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Abstract 

This paper presents the structural analysis approach used and results obtained during the 

investigation conducted by National Institute of Standards and Technology (NIST) to model the 

sequence of fire-induced damage and failures leading to the global collapse of World Trade 

Center 7 (WTC 7).  The structural analysis required a two-phase approach to address both the 

gradual response of the structure to fire before collapse initiation (approximately 4 h) and the 

rapid response of the structure during the collapse process (approximately 15 s).  This paper 

emphasizes the first phase, a pseudo-static (implicit) analysis that simulated the response of 

structural elements to fires that spread and grew over several hours, and presents key aspects of 

the second phase, a dynamic (explicit) analysis that used the first phase damage as initial 

conditions and simulated the progression of structural failures that resulted in global collapse.  

Journal of Structural Engineering. Submitted June 25, 2009; accepted February 16, 2011; 
   posted ahead of print February 18, 2011. doi:10.1061/(ASCE)ST.1943-541X.0000398

Copyright 2011 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

2 

The analyses accounted for 1) geometric nonlinearities, 2) temperature-dependent nonlinear 

materials behavior for both members and connections (including thermal expansion, degradation 

of stiffness, yield and ultimate strength, and creep), and 3) sequential failure of structural 

framing and connections.  Analysis uncertainty was addressed by determining rational bounds on 

the complex set of input conditions and by running several multi-phase analyses within those 

bounds. The structural response from each analysis was compared to the observed collapse 

behavior. This approach allowed evaluation of fire-induced damage, sequential component 

failures, and progression of component and subsystem failures through global collapse of WTC 7. 

 

Keywords: World Trade Center, WTC 7, fire-induced damage, structural analysis, failure, global 

collapse 
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 Introduction  

World Trade Center 7 (WTC 7) was structurally damaged by debris during the collapse 

of WTC 1 at 10:28:22 a.m. eastern daylight time (EDT) on September 11, 2001.  The damage 

included severed exterior columns on the lower floors.  The collapse of WTC 1 also resulted in 

initiation of fires on at least 10 floors of WTC 7, extensive window breakage on the south face, 

and loss of city water that supplied the automatic sprinkler system in the lower floors.  After 

hours of burning, WTC 7 collapsed at 5:20:52 p.m. EDT. 

The National Institute of Standards and Technology (NIST) conducted an investigation 

into the collapse of the WTC buildings (NIST 2008, McAllister et al. 2008).  A specific objective 

of the WTC investigation was to determine why and how WTC 7 collapsed.  A series of detailed 

analyses were performed, consisting of : 1) a fire dynamics simulation to model the spread and 

growth of the fires with time, 2) a thermal analysis to predict the temporal and spatial 

distribution of temperature (temperature time-histories at every node) in the structure, and 3) a 

two-phased structural analysis consisting of (a) a finite element analysis to simulate the response 

of the structure to the fire-induced temperature histories that led to collapse initiation, and (b) a 

dynamic finite element analysis to simulate the sequence of subsequent structural failures that 

led to the collapse of the building. 

 Key aspects of model development and analysis results of the pseudo-static and dynamic 

analyses are presented.  Four significant areas of uncertainty, the approach for addressing 

uncertainty in the analyses, and a comparison of analyses results and observed events are also 

presented. 

 

 Modeling Approach  
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A single software application and solution method was not available to address both the 

gradual response of WTC 7 to fire before collapse initiation (up to 4 hrs) and the rapid response 

of the structure during the collapse process (approximately 15 s).  Therefore, a two-phased 

structural analysis approach was adopted.  Figure 1 shows the sequence of analyses conducted as 

part of the NIST investigation of the collapse of WTC7.   

In the first phase, a model was developed in ANSYS (2007) to determine the pseudo-

static structural response to spatially and temporally varying fire-induced gas temperatures, and 

to predict the resulting local structural failures.  The pseudo-static model accounted for 

temperature-dependent material property degradation and component failure mechanisms.  

Failure criteria were developed to identify when a structural component was no longer 

contributing to the strength or stiffness of the structural system and was removed to prevent 

extreme impedance of analysis convergence.   

