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Abstract—Anticipated handovers that use Link Going
Down (LGD) and Link Down (LD) trigger events require
the network operator to set the LGD trigger high enough
that the handover completes before the LD trigger event.
However, setting the LGD trigger too high can result in
frequent handovers by mobile nodes, leading to high signal-
ing overhead. We propose a mechanism for balancing these
requirements using a risk function. The function expresses
the risk with respect to the probability that the LD event falls
within a range of times with respect to handover completion.
The risk function can be used with weights that allow the
network operator to set the relative importance of the early
handover completion requirement and the requirement that
the LGD trigger not be too sensitive. Because the risk is
expressed using the characteristic function of the handover
time, we can easily use it to set the LGD trigger for any
mobility management protocol.

Index Terms—anticipated handovers, IEEE 802.21, opti-
mization, performance modeling, mobility models

I. INTRODUCTION

Proactive handovers allow users to be connected to
voice, data, and video services while remaining mobile.
The work by the IEEE 802.21 Media Independent Han-
dover (MIH) group uses channel state reports from the
link layer to generate event triggers that enable MIH
application software in a migrating mobile to start setting
up a new connection at the access network the mobile is
entering while the old connection is still viable [1]. When
MIH triggers are used in conjunction with a mobility man-
agement protocol such as Fast Mobile Internet Protocol
(FMIP), it becomes possible to create a tunnel between
the routers at the mobile’s current access network and the
new access network, so that packets can be forwarded to
the mobile at its new location, even before the mobile’s
home agent creates a fresh binding update.

The MIH event triggers are activated by changes in
channel state variables such as the received signal strength
(RSS). When the RSS falls below a certain threshold,
a Link Going Down (LGD) trigger fires; this acts as a
warning that loss of signal will occur soon. A fall in RSS
below a lower threshold results in a Link Down (LD)
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trigger firing; it indicates that the RSS is not sufficient to
support communication between the mobile and its access
point (AP) [2].

Setting a threshold value for the RSS that causes the
LGD trigger to fire involves a tradeoff between two
competing design constraints. A high threshold will start
the handover process well before the mobile’s connection
breaks, thus minimizing the probability that the user’s
connections are disrupted. However, early handover re-
quires reserving resources (e.g. bandwidth for tunnels)
that may be in short supply; a network operator will not
want to allow users to hold these extra resources for too
long. Conversely, setting the LGD trigger threshold low
reduces the probability that the handover will take place
too soon but allows less time to complete the handover
and increases the chances that the link to the mobile
will go down before the handover completes, resulting
in dropped packets.

Previous work has examined an approach in which the
Link Going Down trigger is estimated using predictive
methods such as Least Mean Square (LMS) estimation
or, more simply, an estimator based on the slope of the
declining received signal strength [3]. Our approach is
complementary to this technique and could be used jointly
with it, by setting initial values for the triggers that could
be modified in response to changing channel conditions.

In this paper, we compute the probabilities of the
two undesirable events described above, and use them
to develop a weighted cost function that encapsulates the
risk associated with a particular value of the LGD trigger.
Rather than use the LGD trigger value directly, we use
the mean time from the LGD trigger to the Link Down
event. The mean time can be mapped to a LGD trigger
value by accounting for the mobile’s velocity as well as
channel conditions. By varying the weights in the cost
function, the network operator can tailor a LGD trigger
value based on factors such as QoS and network resource
availability. An additional feature of our approach is that,
by conservatively modeling the time from LGD to LD
with an exponential distribution, we can express the risk
using the characteristic function of the time to complete
the handover. In this paper, we use a shifted gamma
distribution to model the handover time, but customized
models can be used as well.

The remainder of this paper is organized as follows. In
Section II, we show that the time between the LGD and
LD trigger events has a gamma distribution, and that it can
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be modeled with an exponential distribution if the trigger
thresholds are close. In Section III, we use the inter-trigger
time model to derive a risk function and we show how to
solve it to get the optimal LGD threshold. In Section IV,
we plot the optimal handover operating point with respect
to various parameter values. We also use simulations to
evaluate our approach using a two dimensional random
walk for the mobility model. In Section V, we use packet
level simulations to show how one can use measured
network statistics to construct a risk function and use it to
find an optimal value for the LGD trigger. We summarize
our results in Section VI.

