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Abstract. A new technique for combinational logic optimization is de-
scribed. The technique is a two-step process. In the first step, the non-
linearity of a circuit – as measured by the number of non-linear gates it
contains – is reduced. The second step reduces the number of gates in
the linear components of the already reduced circuit. The technique can
be applied to arbitrary combinational logic problems, and often yields
improvements even after optimization by standard methods has been
performed. In this paper we show the results of our technique when ap-
plied to the S-box of the Advanced Encryption Standard (AES [6]). This
is an experimental proof of concept, as opposed to a full-fledged circuit
optimization effort. Nevertheless the result is, as far as we know, the cir-
cuit with the smallest gate count yet constructed for this function. We
have also used the technique to improve the performance (in software) of
several candidates to the Cryptographic Hash Algorithm Competition.
Finally, we have experimentally verified that the second step of our tech-
nique yields significant improvements over conventional methods when
applied to randomly chosen linear transformations.

Keywords: Circuit complexity; multiplicative complexity; linear com-
ponent minimization; AES; S-box.

1 Introduction

Constructing optimal combinational circuits is an intractable problem under
almost any meaningful metric (gate count, depth, energy consumption, etc.). In
practice, no known techniques can reliably find optimal circuits for functions
with as few as eight Boolean inputs and one Boolean output.

For example, the multiplicative complexity3 of the Boolean function E8

4
,

which is true if and only if exactly four of its eight input bits are true, is un-
known [2]. In practice, we build circuit implementations of functions using a
variety of heuristics. Many of these heuristics have exponential time complexity
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3 The multiplicative complexity of a function is the number of GF(2) multiplications
necessary and sufficient to compute it.



and thus can only be applied to small components of a circuit being built. This
works reasonably well for functions that naturally decompose into repeated use of
small components. Such functions include arithmetic functions (which we often
build using full adders), matrix multiplication (which decomposes into multipli-
cation of small submatrices), and more complex functions such as cryptographic
functions (which are commonly based on multiple iterations of an algorithm
containing linear steps and one non-linear step).

This work presents a new technique for logic synthesis and circuit optimiza-
tion. The technique can be applied to arbitrary functions, and yields improve-
ments even on programs/circuits that have already been optimized by standard
methods. We apply our technique to the S-box of AES4, which, in addition to be-
ing used in AES, has been used in several proposals for a new hash function stan-
dard5. The result is, as far as we know, the smallest circuit yet constructed for
this function. The circuit contains 32 AND gates and 83 XOR/XNOR gates for
a total of 115 gates. We have also applied these techniques to the logic embedded
in the non-linear components of several candidates to the SHA-3 competition.
The improvements in software performance were significant.

Our circuits are over the basis {⊕,∧, 1}. This basis is logically complete:
any Boolean circuit can be transformed into this form using only local replace-
ments. The circuit operations can be viewed either as performing Boolean logic
or arithmetic modulo 2 (when viewing it the latter way, we will write outputs
to be computed as polynomials with multiplication replacing ∧ and addition
replacing ⊕). The number of ∧ gates is called the multiplicative complexity of
the circuit. Connected components of the circuit containing ∧ gates are called
non-linear. Components free of ∧ gates are called linear. Circuits and programs
for computing Boolean functions can be defined using straight-line programs,
where each statement defines the operation of a gate or a line in a program.
Consider the examples in Fig. 1, defining two different circuits for computing
the majority function of three inputs, a, b, and c:

t1 = a∧b; t2 = a⊕b; t3 = t2∧c; t4 = t1⊕t3;

u1 = a⊕b; u2 = b⊕c; u3 = u1∧u2; u4 = u3⊕b;

Fig. 1. Two circuit definitions for MAJ(a, b, c).

2 Combinational Circuit Optimization

The techniques described here would generally be applied to subcircuits of a
larger circuit, such as an S-box in a cryptographic application, which have rela-

4 Our circuit for the AES S-box has already been used as the basis of a software
bitsliced implementation of AES in counter mode [8].