 In the second phase, a companion model was developed in LS-DYNA (2007 to simulate 

dynamic structural response to collapse initiation and the subsequent sequential failures and load 

redistribution that occurred up to the global collapse of WTC 7.  When sufficient damage had 

occurred such that the structural system appeared to be approaching instability, the fire-induced 

damage from the 16-story pseudo-static model and material properties corresponding to the 

temperatures at the time of transition were input into the 47-story dynamic model as initial 

conditions.   The 47-story dynamic model accounted for component failures, buckling instability 

of columns due to loss of lateral support, dynamic effects associated with structural failures, and 

debris impact from falling floors.   

 

Structural System 
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The WTC 7 building was 186 m (610 ft) high and constructed over a pre-existing 

electrical substation owned by Consolidated Edison. Above Floor 7, the building had typical 

steel framing for high-rise construction.  The floor systems had steel beams acting compositely 

with normal weight concrete slabs on a 76 mm (3 in.) metal deck, with a total floor thickness of 

140 mm (5.5 in).  Figure 2 shows the floor framing and column numbering system for typical 

tenant floors.   

Simple shear connections were used at all interior floor framing connections (i.e., beams 

to girders and girders to columns).  The shear connections were either single shear plate, double 

angle, or seated connections.  Single shear plate and double angle connections connected interior 

beams to girders and girders to interior columns.  Seated connections were located at floor beam 

or girder connections to the exterior columns, to the north side of Column 79, and to the south 

side of Column 81.  Moment connections were used in the exterior framing and portions of the 

core framing at Floors 5 and 7 as part of the lateral load resisting system.  As is typical, 

connections in WTC 7 were not designed for loads resulting from thermal expansion effects.   

 

16-Story Pseudo-Static Model for Structural Response to Fire-Induced Temperatures 

The 16-story pseudo-static finite element model (see Figure 3) had the following features: 

 Floors from ground level to Floor 16, since sustained fires were observed on Floors 7 to 9 

and Floors 11 to 13 (McAllister et al. 2008).   

 Representations of columns, beams, girders, composite floor slab, and connections.   

 Geometric and material nonlinearities, including temperature-dependent material properties, 

and thermal expansion.   
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 Evolving temperature states, which included heating and cooling phases, input as a 

temperature time history for each node, distinct from other nodes, at 30 min intervals with 

linear interpolation between temperature states.   

 Connection models that simulated failure of connection components. 

 Failure criteria for connections, shear studs within a composite floor system, buckling 

instability of beams and girders, and concrete floor slabs.   

Material and geometric nonlinearities were assigned to the structure between Floors 8 and 

14, while Floor 7 and below and Floors 15 and 16 were modeled linearly with sub-structuring 

(super-elements in ANSYS) to reduce the size of the model.  The gravity loads above Floor 16 

were applied to the Floor 16 columns.  Sub-structuring and exclusion of the building above Floor 

16 allowed the analysis to remain tractable while including details of the framing and floor 

connections at the lower floors where fires were observed. 

 Beams, girders, and columns were modeled with a 3-D linear finite strain beam element 

(BEAM188) that is well suited for large rotation and/or large strain nonlinear solutions (ANSYS 

2007).  Typically, the columns were meshed with 0.6 m (2 ft) long elements, and beams were 

meshed with 0.9 m (3 ft) long elements.  The floor slab was modeled with a 4-node finite strain 

shell element (SHELL181) that is well suited for large rotation and/or large strain nonlinear 

solutions (ANSYS 2007).  Typical mesh size for the floor slab was 0.9 m x 0.9 m (3 ft x 3 ft).  

Temperature-dependent inelastic material properties were used for beam and shell elements.   

 Detailed models of floor connections and shear studs were included on the east side of 

Floors 8 to 14.  A single-floor fire simulation performed prior to the analysis of the full structure 

showed that connection damage west of Columns 73 though 75 did not contribute to failures on 

the east side of the structure, where the collapse was observed to initiate in videos (NIST 
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NCSTAR 1A 2008).  Outside of this area, structural damage, such as buckling of the steel frame 

and crushing and cracking of the concrete slab, was modeled, but connection failures were not 

modeled. Additionally, connection failures were not modeled in the exterior moment frame, as 

failures were not observed there prior to the onset of global collapse, or at column splices, as the 

purpose of the ANSYS model was to simulate local failures up to the point of buckling in a 

column that led to general collapse.   

