ. Here Je is the charge
current density, p is the spin polarization of the current,
a is the lattice constant, ` is the free layer thickness, and
e is the electron charge. We use both a bulk geometry
consisting of a N = 483 periodic array of spins in 3 di-
mensions, and a layer geometry with an array of 100 ×
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100 × 15 spins. We employ the bulk geometry in compar-
ing the stochastic model behavior with predictions from
mean field theory, and the layer geometry for studying
the effect of spin current on magnetization size.

B. Landau-Lifshitz Bloch + Slonczewski equation

In the second approach, we add a Slonczewski torque
term to the LLB equation. To derive the LLB equa-
tion, a probability distribution for the spin orientation
is assumed, which is used to find the ensemble average
of Eq. (5). In addition the nearest neighbor exchange
field is replaced by its mean-field value. The details of
the derivation follow closely those in Ref. (5), so we omit
them here. The final LLB+Slonczewski equation takes
the form:

ṁ = −γ (m×Heff) +
2γαT

J0m2
m ·

(
Heff +

Hst

α
ẑ

)
m

− γα

m2

(
1− T

J0

)
m×m×

(
Heff +

Hst

α
ẑ

)
, (6)

with an effective field given by:

Heff = Happẑ + Hanm2mz ẑ −Hdmy ŷ

− 1
2χ

(
m2

m2
e

− 1
)

m, (7)

where me(T ) is the zero field, zero current equilibrium
magnetization: me(T ) = B(J0/kBT ), and B is the
Brouillon function. χ(T ) is the longitudinal susceptibil-
ity: χ(T ) = ∂m(T )/∂Happ. J0 is the 0th component of
the Fourier transformed exchange, and m is a vector with
size between 0 and 1. The double cross product in Eq.
(7) is the familiar Landau Lifshitz damping term, which
describes the relaxation of the magnetization direction
to the nearest energy minimum. The term longitudinal
to m distinguishes the LLB equation from the LL equa-
tion. This longitudinal term describes the relaxation of
the size of the magnetization to its steady state value,
which is determined by the temperature, applied fields,
and applied currents.

The detailed dependence of the magnetic anisotropy on
temperature generally material specific. In our model,
the anisotropy and demagnetization fields depend on
temperature through their m dependence, and vary as
m(T ) and m(T )3, respectively. (Note the m3 depen-
dence of the anisotropy depends partially on our choice
of uniaxial anisotropy Ean = Km2

z. A similar choice of
Ean = −K(m2

x + m2
y) would yield an anisotropy field

dependence of m2, see Ref. 10 for a further discussion
of this point). The magnetic exchange J0 can also de-
pend on temperature. This dependence is stronger for
ferromagnets with indirect exchange interactions (such
as GaMnAs - where the magnetic interactions are medi-
ated by hole carriers), and weaker for local moment sys-
tems with direct exchange (such as Fe). For simplicity
we treat J0 as temperature-independent.

Finally we consider the standard Landau-Lifshitz equa-
tion with a reduced saturation magnetization. We find
in Sec. (III D) that an appropriately modified damping
coefficient leads to qualitative agreement the more com-
plicated models and the Landau-Lifshitz equation.

III. RESULTS

A. Longitudinal spin current susceptibility

We first consider the longitudinal spin transfer effect.
Using the LLB+Slonczewski equation, it is straightfor-
ward to show that the size of the magnetization changes
in the presence of spin current as:

δm(I, T ) = Hst
χ(T )

α
(8)

To verify the applicability of this expression, we con-
sidered the full stochastic simulation with 100×100×15
spins (initialized to thermal equilibrium) and find the
response of the magnetization to applied fields and cur-
rents. Fig. (2) shows the longitudinal susceptibility to
magnetic field and spin current, where the spin current
susceptibility χI is defined as χI = δm/Hst. χ is plot-
ted in dimensionless form, and is scaled by the exchange
field J/µB . We find that χH and χIα correspond very
well, demonstrating that Eq. (8) accurately describes the
numerical stochastic model.