5 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html



tively few inputs and outputs connecting them to the remainder of the circuit.
The key observation that led us to our techniques is that circuits with low mul-
tiplicative complexity will naturally have large sections which are purely linear
(i.e. contain only ⊕ gates). Thus

it is plausible that a two-step process, which first reduces multiplicative

complexity and then optimizes linear components, leads to small circuits.

We have, of course, no way of proving this hypothesis. But the experiments
reported here support it.

First step: The first step of our technique consists of identifying non-linear
components of the subcircuit to be optimized and reducing the number of ∧
gates. This reduction is not easy to do. For example, it is not obvious how to
algorithmically transform one of the circuits defined in Fig. 1 into the other.
Finding circuits with minimum multiplicative complexity is, in all likelihood, a
highly intractable problem. However, recent work on multiplicative complexity
contains an arsenal of reduction techniques that in practice yield circuits with
small, and often optimal, multiplicative complexity [2]. That work focuses exclu-
sively on symmetric functions (those whose value depends only on the Hamming
weight of the input). In this paper we use ad-hoc heuristics to construct a circuit
with low multiplicative complexity for inversion in GF (24). (In general, GF (2n)
is the field with 2n elements.) The technique is partially described in Section 3.

Second step: The second step of our technique consists of finding maximal
linear components of the circuit and then minimizing the number of XOR gates
needed to compute the target functions computed in these linear components.
A new heuristic for this computationally intractable problem is described in
Section 4.

3 AES’s S-Box

The non-linear operation in AES’s S-box is to compute an inverse in the field
GF (28). A recursive method for building a circuit for inverses in GF (2mn), given
a circuit for inverses in GF (2m), is due to Itoh and Tsujii [7]. The circuits pro-
duced by this method are said to have a tower fields architecture. Since there
are multiple possible representations for Galois fields, several authors have con-
centrated on finding representations that yield efficient circuits under the tower
fields architecture. We use the same general technique for the reduction from
inversion in GF (28) to GF (24) inversion, but we use a completely different tech-
nique for computing the inversion in GF (24). We then place the optimized circuit
for GF (24) inversion in its appropriate place in AES’s S-box and apply a novel
optimization technique on the linear parts of the resulting circuit.

GF (24) inversion – A Non-Linear Component. The tower fields architec-
ture for inversion in GF (28) has (non-trivial) easily identifiable non-linear com-
ponents corresponding to inversion in subfields. The first step in our method is



to focus on one of these components and derive a circuit that uses few ∧ gates.
The component for inversion in GF (22) is too small for us to benefit significantly
from optimizing it. Instead we focus on inversion in GF (24). There are many
representations of GF (24). We construct

– GF (22) by adjoining a root W of x2 + x + 1 over GF (2);
– GF (24) by adjoining a root Z of x2 + x + W 2 over GF (22).

Following Canright [5], we represent GF (22) using the basis (W,W 2) and GF (24)
using the basis (Z2, Z8). Thus, an element δ ∈ GF (24) is written as δ1Z

2+δ2Z
8,

where δ1, δ2 ∈ GF (22). Similarly, an element γ in GF (22) is written as γ1W +
γ2W

2, where γ1, γ2 ∈ GF (2). Since Z satisfies x2 + x + W 2 = 0 and W satisfies
x2+x+1 = 0, one can calculate that Z4 = Z2+W , Z8 = Z2+1, Z10 = Z4+Z2,
Z16 = Z8 + W , W 3 = W 2 + W , W 4 = W , and W 5 = W 2. These equations can
be used to reduce expressions to check equalities.