 Connection and shear stud models were based on WTC 7 erection and fabrication shop 

drawings (Frankel 1985a; Frankel 1985b) and structural drawings (Cantor 1985, Cantor 1988).  

Their capacities were based on test data and/or calculations.  Connection models were 

constructed with a combination of rigid beams, contact elements, control elements, spring 

elements, and user-defined “break elements”, which modeled component failure.  A control 

element is unidirectional and can turn on/off during an analysis to connect or disconnect parts of 

the connection model.  A break element has a multi-degree of freedom elastic spring with the 

capability of disconnecting once its capacity is reached.  Break elements were developed initially 

for the collapse analysis of the WTC 1 and WTC 2 towers (Zarghamee et al. 2005) to simulate 

complex modes of failure in connections using relatively few degrees of freedom.  

The temperature-dependent force and moment capacity of a break element was defined 

with a temperature-dependent reduction factor.  Different tensile and compressive capacities 

were assigned to connections where appropriate.  Connections with multiple failure modes 

required several break elements connected in series and/or parallel as determined by the logical 

sequence of partial failures prior to the total failure of the connection.  The inclusion of contact 

elements in the connection models allowed for slip and construction clearances (gaps) to be 

taken into account and thus insured different responses to tensile and compressive loads.  
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The model had approximately 101 000 elements and required the double precision 

version of ANSYS 11.0.  Inclusion of user-defined elements prohibited parallel processing, so a 

64-bit workstation was used.  The analysis time was approximately 6 months for a single 

analysis that simulated up to 4 h of heating. 

 

Load Application Sequence in Pseudo-Static Model 

The loads applied to the model include the dead load, 25 percent of the design live load 

on all floors, and nodal temperature histories due to fire.  Gravity loads were applied to the 

model in stages that simulated the sequence of construction, where the floor slab participates in 

the floor stiffness after the concrete has hardened.  Beam camber was not included. 

 Temperature data were obtained from Fire Dynamics Simulator (FDS) analyses of the 

fires and heat transfer analyses of the heated gases to the structural components (McAllister et al. 

2008). Structural elements heat slowly relative to the rapidly fluctuating gas temperatures in a 

fire, so component temperatures were applied incrementally in 30 min time steps for the fires 

observed on Floors 7 to 9 and Floors 11 to 13.  The temperatures were assumed to vary linearly 

between consecutive steps.  The temperature time histories of several floor framing and slab 

components on the east side of Floor 13 are shown in Figure 4.   

 Three different thermal cases were used in the heat transfer analyses and pseudo-static 

analyses. Case A used temperature data obtained from the FDS simulation of the observed fires. 

Cases B and C increased and decreased, respectively, the Case A gas temperature by 10 percent. 

These cases were within the range of realistic and reasonable fires in WTC 7 on September 11, 

2001, and were judged to be within the range of uncertainty for the observed fires (McAllister et 

al. 2008).  
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 Treatment of Failed Elements in Pseudo-Static Model 

Within the ANSYS model, failure criteria were developed for addressing failed 

components.  Members that were no longer contributing structurally to the response of the 

building were numerically softened or removed.  This approach significantly improved 

computational efficiency and eliminated many convergence problems.  When an element failed 

according to the criteria presented below, slab element stiffness was reduced to preserve the slab 

mass and associated live loads and beam elements were removed (the element remained in the 

model but contributed a near-zero stiffness).   

Shear Stud Failure.  Shear stud failure in composite floor systems occurs when the 

concrete slab crushes or cracks around the shear stud or when the shear stud separates from the 

steel framing.  The shear strength of studs depends on rib geometry, slab thickness, concrete 

strength, steel strength, stud location relative to the steel deck ribs, and loading direction.  Using 

the results from two sources, Rambo-Rodenberry (2002) and AISC (2005), the average of the 

strong axis and weak axis strength of shear studs was estimated to be 86.7 kN (19.5 kip).  The 

studs failed when the load capacity, which was modified for temperature, was reached; ductility 

was not included for studs in the model.  