II. MODELING LGD-LD INTER-TRIGGER DURATION

We define X to be the time between the LGD and
LD triggers. Its distribution depends on the movement
of the mobile node. The amount of time that a mobile
spends inside the coverage area of an AP has been the
subject of considerable research. Early work focused on
the call duration time, which was initially assumed to be
exponentially distributed [4], which was soon confirmed
for a variety of practical scenarios [5]. The dwell time
of a mobile was shown via computer simulation using a
novel mobility model to have a gamma distribution by
Zonoozi and Dassanayake [6]. This work showed that the
gamma distribution was a good fit for mobile nodes whose
calls originated in the cell and those that traversed the cell
following a handover.

In this subsection, we use a simpler mobility model
and, via simulation, demonstrate that X can be well-
approximated by a gamma distribution, where the shape
parameter decreases as the mobile node’s starting point
moves further away from the AP. In particular, we show
that the exponential distribution is a good approximation
for the inter-trigger time when the distance between the
LGD and LD boundaries is small. We model the mobile
node’s movement using a two-dimensional random walk,
with the LGD and LD power levels corresponding to two
concentric circles centered at the origin, which is the loca-
tion of the AP. The LGD and LD boundaries’ respective
radii are RLGD and RLD. At time t = 0, the mobile is
located a distance RLGD from the origin, at a phase angle
that is uniformly distributed over the range [0, 2π]. The
mobile is given a speed v m/s that remains constant for the
duration of the run. The simulation updates the mobile’s
position every ∆t seconds; the mobile chooses a random
direction and moves v ·∆t m. When the mobile’s distance
from the origin first becomes greater than or equal to RLD,
the simulation ends the run and records the elapsed time
between the trigger events.

Upon completion of a set of runs, we use the chi
square goodness of fit test to determine the likelihood
that the samples of X have a gamma distribution. To
use the chi square test, we take the data and compute
occurrence counts in Nbins bins, and compare these counts
to the expected counts that we would obtain from a
gamma distribution. We use these weighted differences

to compute the chi square test statistic:

χ2 =

Nbins∑

i=1

(Ei −Oi)2

Ei
,

where Ei and Oi are respectively the expected and
observed counts for the ith bin. We obtain the values of
Ei by using the gamma cumulative distribution function.
Assuming none of the bins is empty (i.e. has no sample
values), the number of degrees of freedom for the test is
(Nbins−1)−3, since we have to estimate three parameters
for the model distribution: the shape parameter a, the
offset b, and the scale parameter λ.

We estimate the distribution parameters as follows. We
can get the estimate for b directly, which greatly simplifies
the computations for obtaining estimates for a and λ.
Given that the mobile’s velocity v is constant, it follows
that b is the minimum time for the mobile to go from
RLGD to RLD, which it does by moving on a radial line.
Thus

b̂ =
RLD −RLGD

v
. (1)

To get estimates for the shape and scale parameters a
and λ, we use Fisher’s maximum likelihood technique.
The natural logarithm of the likelihood function for a
vector x = [x1, x2, . . . , xn] of n samples from a gamma
distribution is

L(a, λ;x) = (a− 1)

n∑

i=1

ln(xi − b)−
1

λ

n∑

i=1

(xi − b)

− n · a ln(λ)− n ln(Γ(a)), (2)

where xi ≥ b for i = 1, 2, . . . , n. The values of â and
λ̂ that maximize the likelihood function are those that
satisfy the following equations, respectively:

∂

∂a
L(a, λ;x) =

n∑

i=1

ln(xi − b)− n ln(λ)− nψ(0)(a) = 0

(3)

∂

∂λ
L(a, λ;x) =

1

λ2

n∑

i=1

(xi − b)−
n · a
λ

= 0, (4)

where

ψ(k)(a) =
dk

dak
ln
(
Γ(a)

)
, k = 0, 1, . . .

is the polygamma function, with k = 0 in this case.
By solving Eq. (4) for λ and substituting the result into
Eq. (3), we get the following expression:

ln(a)− ψ(0)(a) + ln(G(x− b)/A(x− b)) = 0, (5)

where

G(x− b) =

(
n∏

i=1

(xi − b)
)1/n

(6)

and

A(x− b) =
1

n

n∑

i=1

(xi − b) (7)
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are, respectively, the geometric and arithmetic means of
the data set x shifted by b.