Using this representation, an element of GF (24) can be written as ∆ =
(x1W +x2W

2)Z2 +(x3W +x4W
2)Z8, where x1, x2, x3, x4 ∈ GF (2). The inverse

of this element, ∆′ = (y1W+y2W
2)Z2+(y3W+y4W

2)Z8, can then be calculated
using the following polynomials over GF (2):

– y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4

– y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4

– y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2

– y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2

The fact that ∆′ is the inverse of ∆ can be verified by multiplying the two
elements together and reducing using the equations mentioned above (along with
x2 = x and x+x = 0). The symbolic result is (QW +QW 2)Z2+(QW +QW 2)Z8,
where Q = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 +
x1x4 + x2x3 + x2x4 + x3x4 + x1 + x2 + x3 + x4. The fact that the value of Q is 1
unless all four variables have the value 0, when it is 0, can be seen by observing
that it is the symmetric function Σ4

4
+ Σ4

3
+ Σ4

2
+ Σ4

1
. If exactly four variables

are set, then the first term gives the value 1 (and the others 0); if three are set,
then the second, third and fourth terms give the value 1; if exactly two are set,
then only the third gives the value 1; and if only one is set, then only the last
gives the value 1. Hence, the result is 1, except for the zero input.6

Thus the task at hand is to construct a circuit with four inputs and four
outputs that calculates the above system of equations using as few ∧ gates as
possible. Currently, our heuristic search programs can handle functions with one
output and up to eight inputs. This means that we can directly construct optimal
circuits for each of the four equations individually, but not for the system itself.
For the full system we took the following approach:

– pick an equation and construct an efficient circuit for it;

6 A circuit for finite field inversion must have some output for the non-invertible zero
element. In the following constructions we follow the AES convention that the output
on input zero is zero.



– store intermediate functions computed in the previous steps for possible use
in constructing a circuit for the next equation to be tackled;

– iterate until all equations have been computed.

The first step is non-trivial even for predicates on few inputs. The heuristic
we used is inspired by methods from automatic theorem proving. We omit its
description here due to space constraints7. We can report, however, that we
succeeded in determining the multiplicative complexity of all 216 predicates on
four bits. It turns out that 3 multiplications are enough to compute any predicate
on four variables.8 This is of interest to designers of cryptographic functions since
many constructions have been proposed which use 4x4 S-boxes. We have not yet
been able to do the same for all predicates on 5 bits.

We performed the three steps above for each of the twenty-four orderings of
{y1, y2, y3, y4}. The ordering (y4, y2, y1, y3) gave the best results. The resulting
circuit, expressed as a straight-line program over GF(2), is shown in Figure 2
(outputs are indicated by an (*) ).

t1 = x1 + x2 t2 = x1 × x3 t3 = x4 + t2
t4 = t1 × t3 y4 = x2 + t4 (∗) t5 = x3 + x4

t6 = x2 + t2 t7 = t6 × t5 y2 = x4 + t7 (∗)
t8 = x3 + y2 t9 = t3 + y2 t10 = x4 × t9
y1 = t10 + t8 (∗) t11 = t3 + t10 t12 = y4 × t11
y3 = t12 + t1 (∗)

Fig. 2. Inversion in GF (24).

This circuit contains 5 ∧ gates and 11 ⊕ gates. It is a significant improvement
over previous constructions, e.g. Paar’s construction [10] has a gate count of 10 ∧
gates and 15 ⊕ gates for the same function. It is harder to compare to Canright’s
construction [5]. In his original, he had 9 ∧ gates (and NAND gates) and 14 ⊕
gates (and XNOR gates), but he optimized, allowing NOR gates. After this, he
had 8 NAND gates, 2 NOR gates, and 9 XOR/XNOR gates.

The multiplicative complexity of a function is the number of GF(2) multipli-
cations necessary and sufficient to compute it. Under the given representation
for GF (24), the multiplicative complexity of inversion is 5. This can be argued
as follows: the upper bound is given by the construction. The four outputs that
have to be computed all have degree 3. One ∧ is needed to compute a polyno-
mial of degree 2. Then, an additional ∧ is necessary to produce each of the four
linearly independent polynomials, since each is of degree 3.

7 A description can be found in the patent application by NIST and the University of
Southern Denmark ([4]).

8 Lest the reader think this trivial, he/she may attempt to compute the function
f(x1, x2, x3, x4) = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 + x1x4 +
x2x3 + x3x4 using only three multiplications.