Lateral-Torsional Buckling of Beams and Girders.  When lateral support of the top 

(compression) flange was lost due to failure of the shear studs, floor beams could laterally 

displace and buckle in the lateral-torsional mode.  However, interior girders did not have shear 

stud connections to the concrete slab.  Therefore, girders with one-sided floor framing were also 

subject to lateral-torsional buckling.  Buckled members were removed when the web rotation 

was large enough that the member would become unstable under its own gravity loading.  In 
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other words, it was assumed that if a beam or girder rotated so that the flange tips were directly 

in line with the beam axis (i.e., the beam rotation exceeded the flange width/depth), the gravity 

load would have a de-stabilizing effect, and the beam or girder was removed.   

 Loss of Vertical Support for Beams and Girders.  Under elevated temperatures, a beam 

could lose vertical support at its ends through connection failure, including walk-off of a beam 

support seat.  Walk-off failure is due to either 1) movement along the axis of the beam resulting 

from sagging of beams or girders, or 2) lateral displacement of a girder resulting from thermal 

expansion of beams framing into the girder.  Gravity loads in a beam are transferred to the 

bearing seat from the bottom flange of the beam near the web.  Therefore, when the web was no 

longer supported by the bearing seat, the beam was assumed to have lost support, as the flexural 

stiffness of the bottom flange was assumed to be insufficient to transfer the gravity loads.  Under 

such a condition, the beam was removed.  While axial walk-off was possible, the computed 

connection failure mode was in all instances by lateral walk-off.   

Cracking and Crushing of the Concrete Slab.  Local temperature effects and failure of 

supporting beams and girders caused slab elements to undergo large compressive and tensile 

strains.  The ANSYS material model of a concrete slab, reinforced with welded-wire-mesh, was 

based on an isotropic plasticity formulation without strength degradation at high strains and, 

hence, it could not represent cracking under tensile strains or crushing under compressive strains.  

To address this issue, slab elements that reached the tensile or compressive failure strains were 

removed.   

Any slab element with a principal tensile strain equal to or greater than 0.0015 at mid-

depth of the section was assumed to be fully cracked in tension.  Similarly, any slab element with 

a principal in-plane compressive strain equal to or greater than 0.004 was considered fully 
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crushed in compressions.  When these strains were reached, the concrete elastic modulus was 

numerically reduced to a value equivalent to the in-plane stiffness of the welded wire mesh in the 

slab.   

The selection of failure criteria was based on experimental data and engineering 

mechanics, as presented above.   

 

Structural Response to Fire in Pseudo-Static Model 

Analyses of the three different thermal cases studied resulted in connection, beam, and 

girder failures occurring essentially at the same locations with similar failure mechanisms, but 

shifted in time between the three thermal cases. Case B (+10% temperatures) failures occurred at 

the earliest time, followed by Case A (FDS simulated temperatures), and then Case C (-10% 

temperatures).   Only Case B results are described here.    

Thermal Effects on Shear Studs and Concrete Slab.  Failure of shear stud connections 

occurred on the east side of the building.  Generally, the steel framing heated more quickly than 

the concrete slab.  When a concrete slab section heated, cooler adjacent slab sections restrained 

its thermal expansion.  When floor beams heated, their thermal expansion was first restrained by 

the shear studs and, after the shear stud connections failed, by weak axis bending of the girder.  

Both factors led to differential thermal expansion between the concrete slab and the floor 

framing.  At temperatures less than approximately 400 °C (when averaged over the beam length), 

differential thermal expansion effects generally caused failure of shear studs along a beam length, 

followed by either lateral-torsional buckling of beams or girders or failure of end connections.  

The capacity of 28 shear studs on a floor beam in the northeast corner was estimated at about 2.4 

MN (546 kip), which is less than the force produced in a fully restrained floor beam with an 
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average temperature increase of 100 
o
C.  Therefore, shear stud connection failures were expected 

to occur early in the heating process.   

 Review of published literature did not find much data that documented shear stud 

connection failure in composite floors subjected to fire.  One possible reason for the absence of 

reporting such failures in the literature is that most experimental tests of composite floor sections 

(a beam and slab section) have the same restraint to thermal expansion.  Thus, the thermal 

expansion of the beam and slab are essentially the same, effectively resulting in little or no 

differential thermal expansion.    