To get a feel for the magnitude of the longitudinal spin
transfer, we rewrite the change in m in dimension-ful
terms:

δm =
pJea3

ez`γ

(
µB

J0α

)
χ(T ) (9)

Taking the exchange field J0/µB =150 T (which cor-
responds to a Tc of 150 K in a cubic nearest neighbor
Heisenberg model), a 0 temperature saturation magne-
tization of 106 A/m, χ = 7, Je = 1011A/m2, p = 0.5,
α = 0.01, ` = 3nm results in a 5% change in m from its 0
temperature value, which should be measurable. (Using
Fig. (2), we find that χ = 7 corresponds to T = 0.95 Tc.)

A notable aspect of this longitudinal spin transfer is
that the size of the magnetization can either be increased
or decreased according to the direction of current flow.
For electron flow from fixed to free layer, the free layer
moment increases, while for electron flow in the oppo-
site direction decreases the free layer moment. This con-
trasts with current-induced Joule heating, which always
decreases the magnetization.

This distinction can be exploited to probe the longi-
tudinal spin transfer by using the experimental scheme
showed in Fig. (3). Here we suppose that T 1

c À T > T 2
c .

We choose sign conventions such that a positive Happ

aligns with the fixed layer, and a positive current repre-
sents electron flow from fixed to free layer. In the absence
of a longitudinal spin transfer (χI=0, black line in Fig.



4

0 0.5 1 1.5
0

2

4

6

8

10

T/T
c

χ 
⋅(J

µ B
)

 

 

χ
I
 α

χ
H

FIG. 2: The magnetic field and spin current susceptibility
versus temperature for the stochastic landau lifshitz equation
in the layer geometry. The spin current susceptibility is mul-
tiplied by α. The error bars indicate statistical uncertainty.

(3)), the application of a magnetic field will partially or-
der the free layer to align or anti-align with the fixed
layer. This should cause the resistance R of the device
to change in some way, according to the GMR effect and
magnetic order induced in the free layer (the detailed
dependence of R on Happ is not important here). If a
positive current I1 is applied, then the longitudinal spin
transfer induces partial ordering of the free layer, so that
m (Happ = 0) = +χII1. Then the curve of m (Happ), and
therefore the curve R (Happ) is simply shifted by +χII1

(the red dashed curve in Fig. (3)). If a negative cur-
rent −|I1| is applied, then m (Happ = 0) = −χII1 and
the m (Happ) and R (Happ) curves are shifted by −χII1

(black dotted curve in Fig. (3)). This shift represents a
unique signature of longitudinal spin transfer.

Plugging in numbers as above, we estimate a total shift
δ = 2χII1 between R (Happ) for positive and negative
current to be on the order of 1 T. Eq. (9) indicates
that materials with small exchange field (or small Tc),
and those that can support large current densities show
the effect most strongly. This suggests that weak metal-
lic ferromagnets such as Gd(Tc = 300K), and Fe alloys
such as FeS2 and FeBe5(Tc = 270K) [11] may be good
candidates for free layer material.

B. LLBS vs SLL

In this section we compare the results obtained from
the full 3-dimensional stochastic LL+S equation with
those obtained from the mean-field LLBS equation. In
our numerics, we use dimensionless time τ = (γJ/µB)t,
which rescales the magnetic fields Heff by the exchange
field Hex = J/µB . Dimensionless fields are denoted
by lowercase: happ = HappµB/J , etc. We consider a

FIG. 3: The magnetic field and spin current susceptibility
versus temperature for the stochastic landau lifshitz equation
in the layer geometry. The spin current susceptibility is mul-
tiplied by α.