Defining f(a) , ln(a)−ψ(0)(a)+ ln(G(x− b)/A(x−
b)), we use Newton’s tangent method to find the max-
imum likelihood estimator for a by finding the zero of
f(a). Our starting point is the estimate of a that results
from using the method of moments [8]. The first two raw
moments of X , m1 = E{X} and m2 = E{X2}, are:

m1 = b+ aλ (8)

m2 = b2 + 2abλ+ a(a+ 1)λ2. (9)

Solving the system of equations in Eq. (8)–(9) gives us
two estimators, of which we need only ã:

ã =
(m1 − b)2

m2 −m2
1

and λ̃ =
m2 −m2

1

m1 − b
.

We compute ã by using the n samples in x to get sample
values of m1 and m2. Starting with an initial value for
the maximum likelihood estimate â0 = ã, we generate
successive estimates âi as follows:

âi+1 = âi −
f(âi)

f ′(âi)

= âi −
ln(âi)− ψ(0)(âi) + ln(G(x− b)/A(x− b))

â−1
i − ψ(1)(âi)

,

(10)

until the change in the estimator, δâ(i+1) = |âi+1 − âi|,
decreases below a given threshold, which we chose to
be 10−6 for our computations. Once we have â, we use
Eq. (4) to get the maximum likelihood estimator for λ,
λ̂ = A(x− b)/â.

In Figs. 2 and 3 we plot results from a series of
Monte Carlo simulations in which we modeled a circular
coverage area with a LD boundary located at a distance
RLD = 100 m from the AP. We let the value of the
distance from the AP to the LGD boundary, RLGD, vary
from 97 m to 99 m. For each value of RLGD, we
performed 500 trials; each trial consisted of 50 random
walks. Each random walk was performed by a single
mobile node traveling at a speed of v = 1 m/s, with
position updates occurring every 1 s. The mobile node
began each walk on the LGD boundary, with the phase
of its location uniformly distributed over [0, 2π], and its
original direction of movement θ0 equal to the phase of its
location, so that it was originally oriented along a radius
of the LD circular boundary. At the kth position update,
the mobile node updated its direction θk by adding a
random angle as follows: θk+1 = θk + φk, where φk
was uniformly distributed over the range [−3π/5, 3π/5].

We show the effect of restricting the value taken by
φk to this range in Fig. 1, which compares sample
paths of two-dimensional random walks where the update
angle φk is uniform over the whole unit circle versus
the case where it is uniform over a wedge defined by
the range [−3π/5, 3π/5]. For both cases, the mobile
node had a speed of 2 m/s and updated its position
every 1 s. When φk ∼ U [−π, π], the mobile’s path
tends to exhibit behavior closer to Brownian motion,
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Fig. 1. Sample random walks from a LGD boundary 50 m from an AP
to a LD boundary 100 m from the same AP when (a) φk ∼ U [−π, π],
and (b) φk ∼ U [−3π/5, 3π/5].
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Fig. 2. P values resulting from chi square goodness-of-fit test
examining fit of random walk data to gamma distributions, versus RLGD,
the radius of the LGD boundary.

including backtracking, as shown in Fig. 1(a). In contrast,
restricting the range of motion of the mobile by letting
φk ∼ U [−3π/5, 3π/5] results in a much more direct path
from the LGD boundary to the LD boundary as shown in
Fig. 1(b). This reduces the mean time between LGD and
LD trigger events.

Fig. 2 shows the results of the chi square goodness of
fit test versus RLGD. Each plotted point shows the P -score
which was averaged over 500 runs, and where during each
run we tested the fit of 50 inter-trigger times. The error
bars show one standard deviation from the mean. The
figure shows on average we were able to accept the null
hypothesis with a significance of 0.1, and we had a score
of approximately 0.2 for RLGD = 97 m, well in excess
of the 0.05 significance value that is usually used as the
cutoff for rejecting the null hypothesis that the data fits
the distribution of interest.

In addition, Fig. 3 shows expected values of â and
λ̂ versus RLGD, with error bars showing one standard
deviation; â and λ̂ are plotted against the left and right
vertical axes, respectively. While λ̂ was insensitive to
RLGD, especially for 97 m ≤ RLGD ≤ 98 m, the graph
shows that â exhibits a nearly linear decrease with respect
to RLGD. At RLGD = 99 m, â ≈ 1, indicating that the
time from the LGD trigger to the LD trigger has a shifted
exponential distribution when the trigger boundaries are
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Fig. 3. Maximum likelihood estimators for a and λ resulting from chi
square goodness-of-fit test examining fit of random walk data to gamma
distributions, versus RLGD, the radius of the LGD boundary.