 Thermal Effects on Floor Beams and Girder.  The computed temperatures in the steel 

floor framing of Floor 13 at 3.0 h, 3.5 h, and 4.0 h, shown in Figure 5 (a, b, c), are largely due to 

heating from fire on the floor below.  The corresponding computed failures of floor beams and 

girders of Floor 13 are shown in Figure 5 (d, e, f).  (For other floors, see McAllister et al. 2008).  

In the east floor area, as a floor beam thermally expanded, it laterally displaced the interior girder 

but not the exterior framing with moment connections, which was much stiffer.  Shear studs 

connecting the slab to the floor beam primarily failed by differential thermal expansion between 

the steel beams and the concrete slab.  Floor beam buckling was due to the combined effects of 

(1) loss of lateral restraint when shear studs failed, (2) increased axial loads due to restraint of 

thermal expansion, and (3) gravity loads from the floor slab.  Girder walk-off occurred when the 

beams (that framed into girders from one side) thermally expanded and pushed the girder 

laterally, sheared the bolts at the seated connection, and then continued to push the girder until it 

walked off the bearing seat.  Although cooling occurred for many structural members in other 

parts of the structure, the beams, girders, and connections that contributed to collapse initiation 

had not begun cooling between 3.0 h and 4.0 h of heating (see Figure 4).   
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 Thermal Effects on Connections.  Thermal expansion of beams and girders caused 

connection failures in the form of 1) bolt shear, 2) failure of welds, and 3) walk-off of the seated 

connections after bolts had sheared off.  Failure of bolts or welds in shear connections (single 

plate or double angle) resulted in loss of horizontal and vertical support to beam and girders.  In 

seated connections, bolt failure caused loss of horizontal support, but not vertical support.  Loss 

of vertical support occurred when the beam or girder walked off the bearing seat.  Other factors 

that contributed to this failure were an absence of shear studs on the girders, which would have 

provided lateral restraint, and the one-sided framing of the east girders by the floor beams, which 

allowed the floor beams to push laterally on the girder when thermally expanding.   

 

 Failures Leading to Collapse Initiation in Pseudo-Static Model 

The pseudo-static analyses showed that the floor framing and slabs at Floors 8 to 14 were 

weakened by fire after 4.0 h of heating, and Columns 79, 80, and 81 had lost lateral support at 

several floors.  The fire-induced failures of the floor framing resulted in increased unsupported 

column lengths for Columns 79, 80, and 81.  At this point in time, Column 79 was laterally 

unsupported at three floors in the east-west and north-south directions, Columns 80 was laterally 

unsupported at one floor in the east-west and north-south directions, and Column 81 was 

laterally unsupported at one floor in the north-south direction.  The  pseudo-static analysis 

simulated structural response to fire, but did not include the dynamic effects of component 

failures.  To calculate the dynamic structural response and determine whether subsequent failures 

resulted in total collapse, a separate dynamic analysis was performed.   

 

47-Story Dynamic Model of WTC 7 
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The 47-story dynamic model, shown in Figure 6, represented the steel framing, slabs, 

connections, and composite floor construction with shell elements.  The dynamic model included 

as its initial condition: structural damage due to debris impact from the collapse of WTC; 

structural damage from pseudo static analysis; and mechanical properties for steel components 

for the temperature at the time of initiation of collapse.  The model simulated component failure 

for connections and buckling of floor beams and columns; load redistribution to adjacent 

components; sequential failure of components and subsystems over the duration of collapse 

process; and dynamic effects of debris impact from falling components (MacNeill et al. 2008). 

To adequately capture the nonlinear behavior and failure of the structural components and 

subsystems, while keeping the model size tractable, typical shell element dimensions were 

between 150 mm (6 in.) and 300 mm (12 in.).   

Modeling the behavior of floor connections was a key aspect of the structural response of 

WTC 7 for collapse progression.  Given the shell element size limitations, the connections were 

modeled with a simplified geometry, and connection material models were developed to provide 

the expected load capacity and ductility for the dominant behaviors and failure modes.  