current-induced magnetic excitation for the bulk lattice
geometry at various temperatures. The magnetization is
initialized at a 45◦ angle with respect to +ẑ-direction,
and spin transfer torque is applied to excite the magne-
tization away from the ẑ-direction. The parameters used
are an applied field of happ = 0.0001, a demagnetization
field of hd = 0.01, a spin torque of hst = −0.0002, and
damping of α = 0.1 (the artificially high damping was
chosen to allow the numerical simulation of the switch-
ing to be carried out in a reasonable time frame). As
we vary temperature, we obtain trajectories of varying
complexity. Fig. (4) compares the LLBS and several re-
alizations of the stochastic LL equation. For this range of
parameters, the magnetic dynamics evolves from steady
oscillations to current induced switching as the temper-
ature is increased. The trajectories for t = 0.08 indi-
cate that a realization of stochastic dynamics can ex-
hibit the crossover from precession to stable switching,
whereas at this temperature the thermally averaged tra-
jectory shows only oscillations. Generally, the level of
correspondence between the two is qualitatively good,
although not surprisingly varies. It would be necessary
to model the switching event many times to obtain an
average trajectory to compare to the LLBS, but compu-
tational constraints make this unfeasible. We can never-
theless conclude from this data that the LLBS equation
qualitatively captures the features of the full stochastic
simulations.

C. Applied field - applied current phase diagram

We now investigate the effect of the longitudinal de-
gree of freedom on the applied field - applied current
phase diagram of the free magnetic layer. Fig. (5) shows
the generic topology for regions of stability for the par-
allel (“P”, or +ẑ-direction) and antiparallel (“AP”, or
−ẑ-direction) fixed points. We focus on the stability
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FIG. 4: Comparison of trajectories of current-induced ex-
citations for the atomistic stochastic simulation and the
LLB+Slonczewski equation for various reduced temperatures
t = T/Tc. The dashed line gives the LLB+Slonczweski tra-
jectory, while the solid lines show various realizations of the
stochastic trajectory.

of the AP configuration for positive applied fields (the
dashed boundary in the upper-half-plane of Fig. (5). We
first briefly describe the main qualitative features before
providing a mathematical description. For applied fields
between hanm3 and hanm3 + hdm, the stability bound-
ary is a horizontal parabola, while for other values of
applied field, the stability boundary is linear with slope
1/α. For applied fields with magnitude less than hanm,
there is hysteresis in the current switching. For T=0, this
phase diagram reduces to the known form found experi-
mentally [12]. As T increases, the size of the hysteretic
region (and the switching current) decreases. Also the
range of field with the parabolic boundary decreases, and
the outer edge of the parabola gets pulled in closer to 0.
For sufficiently high temperatures, this parabolic stabil-
ity boundary should be experimentally accessible.

We now analyze these behaviors quantitatively. We
determine the stability of fixed points using the standard
method of linearizing Eq. (7) about a fixed point and
finding parameter-dependent eigenvalues λ. A positive
real part of λ indicates a loss of stability. This analysis
leads to the following condition for instability of the an-
tiparallel configuration (where it should be noted that m
depends on hst through m = me + χ

(
h + hst

α

)
):

Re

[
hcrit

st + α

(
h + hanm3 +

hd

2
m

1− T

1− 3T
− m

2χ

(
1− m2

m2
e

)
2T

1− 3T

)
− m

√
− (h + hanm3) (h + hanm3 + hdm)

1− 3T

]
= 0.