close together.
Using these results, we can obtain the distance between

RLD and RLGD as a function of the expected value of X .
With this information, we can obtain the value of R∗LGD
from µ∗X . For the parameters that we used in generating
Figs. 2 and 3, we plot µX versus RLGD in Fig. 4. To
generate each point in these plots, we used 500 Monte
Carlo simulations, each of which consisted of 50 random
walks, where φk ∼ U [−3π/5, 3π/5]. For each set of
random walks, we computed the maximum likelihood
estimators of the X’s distribution parameters â and λ̂,
along with b̂ from Eq. (1), and obtained µ̂X = b̂+ âλ̂ for
that set of data.

The resulting µ̂X values are plotted in Fig. 4; each plot-
ted point is located at the average value of µ̂X , with error
bars that indicate deviations of one standard deviation
from the mean. Note that the relationship between µ̂X and
RLGD is nearly linear, even when RLGD is close to RLD,
as shown in the inset in Fig. 4. This linear dependence
means that, if the mobile’s motion can be modeled, it
is easy to obtain R∗LGD from µ∗X . In this case, a linear
curve fit to two significant digits yielded the following
relationship:

RLGD = 100− µX
2
. (11)

This result is appealing because it gives us µX = 0 s
when RLGD = 100 m, which is what we expect.

We also examined the case where φk ∼ U [−π, π];
the resulting plot of µ̂X versus RLGD appears in Fig. 5.
Here we examined only values of RLGD between 96 m
and 100 m, and we performed 1000 Monte Carlo trials
per data point, with each trial consisting of 50 random
walks. While the mean and standard deviation of the
results are both much greater than in the case where
φk ∼ U [−3π/5, 3π/5], we nevertheless see the same
linear relationship between µX and RLGD, which indicates
that the linear relationship holds even if we restrict the
range of values that the mobile’s update angle can take.
In fact, performing a linear curve fit to two significant
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Fig. 4. Plot of µ̂X versus RLGD for a mobile node moving according
to a 2-D random walk, with each change of direction distributed as
U [−3π/5, 3π/5].
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Fig. 5. Plot of µ̂X versus RLGD for a mobile node moving according
to a 2-D random walk, with each change of direction distributed as
U [−π, π].

digits, using the data in Fig. 5, gives

RLGD = 100− µX
200

,

showing the effect that reducing the range of φk, by 4π/5
in this case, has on the slope of the line.

Once we have RLGD, we can easily map it to a RSS
threshold for the Link Going Down trigger. For example,
if there are no obstructions or sources of reflections, we
can use the free space path loss model [9]:

Lpath = −20 log10(RLGD)−20 log10(f)−20 log10(4π/cair),

where f is the center frequency of the radio signal
and cair = c/nair is the speed of light in air, where
nair ≈ 1.00029 is air’s index of refraction at standard
temperature and pressure. If we consider an example case
where we have a IEEE 802.11b WiFi AP whose transmit
power is 20 dBm and whose antenna has a gain of 4 dBi
and a receiver whose receive gain is 2 dBi, and we are
using Channel 9, whose center frequency is 2.452 GHz,

32 JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 1, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



X0 H
t

Handover Begins Link Down

H + γ︸ ︷︷ ︸
acceptable range for X

Link Going Down; Complete
Handover

Fig. 6. Timeline of Link Going Down event and Link Down event,
with handover beginning at time t = 0 and completion occurring at
time t = H .

a RLGD value of 95 m corresponds to a LGD threshold
of −53.8 dBm.

III. HANDOVER RISK FUNCTION

There are two metrics that we will use to assess the
performance of the handover scheme. These are PD, the
probability that the existing wireless link breaks before
the handover completes; and PT , the probability that the
handover causes network resources to be reserved for
longer than some maximum allowable time. By using the
weighted sum of these probabilities, we will construct a
risk function that we can use to find the optimal expected
time from the generation of a Link Going Down (LGD)
trigger to the generation of the Link Down (LD) trigger.
We can use this optimal value to assign a threshold value
for the RSS at which the LGD trigger will fire.