A View of the Structure of AES’s S-Box. In the previous section, using
the tower fields architecture, we identified and optimized (with respect to mul-
tiplicative complexity) a major non-linear component in an implementation of
the AES S-box. That completes the first step of our technique for circuit op-
timization, but in other circuits, one may be able to identify more non-linear
components with few enough inputs that they can also be optimized before con-
tinuing. For the AES S-box, after optimizing the non-linear portion of the circuit,
the resulting circuit contained large linear connected components. In fact, from
a cryptanalyst’s point of view, the topology of the resulting circuit is potentially
of interest: the S-box of AES consists of an initial linear expansion U from 8 to
22 bits, followed by a non-linear contraction F from 22 to 18 bits, and ending
with a linear contraction B from 18 to 8 bits. The U and B matrices are given
in [3]. AES’s S-box is S(x) = B · F (U · x) + [11000110]

T
, where · is matrix

multiplication and x is the 8-bit S-box input. Note that the initial linear expan-
sion and the linear contraction were defined to contain as much of the circuit as
possible while still being linear. Thus, the portion of the circuit defined by U ,
for example, overlaps with the GF (28) inversion. The next step was to minimize
the circuits for computing U and B.

4 Minimizing Linear Components

Gate optimization of circuits for linear functions has been extensively studied.
It has been shown that the problem of linear-circuit optimization is NP-hard [1].
That paper further shows that unless P=NP, this problem does not even have
efficient ǫ-approximation schemes. Thus, our goal in this research is restricted to
improving on known heuristics. As far as we know, the most successful heuristics
are variations on a greedy algorithm due to Paar [11]. We report significant
improvements over the latter methods.

A linear straight-line program over a field F is a variation on a straight-line
program which does not allow multiplication of variables. That is, every line
of the program is of the form u := λv + µw where λ, µ are in F and v, w are
variables. Constructing a linear circuit for a given function f is equivalent to
constructing a linear straight-line program over GF(2) which computes f . (Note
that, over GF(2) λ, and µ are always 1 and thus are never written explicitly.)

A linear straight-line program over GF(2) is said to be cancellation-free if,
for every line of the program u := v + w, none of the variables in the expression
for v are also present in the expression for w, i.e., there is no cancellation of
variables in the computation.

Previous work on circuit minimization for AES S-boxes (e.g. [10, 12, 5]) only
consider cancellation-free straight-line programs for producing a set of linear
forms over GF(2). Some authors appear to make the incorrect assumption that
there always exists a cancellation-free optimal linear program over GF(2). A
small counter-example showing this is not the case is the following:

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4.



It is not hard (although somewhat tedious) to see that the optimum cancellation-
free straight-line program has length 5. A solution of length 4 which allows
cancellations is

v1 = x1 + x2; v2 = v1 + x3; v3 = v2 + x4; v4 = v3 + x1.

In [1], we show that any algorithm for computing linear programs that is
restricted to cancellation-free programs is at most 3

2
-approximating. Thus, even

optimal cancellation-free circuits can be far from optimal in the unrestricted
model. The heuristic we present below is not restricted to producing cancellation-
free circuits. Furthermore, there appears to be little reason for restricting the
search to cancellation-free circuits, as we have shown that finding an optimal
cancellation-free circuit is NP-hard ([1]).

A New Heuristic. Let S be a set of linear functions. For any linear predicate f ,
we define the distance δ(S, f) as the minimum number of additions of elements
from S necessary to obtain f .

The problem is to find a short linear program that computes f(x) = Mx
where M is an m× n matrix over GF(2). The heuristic is as follows. We keep a
“base” S of “known” functions. Initially S is just the set of variables x1, . . . , xn.
We maintain the vector Dist[] of distances from S to the linear functions given by
the rows of M . That is, Dist[i] = δ(S, fi) where fi is the ith row of M multiplied
by the input vector x. Initially, Dist[i] is just one less than the Hamming weight
of row i. We then perform the following loop

– pick a new base element by adding two existing base elements;
– update Dist[];

until Dist[i] = 0 for all i.
The current criterion for picking the new base element is

– pick one that minimizes the sum of new distances;
– resolve ties by maximizing the Euclidean norm of the vector of new distances.