The high number of computation cycles (millions) combined with the size of the model 

(3.6 million elements) required the double precision version of LS-DYNA and high-speed Linux 

computer clusters. The analysis time was approximately 8 weeks for a single global analysis, 

which simulated the structural response over approximately 15 s. 

 

Failure Models and Criteria for Component Failures in Dynamic Model 

The LS-DYNA software (Livermore 2007) allowed for the definition of failure criteria.  

Material failure in structural components was computed within each element based on the local 
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plastic strain. When the specified failure criterion in an element was exceeded, the element was 

eroded (deleted) from the calculation. 

One of the significant failure modeling issues for the steel components was the effect of 

mesh refinement on the failure criterion.  With element sizes of several inches, the local detailed 

damage process could not be resolved.  Therefore, the measured engineering elongation of test 

specimens was used to set the failure strain criterion (see Kirkpatrick et al. 2005 for approach).   

Connection damage and failure modes were simulated with simplified models that were 

developed for the expected horizontal load capacity and ductility.  A nonlinear spring element 

was added to achieve the required vertical shear capacity of each connection while contributing 

minimally to horizontal capacity.  Seated connections were modeled with explicit representation 

of the bearing seat and bolts.  Sliding contact was required between the beams and plates.  

 

Load Application Procedure in Dynamic Model 

The 47-story analysis continued the pseudo-static analysis of the structural response to 

fire from the point in time where local instability (i.e., column buckling) appeared to be 

imminent.  The sequence of failures was determined with the temperatures and cumulative 

damage from the pseudo-static analysis at 3.5 h and 4.0 h.   

 An initialization procedure was developed where the loads and damage were added 

sequentially to mimic the order in which they occurred in the building. First, gravity loads were 

applied gradually to minimize dynamic effects.  Next, debris impact damage due to the collapse 

of WTC 1 was applied instantaneously to simulate the dynamic event.  The analysis showed that 

the building remained stable and that structure above the damaged zone was able to redistribute 

the loads.  Next, temperatures were ramped up slowly with a sinusoidal curve. Finally, fire-

Journal of Structural Engineering. Submitted June 25, 2009; accepted February 16, 2011; 
   posted ahead of print February 18, 2011. doi:10.1061/(ASCE)ST.1943-541X.0000398

Copyright 2011 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

16 

induced damage to floor framing and connections was added instantaneously. From that point, 

damage was allowed to propagate and accumulate, without further input, leading to the collapse 

initiation event and the onset of global collapse. 

The dynamic model considered elevated temperatures only at the time when damage was 

transferred from the pseudo-static model. The computed damage from the pseudo-static model 

included damage to floor beams, girders, and connections. The damage state of connections was 

indicated by a numerical value ranging between 0.0 for no damage (i.e., full strength remaining) 

and 1.0 for full damage (i.e., no strength remaining).   

 

Failures Leading to Collapse Initiation in Dynamic Model 

The dynamic analysis computed a sequence of failure events that simulated the structural 

response to the fire-induced damage from the pseudo-static analysis. The floor framing was 

thermally weakened at Floors 8 to 14, with the most substantial fire-induced damage occurring 

on the east side of Floors 12, 13, and 14, as Floors 11, 12, and 13 had higher combustible loads 

than Floors 7, 8, and 9.  Floor sections on Floors 13 and 14 collapsed to the floors below.  The 

floor systems progressively failed down to Floor 5, where debris accumulated, and left Column 

79 laterally unsupported in the east-west and south directions between Floors 5 and 14.  As 

Column 79 buckled, the column failure led to a kink in the east penthouse roof framing, which 

was observed in videos. A cutaway view of the structural condition surrounding Column 79 as it 

buckled to the east is shown in Figure 7, as well as resultant lateral displacements and column 

axial stress histories for Columns 79 to 81.  The plots show that Column 79 began to buckle 1.3 s 

before the east penthouse began to descend into the building. The floor failures also led to 

Columns 80 and 81 buckling and floor failures across the east side of WTC 7. 
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A separate global analysis of the structure with the fire-induced damage from the pseudo-

static analysis at 3.5 h (instead of 4.0 h) showed that interior columns did not buckle. The 

damage state at 3.5 h primarily included failure to beams and connections at the south and 

southeast regions of the fire affected floors.   