This leads to a cubic equation for hcrit
st . Assuming

me À χ
(
h + hst

α

)
, and expanding to 0th order in χ leads

to an approximate, closed form for hcrit
st . Again we dis-

tinguish between different regimes of applied field. For
h 6∈ [hanm3, hanm3 + hdm]

hcrit
st = α

(
h +

hd

2
me + hanm3

e

1− 3T

1− T

)
, (10)

where again me is the equilibrium magnetization in the
absence of applied field and applied current. Eq. (10)
shows that the slope of the boundary is temperature in-
dependent, and is given by 1/α (the intrinsic damping α
is assumed to be temperature independent). The tem-
perature independence of the slope follows from the fact
that the spin transfer torque increases like 1/m(T ), but
the effective damping rate damping increases as 1/m(T ).
The intercepts of this boundary line are temperature de-
pendent due to the temperature dependence of m. The
contribution from the easy-axis anisotropy field has an
additional temperature dependence, but the magnitude
of this field is much smaller than the demagnetization

field, so it does not play an important role. The critical
current at zero field is reduced by m(T ) because of the
reduction in the demagnetization field. This is impor-
tant because the demagnetization field is usually larger
than applied fields, and is therefore the primary impedi-
ment to current induced switching. Its reduction through
increased temperature offers a route to reduced critical
switching currents.

For h ∈ [hanm3, hanm3+hdm], a very large spin torque
is required to stabilize the AP configuration. The values
of current for which the AP configuration is stabilized
are much higher than those attainable experimentally, so
that for this range of fields the AP configuration is not
seen [13]. The approximate critical current along the AP
stability boundary is:

hcrit
st =

me

√
h(hdme − h)
1− T

. (11)

The reduction in the outer boundary of the parabolic
stability line is reduced at high temperature, and this
reduction can also be traced back to the reduced mag-
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netic anisotropy. For low temperatures, the applica-
tion of spin transfer torques results in a elliptical pre-
cession mostly in the easy plane away about the −ẑ
fixed point. To stabilize the AP configuration in this
regime, the spin transfer torque must overcome the pre-
cessional torque (usually, the spin transfer torque must
overcome the much weaker damping torque). Assuming
h = hdm/2 for definiteness, the precessional torque de-
creases with T as hdm(T ), while the STT increases like
1/m. This implies a value for the maximum reach of
the parabola of I = m2(T )hd/(2(1 − T )). Plugging in
typical values for material parameters (the same used
in Sec. (IIIA)) leads to a critical current of 1012A/m2

for T = 0.95Tc. This is an order of magnitude smaller
than the 0 temperature case. The behavior of this criti-
cal current versus temperature at a fixed applied field is
shown in Fig. (6). (Solid line gives LLBS result). Note
that the curve does not extend to T = Tc, because for
a finite applied field, we necessarily move outside the re-
gion h ∈ [hanm3, hanm3 + hdm] as T → Tc. It should
also be noted that the stochastic trajectories (shown in
Fig. (4)) indicate that thermal fluctuations can effec-
tively drive the system out of the precessional state and
into the static antiparallel configuration.

FIG. 5: Schematic of parallel/anti-parallel stability versus ap-
plied field and applied current. The hysteretic box near the
origin and the fully unstable regions (white parabolic shapes)
contract in size with increasing temperature.

D. Comparison with Landau Lifshitz

We finally turn to the differences between the LLBS
and the Landau-Lifshitz-Slonczewski equation with re-
duced magnetization. Based on the qualitative behavior
of the LLBS equation, a suitable form for a temperature
dependent LLS equation for a nanomagnet of reduced
size m and orientation n̂ is:

˙̂n = −n̂×Heff − α

m
n̂× n̂×Heff − Hst

m
n̂× n̂× ẑ (12)

where Heff = Happ − mHdny ŷ + m3Hannz ẑ, and the
temperature dependence is contained entirely in m(T ).
Clearly the divergence of the damping at T = Tc is un-
physical, however a more detailed treatment of damping
near Tc is beyond the scope of this paper. The differ-
ences between this LL equation and the LLBS equation
are quantitative (as opposed to qualitative) in nature.
One difference is in the dependence of the critical cur-
rent on temperature for h ∈ [hanm3, hanm3 + hdm]. Fig.
(6) shows the prediction based on the LL equation.
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FIG. 6: Critical current versus temperature for LLBS and
LL equations. The parameters are: happ = −0.001, hd =
0.01, han = 0.0001. Recall that all fields are scaled by the
exchange field.