A. Performance metrics PD and PT
In Fig. 6, we show the sequence of major events

associated with an anticipated handover based on link
layer triggers. We define the time when the LGD trigger
occurs to be t = 0. Let H be the amount of time to
perform the handover setup procedure, and let X be the
amount of time from LGD to LD, as shown in Fig. 6
for the case where the handover completes before the LD
event. Both H and X are random variables with respective
distributions FH and FX . The probability that the link
goes down before the handover setup completes is

PD = Pr{X ≤ H} =

∫ ∞

0

Pr{X ≤ u}fH(u) du

=

∫ ∞

0

FX(u)fH(u) du. (12)

This assumes that the density fH exists; if not, we can
write PD using the Lebesgue-Stieltjes integral PD =∫∞

0
FX(u) dFH(u). Alternatively, we can write PD in

terms of the density of X and the cumulative distribution
of H as follows:

PD =

∫ ∞

0

[1− FH(u)]fX(u) du, (13)

using integration by parts in Eq. (12) or the fact that PD =
1− Pr{H < X}.

If the LGD trigger is set high, the handover will
complete well before the LD trigger fires. Thus, an
excessively sensitive LGD threshold can cause handovers
while a mobile is still well inside the coverage area of its

previous AP. It can also increase the number of arrivals
into destination access networks or cause ping-ponging
between access networks if there are areas of deep fading
within the coverage area. To reduce the risk of premature
handovers, we define PT to be the probability that the
time when the LD trigger occurs, t = X , is less than
the handover completion time H plus some maximum
tolerable amount of time γ. We have

PT = Pr{X ≤ H + γ} =

∫ ∞

0

FX(u+ γ)fH(u) du.

(14)
We can get an alternative expression for PT , using the
assumption that H and X are independent, by integrating
over the appropriate region under the joint density of H
and X:

PT =

∫ γ

0

∫ ∞

0

fX(x)fH(h) dhdx

+

∫ ∞

γ

∫ ∞

x−γ
fX(x)fH(h) dhdx

= 1−
∫ ∞

γ

FH(x− γ)fX(x) dx. (15)

If we assume that X is exponentially distributed, using
our results from Sec. II, we can develop a the follow-
ing pair of equations for PD and PT . Both equations
are functions of the characteristic function ΦH(ω) =∫∞

0
fH(x)e−jωxdx. We first use Eq. (14) to compute PT :

PT =

∫ ∞

0

(
1− e−(u+γ)/µX

)
fH(u) du

= 1− e−γ/µX
∫ ∞

0

fH(u)e−ju/(jµX) du

= 1− e−γ/µXΦH(−j/µX). (16)

Setting γ = 0, we get the expression for PD:

PD = 1− ΦH(−j/µX). (17)

For a given value of the tolerance, γ, we can characterize
the performance of a handover scheme using a particular
LGD trigger threshold by plotting PT versus PD. Plots
of this type are a well-known tool for evaluating the
performance of a system that must balance two compet-
ing goals; a well-known example is the radar receiver
operating characteristic that shows a radar receiver’s
performance with respect to the probability of a false
alarm (which the operator wishes to minimize) and the
probability of a successful detection (which the operator
wishes to maximize) [7]. In similar fashion, our handover
operating characteristic shows a performance curve in
which we plot PT versus PD; we wish to maximize and
to minimize these quantities, respectively.

In Fig. 7, we show a set of operating characteristics
for four different expected handover durations. All four
sets of operating characteristics assume that the handover
duration has a gamma distribution with shape parameter
aH = 3, and offset bH = 0.2 s. In each plot we considered
four values of the tolerance parameter γ. The plots show
that the handover performance improves as the average
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Fig. 7. Handover performance curves plotting PT versus PD for
various values of γ, given that: aH = 3, bH = 0.2 s, and (a):
µH = 0.2 s; (b): µH = 0.5 s; (c): µH = 1.0 s; (d): µH = 5.0 s.

handover time decreases, and that the performance be-
comes closer to ideal as we relax the tolerance. Indeed,
a tight tolerance coupled with a large mean handover
duration produce an operating characteristic that is close
to being the worst possible one, as shown in Fig. 7(d).
As the mean handover duration becomes large, we also
see that the sensitivity of the operating characteristic to
the tolerance variable γ decreases. This indicates that we
may be forced to accept a large acceptable range of times
in which the Link Down trigger can occur if the mean
handover time is particularly large.