The failures progressed westward as the debris fell and impacted adjacent intact columns 

and floors, until all interior columns had buckled between Floors 9 and 14.  The exterior columns 

were left laterally unsupported in the east, south, and north faces (the west face floors remained 

intact above Floor 9 as no fires were observed above this floor). Exterior Column 14, adjacent to 

the debris impact zone, buckled first.  When all exterior columns had buckled within 

approximately 2 s between Floors 7 and 14, as shown in Figure 8, the building above the 

buckled-column region moved downward, resulting in the global collapse of WTC 7.   

 

Uncertainty Considerations and Comparison to Observable Behavior for Both Models 

The WTC 7 analyses simulated the events on September 11, 2001, that were documented 

through photos, videos, and eyewitness accounts.  Observations of actual events were used to 

guide the fire analyses, determine the extent of debris damage, and to validate the structural 

analyses.  The detailed models were based on data from documents, drawings, and images, and 

multiple analyses were conducted for a range of input values.  The analyses were executed 

without adjustment to input values.  

Four significant areas of uncertainty influenced the analyses of WTC 7: fire growth and 

spread; transitioning from the structural fire response to the collapse analysis; extent of debris 

impact damage due to the collapse of WTC 1; and the progression of analysis from collapse 

initiation to global collapse.   
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 Three different thermal cases were used in the pseudo-static analyses. Case A gas 

temperature data came from the FDS simulation of the observed fires. Cases B and C increased 

and decreased, respectively, the Case A gas temperature by 10 percent.  This range of 

temperature modified the local heat transfer to the structural members, the area over which the 

structural members were heated, and the chance of hot zone (zone near the fire and the heated 

upper gas layer) overlap on adjacent floors. It became apparent as the pseudo-static analyses of 

the three thermal cases progressed that structural failures occurred essentially at the same 

locations and with similar failure mechanisms, but shifted in time between the three cases. 

There was some uncertainty in selecting the time and damage state for the transition to 

the dynamic analyses, however, it appeared likely that the critical damage state for Case B 

occurred between 3.5 h and 4.0 h.  The damage at 3.5 h reached a state of equilibrium after some 

local failures without global collapse; the damage at 4.0 h led to global collapse. 

 The extent of exterior structural damage to WTC 7 from debris impact during the 

collapse of WTC 1 (estimated from photos and videos) occurred primarily between Floors 7 and 

17 in the southwest quadrant of the building. Two debris impact damage cases were used in the 

dynamic analyses to determine their contribution to the sequence of structural failures:  (1) the 

observed exterior structural damage and estimated interior structural damage to floors, and (2) no 

structural damage from debris impact.  The effect of these analyses on the sequence of structural 

failures is shown in Table 1, which lists the major observed collapse events with corresponding 

times (the start of the east penthouse descent is time zero).   

Interior failures could not be ascertained from photos or videos. However, a video 

analysis revealed an east-west vibration of the building 6 s before the east penthouse began to 

move downward (see Appendix C in McAllister et. al. 2008). The vibration started at nearly the 
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time of floor failures in the dynamic analysis (6.5 s before penthouse movement).  The computed 

time for the (1) buckling of Columns 79, 80, and 81, (2) east penthouse downward movement, 

and (3) descent of the east penthouse below the roofline were nearly coincident, and independent 

of the debris impact damage.  

Interior column failures occurred over a longer duration in the analysis without debris 

impact damage (~ 10 s) than for the analysis with debris impact damage (~ 3 s).  Without debris 

impact damage, the lack of core framing damage on the west side resulted in sequential failure of 

interior columns from east to west.  With debris impact damage, the core framing damage on the 

west side accelerated the failure of the west interior columns.  

The initial downward movement of the north face was observed at 6.9 s after the initial 

downward motion of the east penthouse. The two dynamic analyses straddled that value (6.3 s 

and 9.8 s, respectively); the case with impact damage more closely matched the observed value. 