Fig. (6) is indicative of the fact that for the applied-
field applied current phase diagram, the spin-current lon-
gitudinal susceptibility plays a role that is secondary
to the more pronounced effects of temperature reduced
anisotropies.

IV. DISCUSSION

In this paper explored the consequences of the com-
bined action of longitudinal fluctuations and spin trans-
fer torques on the behavior of magnetic layers in spin
valves. To do so we studied an atomistic, stochastic
Landau-Lifshitz-Slonczewski simulation at large temper-
atures. We find that there is a longitudinal spin trans-
fer effect, and estimate that at temperatures near Tc,
spin currents can measurably change the size of the mag-
netization. We then supplemented the Landau Lifshitz
Bloch equation with a Slonczewski torque term, and ver-
ified that this model captures the qualitative features
of the stochastic simulations. We showed that the ap-
plied field-applied current phase diagram undergoes large
changes in the presence of high temperatures, and that
these changes may be useful for reducing critical switch-
ing currents and for studying the detailed behavior of the
temperature dependence of the spin transfer torque.
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The experimental system relevant for the effects we
describe (shown schematically in Fig. (1)) should be rel-
atively straightforward to fabricate. Jiang et al. consid-
ered a similar system [14], although this particular work
dealt with other issues such as the ferrimagnet compen-
sation point for magnetization and total angular momen-
tum. By considering simpler ferromagnets with different
Curie temperatures, the role of temperature may be more
easily inferred. It is of course necessary to account for
Joule heating in assessing the detailed temperature de-
pendence of the spin transfer torque. However recent
experimental on domain wall motion illustrates the fea-
sibility of compensating for this effect [15]. On the other
hand, experiments conducted at fixed current with vary-
ing ambient temperatures and applied fields may offer a
more straightforward route to observing the longitudinal
spin transfer effect.

Many experiments done with dilute magnetic semi-
conductors deal with domain wall motion, where ther-
mal effects play an important role in even the quali-
tative aspects of the domain wall behavior[15]. There
are additional challenges associated with extending this
work from spin valves to continuous magnetic textures.
Among these is the renormalization of the exchange in-
teraction associated with the coarse graining of the mag-
netization, which becomes more important at higher tem-
peratures [16]. In addition, the crucial role played by the
demagnetization field in intrinsic domain wall pinning
implies that the finite temperature treatment of the de-
magnetization field must also be handled more carefully.
For these reasons the spin valve geometry may provide
greater experimental control and admit a simpler theo-
retical description.
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[4] A. S. Núñez and R. A. Duine, Phys. Rev. B 77, 054401

(2008).
[5] D. A. Garanin, Phys. Rev. B 55, 3050 (1997).
[6] O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and

D. Garanin. Phys. Rev. B 74, 094436 (2006).
[7] R. E. Rottmayer et al., IEEE Trans. Magn. 42, 2417

(2006).
[8] M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407

(2002).
[9] J. L. Garcia-Palacios and F. J. Lazaro. Phys. Rev. B 58,

14937 (1998).

[10] D. Garanin and O. Chubykalo-Fesenko. Phys. Rev. B 70,
212409 (2004).

[11] R. M. Bozorth, Ferromagnetism, D. Van Nostrand Com-
pany, New York (1951).

[12] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Em-
ley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph,
Nature 425, 380 (2003).

[13] Ya. B. Bazaliy, B. A. Jones, and S.-C. Zhang, Phys. Rev.
B 69, 094421 (2002).

[14] X. Jiang, L. Gao, J. Z. Sun, and S. S. P. Parkin1, Phys.
Rev. Lett. 97, 217202 (2006).

[15] M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl, and
H.Ohno, Phys. Rev. Lett. 96, 106601 (2006).

[16] G. Grinstein and R. H. Koch, Phys. Rev. Lett. 90, 207201
(2003).