B. The Risk Function

In order to optimize the handover performance we in-
troduce a risk function R(µX) that includes the weighted
risks of the two events that we considered above: loss
of signal prior to handover completion; and initiating the
handover too soon. The risk is a function of the mean
handover time, µX , because µX depends on the threshold
that the network operator chooses for the LGD event. The
risk is

R(µX) = CDPr{X ≤ H}+ CTPr{X > H + γ}
= CDPD + CT (1− PT ), (18)

where CD and CT are the costs associated with the events
{X ≤ H} and {X > H+γ}, respectively. Using Eq. (16)
and Eq. (17), we get the risk in terms of the characteristic
function of the handover duration, ΦH(ω):

R(µX) = CD −
(
CD − CT e−γ/µX

)
ΦH(−j/µX). (19)

Note that as the mean time from the LGD event to the
LD event becomes large, the cost associated with handing
over too soon dominates the risk: limµX→∞R(µX) =
CT . Likewise, if the mean time between the LGD and LD

events is very small, the cost associated with a premature
loss of signal dominates, i.e. limµX→0R(µX) = CD.

We can minimize R(µX) by taking the derivative with
respect to µX , which gives us

dR(µX)

dµX
=

1

µ2
X

(
CT γe

−γ/µXΦH
(
−j/µX

)

− j
(
CD − CT e−γ/µX

)
Φ′H
(
−j/µX

))
.

(20)

The risk function has a minimum when dR(µX)/dµX =
0, meaning that the value of µX that minimizes the risk
satisfies the equation

Φ′H
(
−j/µX

)

ΦH
(
−j/µX

) =
jγ

1− CD
CT
eγ/µX

. (21)

In some cases, it may be easier to work with the logarithm
of the characteristic function rather than the characteristic
function itself. Since

d

dµX
ln
(
ΦH(−j/µX)

)
=

jΦ′H(−j/µX)

µ2
XΦH(−j/µX)

,

the minimization condition becomes
d

dµX
ln
(
ΦH(−j/µX)

)
=

γ(
CD
CT
eγ/µX − 1

)
µ2
X

. (22)

We can develop a specific minimization condition by
letting H have a shifted gamma distribution, which has
the following form:

FH(x) =

{
0, x < bH

1− Γ(aH ,(x−bH)/λH)
Γ(aH) , x ≥ bH , (23)

where Γ(w, x) is the (upper) incomplete gamma function
having the form Γ(w, x) =

∫∞
x
uw−1e−udu. The corre-

sponding probability density function is

fH(x) =

{
0, x < bH

(x−bH)aH−1e−(x−bH )/λH

λ
aH
H Γ(aH)

, x ≥ bH . (24)

The expected value of H is µH = bH + aHλH , and the
variance is σ2

H = aHλ
2
H . The characteristic function is

ΦH(ω) =
e−jωbH

(1 + jωλH)aH
=

aaHH e−jωbH

(aH + jω(µH − bH))aH
.

(25)
If we want to compute PD and PT for the case where
H has a shifted gamma distribution and X has an ex-
ponential distribution, we can use direct computation via
Eq. (12) or Eq. (13) and Eq. (14) or Eq. (15), respectively.
An alternative and, in this case, easier, approach is to use
the characteristic function in Eq. (25) in the expressions
Eq. (17) and Eq. (16), which gives us

PD = 1−
(

aHµX
aHµX + µH − bH

)aH
e−bH/µX (26)

and

PT = 1−
(

aHµX
aHµX + µH − bH

)aH
e−(bH+γ)/µX . (27)
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We can use the characteristic function from Eq. (25)
to compute the risk function R(µX) and then take the
derivative with respect to µX . A more direct approach is
to apply the characteristic function to Eq. (22); the result-
ing minimization equation is (after some simplification)

aHµHµX + bH(µH − bH)

aHµX + µH − bH
=

CT γ

CDeγ/µX − CT
. (28)

C. Existence of a Solution

To determine when a solution µ∗X of Eq. (28) exists, it
is helpful to examine the expressions on each side of the
equality. The left-hand side, which we denote as l(µX),
is a monotonically increasing function of µX , since its
derivative,

dl(µX)

dµX
=

aH(µH − bH)2

(aHµX + µH − bH)2
,

is greater than zero for all values of µX . The derivative
rapidly decays to 0 as µX increases due to the square in
the denominator. Also, l(0) = bH and limµX→∞ l(µX) =
µH . Because µH ≥ bH , the denominator of l(µX) never
vanishes, so l(µX) is continuous for µX ∈ {0 ∪ <+}.
Examining the right-hand side of Eq. (28), which we
denote as r(µX), r(0) = 0 and limµX→∞ r(µX) =
CT γ/(CD − CT ).