This tie resolution criterion, which we term “Norm”, may seem counter-
intuitive. The basic idea is that we prefer a distance vector like 0,0,3,1 to one
like 1,1,1,1. In the latter case, we would need 4 more gates to finish. In the
former, 3 might do it.

The bulk of the time of the heuristic is spent on picking the new base element.
Our experiments show that the following “pre-emptive” choice usually improves
running time without increasing the size of the output circuit:

– if any two bases S[i], S[j] are such that S[i]⊕S[j] is a row in M , then pick
this sum as the new base element.

The tie resolution criterion is a critical part of the heuristic. It does well
on most matrices we have tried, but we have found specific matrices for which
other decision rules do better. Intuitively, no one simple rule should work for all



matrices. The effectiveness of the heuristic most likely depends on the topology
of the digraph represented by the input matrix. We have not pursued this line
of inquiry. We have, however tested our heuristic with various tie resolution
methods against Paar’s algorithm [11]. On random matrices, our heuristic gives
significant improvements under Norm as well as under three other tie-breaking
rules (see Section 6),

The distance vector in our heuristics is computed by exhaustive search. The
reason the heuristic is practical for moderate-size matrices is that the distance
can only decrease. In fact, it can only decrease by 1. So when a new base is being
considered, if a distance is d, then only combinations of exactly d − 1 old base
elements and the new base element need to be considered.

A Small Example Using the Heuristic. Suppose we need a circuit that
computes the system of equations defined in Fig. 3, which is equivalent to finding
a circuit for multiplication by the 6 × 5 matrix, M , given in the figure.

y0 = x0 + x1 + x2

y1 = x1 + x3 + x4

y2 = x0 + x2 + x3 + x4

y3 = x1 + x2 + x3

y4 = x0 + x1 + x3

y5 = x1 + x2 + x3 + x4

M =

2

6

6

6

6

6

6

4

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

3

7

7

7

7

7

7

5

Fig. 3. Example sequence of equations and corresponding matrix.

The target signals to be computed are simply the rows of M . The initial base
is {x0, x1, x2, x3, x4}, which corresponds to

S = {
[

1 0 0 0 0
]

,
[

0 1 0 0 0
]

,
[

0 0 1 0 0
]

,

[

0 0 0 1 0
]

,
[

0 0 0 0 1
]

}

The initial distance vector is D =
[

2 2 3 2 2 3
]

.
The heuristic must find two base vectors whose sum, when added to the

base, minimizes the sum of the new distances. It turns out the right choice is to
calculate x1 + x3. So the new base S is expanded to contain the signal

[

0 1 0 1 0
]

=
[

0 1 0 0 0
]

+
[

0 0 0 1 0
]

The new distance vector is D =
[

2 1 3 1 1 2
]

.
The full run of the program is below. The tie breaking criteria is used in Step

2. If one had chosen x1 + x2 instead of x0 + t5, the new distance vector would
be [ 1 1 3 1 1 2 ], which has norm

√
17, while the one found has norm

√
19.

Note that there is cancellation in the last step.
Step 1 : t5 = x1 + x3. New D : [2 1 3 1 1 2].



Step 2 : t6 = x0 + t5 (found target signal y4 = [1 1 0 1 0]). New D : [2 1 3 1 0 2].

Step 3 : t7 = x2 + t5 (found target signal y3 = [0 1 1 1 0]). New D : [2 1 3 0 0 1].

Step 4 : t8 = x4 + t5 (found target signal y1 = [0 1 0 1 1]). New D : [2 0 3 0 0 1].

Step 5 : t9 = x2 + t8 (found target signal y5 = [0 1 1 1 1]). New D : [2 0 2 0 0 0].

Step 6 : t10 = x0 + x1. New D : [1 0 1 0 0 0 ].

Step 7 : t11 = x2 + t10 (found target signal y0 = [1 1 1 0 0]) .

New D : [0 0 1 0 0 0].

Step 8 : t12 = t8 + t11 (found target signal y2 = [1 0 1 1 1]).