The order of the descent of the other roof structures (a screenwall and the west penthouse) 

below the roofline in Table 1 was reversed in the two dynamic analyses.  Thus, while the 

computed times straddled the observed time of the screenwall and west penthouse descent into 

the building, the mechanisms of building decay were quite different. Without debris impact 

damage, the exterior columns buckled near mid-height of the building, approximately between 

Floors 17 and 29.  With debris impact damage, the exterior columns buckled between Floors 7 to 

14, due to the influence of the debris impact damage.   

The uncertainty in the dynamic computations increased with the progression of the 

collapse sequence, due to the random nature of the debris interaction, break up, disintegration, 

and impact. Thus, the details of the progression of structural failures and global collapse were 

increasingly less certain.   
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Summary  

To address the gradual response of the structure to fire before collapse initiation and the 

rapid collapse process, a two-phased structural analysis approach was adopted for the analysis of 

WTC 7.  A 16-story pseudo-static finite element model simulated the response and failures of the 

structure to fire-induced temperature time histories.  A 47-story dynamic finite element model 

simulated the subsequent structural failures and dynamics of the collapse process.   

 There were two significant features in the pseudo-static analyses and the dynamic 

analyses: (1) detailed connection models that captured failure of connection components, 

including shear studs, bolts, plates, welds, and beam walk-off from bearing seats and (2) failure 

criteria used to remove failed components, thus allowing simulation of sequential failures.   

For the three temperature cases (Cases A, B, and C), the pseudo-static analyses had 

similar failure mechanisms and patterns, but were shifted in time. Case B failures occurred at the 

earliest time, and were used in the dynamic analyses.  

The pseudo-static analyses simulated a sequence of structural failures in the fire-affected 

floor systems that were input into the dynamic model as initial conditions.  The dynamic 

analyses, which also simulated falling debris impact loads, computed the collapse initiation and 

subsequent failures.  Multiple pseudo-static and dynamic analyses that addressed four significant 

areas of uncertainties led to the following sequence of events:  (1) collapse initiation resulted 

from fire-induced floor failures that led to loss of lateral support for Column 79 between Floor 5 

to Floor 14; (2) column and floor failures on the east side of WTC 7 led to the failure of all 

interior columns through loss of lateral support and the dynamics of falling debris; (3) global 

collapse occurred when failure of all the core columns led to the buckling of the exterior columns. 
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 Four significant areas of uncertainty were addressed by conducting multiple pseudo-static 

and dynamic analyses:  (1)  as the pseudo-static analyses progressed, the failures for three 

different thermal response cases were similar in location and extent, but shifted in time; (2)  the 

dynamic analysis with fire-induced damage at 3.5 h reached a state of equilibrium after some 

local failures, while the analysis with fire-induced damage at 4.0 h progressed to global collapse; 

(3) the debris impact damage due to the collapse of WTC 1 was not a principal contributor to the 

collapse; (4) the uncertainty in the dynamic analyses increased with the progression of the failure 

sequence.   
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Table 1. Comparison of major collapse events: observed times versus analysis times for 

collapse analyses with and without debris impact damage. 

Observation 

Time (s) 

Analysis Time (s) 

with Debris Impact 

Damage 

Analysis Time (s) 

without Debris 

Impact Damage 

Event 

≈ -6 s -6.6 s -6.6 s Start of cascading floor failures around Column 79 

Not available -1.3 -1.4 

Buckling of Column 79, quickly followed by 

buckling of Columns 80 and 81 

0 ≡ 0 ≡ 0 Start of descent of east penthouse 

2.0 2.4-2.7 2.3-2.6 Descent of east penthouse below roofline
a
  

N/A 3.5-6.1 3.2-13.5 

Buckling of columns across core, starting with 

Column 76 

6.9 6.3 9.8 

Initial downward motion of the north face roofline 

at the eastern section of building 

8.5 7.3-7.7 8.7-9.2 

Descent of the east end of the Screenwall below 

the roofline
a
 

9.3 6.9,7.3 10.6,10.9 Descent of the west penthouse below the roofline
b 
 

a. 1st value was observed from the northwest and below, 2
nd

 value was observed from the north at the roofline. 

b. 1st value was observed in a video from the northwest  below the roofline, 2
nd

 value was observed in a video from 

the north at roofline. 
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