New D : [0 0 0 0 0 0]. (DONE!)
Thus, after the xi, which may be nonlinear functions of other variables, are
computed, the yi are computed by following the algorithm produced and, in this
case, letting y0 = t11, y1 = t8, y2 = t12, y3 = t7, y4 − t6, t5 = t9.

Note that the optimization mentioned above with the pre-emptive choice for
a new base element was not applied in this example. That optimization gives a
less interesting ordering from what is shown here, though one still gets a circuit
with eight gates.

5 A Circuit for the S-Box of AES

Our techniques yield a circuit for the AES S-box composed of three parts: a
“top” linear transformation, U ; a middle non-linear part; and a “bottom” linear
transformation, B. See [3] for a definition of the circuit. For the matrix U , the
smallest circuits we found had 23 ⊕ gates. Among the many such circuits, the
shortest ones have depth 7. It is worthwhile to note that if 24 ⊕ gates are allowed,
circuits with depth 4 exist for the matrix U . The non-linear middle part of the
S-box circuit is a function from 22 to 18 bits. It contains 32 ∧ gates and 30 ⊕
gates. For the matrix, B, the randomized version of our heuristic yields many
circuits with 30 ⊕ gates. The heuristic is fast enough that we are able to pick a
circuit which is both small and short, having depth 6.

6 Experiments with Different Tie–Breaking Methods

In order to compare the effects of using different tie-breakers, we tested our
heuristics on matrices generated as follows

– We first chose a size (for example, 10×20 matrices, which represent 10 linear
forms on 20 distinct variables);

– We then picked a bias ρ between 0 and 1;

– For each entry of the matrix, we set the bit to 1 with probability ρ and to
0 with probability 1 − ρ. Thus ρ is the expected fraction of variables that
appears in each linear form.

– Matrices with rows which are all zeros were discarded, as were matrices
containing duplicate rows.



The testing was performed with a C++ program, compiled with g++ -O3, on
a quadcore x86 64, running Ubuntu 9.10, with Intel Xenon 5150 processors run-
ning at 2.66 GHz, with 8 GB memory. There were no other users on the machine.
The programs and matrices used can be found at www.imada.sdu.dk/ joan/xor/,
though minor changes are necessary to run the programs with different files as in-
put or to change the matrix size and bias for the matrix generator. We compared
the different heuristics on sets of one hundred random matrices with different
sizes and densities. The experiment showed that the heuristics were slower when
the bias was larger. This was expected, since the initial “distances” (number of
operations on the base vectors to obtain the target vectors) were then larger on
average when there were more ones in the matrices.

The tie-breakers we compared were the following:

– Norm: maximizing the Euclidean norm
– Norm-largest: maximizing the square of the Euclidean norm minus the

largest distance
– Norm-diff: maximizing the square of the Euclidean norm minus the differ-

ence of the largest two distances
– Random: In processing the possible new base vectors, if the current possible

new base vector has the same sum of distances as the previous best (current
choice), then flip an unbiased coin. If heads, then keep the current choice.
If tails, then apply the Norm criterion. This heuristic may end up choosing
a pair with non-maximum Euclidean norm. On the other hand, it allows
substitution of one optimum (by sum-of-distances and Euclidean norm) pair
by another found later in the search.

In all cases, except the “Random” one, when there were still ties after ap-
plying the “tie-breaker”, the first pair with both the minimum sum of distances
and the optimal value for the tie-breaker was chosen. This was the base pair
with lexicographically minimum indices (i, j). Randomized tie-breaking allows
running the heuristic several times and picking the best result. In our tests we
ran the heuristic with “Random” tie-breaking three times.

We also compared these heuristics to Paar’s heuristic [11] on the same ma-
trices. Paar’s heuristic repeatedly finds the most frequently occurring base pair
and adds that as the next base pair. It is significantly faster than our heuristic,
but it produces only cancellation-free circuits. Its performance, relative to the
heuristics proposed here, decreases as the bias increases, using more than 30%
extra gates when the bias is 3/4 (when the number of rows is at least 15) and
40% extra when the bias is 9/10.

Among the biases tried, the number of gates in the circuits found by our
heuristics is similar with biases 1/2 and 3/4. It is not a strictly increasing function
of the bias, since when nearly all of the variables are used in nearly all of the
forms, the outputs from many of the gates can be reused for many targets. Thus,
circuits with fewer gates were found when the bias was 9/10 than when it was
1/2 or 3/4. This was also true for Paar’s heuristic, but less dramatically so.

All the tie resolution criteria performed fairly similarly, producing circuits of
nearly the same size, with Random apparently doing slightly better (more often



producing smaller circuits), presumably because it tries three different circuits
and uses the best. Random also runs for about three times as long as the others.
The results of these tests are presented in tables in [3]. For each heuristic, and
all matrix sizes and biases, 100 randomly chosen matrices were tested.

For each tie-breaker rule and Paar’s heuristic, for each matrix size and bias,
the average number of gates in the circuits found and the number of matrices
where that heuristic did not obtain the minimum value of all of the heuristics
was computed, along with the running time in seconds. The Paar heuristic was
beaten by at least one of the other heuristics on all 700 matrices except for 17 of
the 100 with bias 1/4 (and there was only one matrix on which Paar’s heuristic
beat any of the other heuristics). In fact, for the tests with bias larger than 1/4,
Paar’s heuristic did worse than any of the other heuristic on every one of the
matrices; usually the values obtained for the newer heuristics were similar, with
Random possibly being marginally better, but with the value for Paar’s heuristic
being significantly larger.

Paar’s heuristic (and, for matrices between size 4 and 10, a variant which
does at most one gate better on average in the data presented) was tested [11]
on square matrices of sizes 4×4 through 16×16 and the average number of XOR
gates is presented, along with the relative improvement over the straightforward
implementation. These square matrices came from applying Mastrovito’s [9] ma-
trix description of multiplication in GF (2n) to constant multiplication. Paar tries
all possible constants in GF (2n) for n between 4 and 16, giving these square
matrices. Since our heuristics are so much slower and the matrices in the cryp-
tographic applications we are interested in do not necessarily have this form,
we have not tested on all of these restricted matrices of those sizes, but rather
on random matrices with different biases. For 15 × 15 matrices, Paar gets an
average of 52.9 gates. This is similar to our results for Paar’s algorithm with
15×15 matrices with biases 1/2 and 3/4, where the Paar heuristic gets averages
of 51.7 and 53.3 gates, respectively. For bias 1/2, our deterministic heuristics
get average gate counts between 44.21 and 44.28, while Random gets 43.81. For
bias 3/4, our deterministic heuristics all get average count 40.82, while Random
gets 40.38. Thus, our relative improvement over the Paar heuristic is between
17% and 32% for these types of matrices. Paar’s result of 52.9 gates for 15 × 15
matrices is a relative improvement of 45.5% over the straightforward approach.

We also computed the sums of the values which are the minimum of those
calculated by the different heuristics for each matrix. The tables in [3] show that
for each of the tie-breakers, there are cases where it gets a worse result than at
least one of the others.

7 Conclusions and Work in Progress

We tested new techniques for decreasing circuit size. The techniques were ap-
plied to the extensively studied AES S-box. We obtained the smallest circuit
yet constructed for this function. The circuit contains 32 AND gates and 83



XOR/XNOR gates for a total of 115 gates. As by-products of the experiment,
we obtained very small circuits for inversion in GF (24) and GF (28).

The experiments with linear circuit optimization indicate that our techniques
are likely to be superior to previous techniques which produced only cancellation-
free circuits. We expect this to be particularly useful for cryptographic applica-
tions, both hardware and software implementations, where many XOR opera-
tions are used, along with some AND operations to introduce nonlinearity.

It would be interesting to determine how close to optimal the circuits found
by these techniques usually are and how much better they are than the op-
timal cancellation-free circuits. Finding even better techniques which are not
restricted to finding cancellation-free circuits would also be very interesting, as
would applying these techniques to other applications.
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