If bH = 0, then l(0) = r(0) = 0; but this is not a useful
result, since setting µX = 0 is equivalent to setting the
threshold for the LGD trigger to be so low that it is equal
to that of the LD trigger.

If CD ≤ CT , r(µX) has a vertical asymptote at µmax
X =

γ/ ln(CT /CD), and r(µX) < 0 when µX > µmax
X ,

and we can always find a value of µX that minimizes
the cost function. This is because r(0) ≤ l(0) and
limµX→µmax

X
l(µX) < limµX→µmax

X
r(µX) = ∞. Both

l(µX) and r(µX) are continuous, so they intersect at some
value 0 < µ∗X ≤ mumax

X .
If CD > CT , r(µX) is a continuous function of µX

that is monotonically increasing because its derivative,

dr(µX)

dµX
=

CDCT γ
2eγ/µX

(
CDeγ/µX − CT

)2
µ2
X

, (29)

is positive and finite for all values of µX . No solution to
Eq. (28) exists if CT γ

CD−CT < b, since maxµX r(µX) <
minµX l(µX). Conversely, a solution always exists if
CT γ

CD−CT ≥ µH , since r(0) ≤ l(0) and limµX→∞ l(µX) <
limµX→∞ r(µX), so l(µX) and r(µX) will intersect
because both are continuous in µX . For the case where
b ≤ CT γ

CD−CT < µH , a solution exists if r(µX) increases
rapidly enough that it intersects l(µX). In such a situation,
because limµX→∞ l(µX) > limµX→∞ r(µX), l(µX) and
r(µX) must intersect at two values of µX . Between these
values, r(µX) > l(µX). Defining α = CD/CT , r(µX)
increases most rapidly when α = 1. To show this, we
write the derivative of r(µX) shown in Eq. (29) as a
function of both µX and α:

δr(µX , α) =
αγ2eγ/µX

(
αeγ/µX − 1

)2
µ2
X

. (30)
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Fig. 8. Plot of the maximum value of bH , given aH , for which a
solution µ∗X exists for Eq. (28), given values for limµX→∞ r(µX)
and µH = limµX→∞ l(µX).

The partial derivative of Eq. (30) with respect to α is

∂δr(µX , α)

∂α
=
−γ2eγ/µX

(
αeγ/µX + 1

)
(
αeγ/µX − 1

)3
µ2
X

,

which is negative for α ≥ 1 and µX ≥ 0, meaning
that r(µX) increases most rapidly over the entire set of
positive real numbers when CD = CT .

We consider conditions for l(µX) and r(µX) to in-
tersect when α = 1. If no intersection occurs for this
value of α, it will not happen when α > 1, since r′(µX)
is maximized for each value of µX when α = 1 and
decreases with respect to α. We consider two cases:
limµX→∞ r(µX) = 0.50µH and limµX→∞ r(µX) =
0.99µH , where the value is obtained by setting γ =
kµH(α − 1), where k is the desired limit value. A
larger value of limµX→∞ r(µX) with respect to µH =
limµX→∞ l(µX) will cause r(µX) to increase to a greater
terminal value and thus increase the range of other
parameter values that will result in value of µ∗X that
satisfies the optimization condition. For each value of
limµX→∞ r(µX), we let consider two values of µH :
µH = bH + 0.5 and µH = bH + 5.0. A larger value
of µH increases the range of values taken by l(µX).

For each set of values that we assigned to the pa-
rameters, we determined the largest value of H’s shift
parameter bH for which l(µX) and r(µX) intersected.
The resulting curves are shown in Fig. 8. The curves
show that decreasing limµX→∞ r(µX) reduces the range
of bH values for which an intersection occurs, given aH .
They also show that a similar reduction in the range of bH
values occurs when we reduce µH . Most significantly, we
observe that no intersection occurs when aH ≥ 1, which
corresponds to H having an exponential distribution.
Because of the range of values for the other parameters
that we considered, we can say that if CD > CT and
aH ≥ 1, then a solution to Eq. (28) exists only if
CT γ

CD−CT > µH .
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D. A Simpler Risk Function

In this subsection, we consider an alternative risk func-
tion that is simpler in form because the costs associated
with the two events D and T are equal. Recall that we are
trying to ensure that the LD event does not occur before
the handover completes while simultaneously trying to
prevent the handover from occurring more than γ s before
the LD event. Thus we are seeking to maximize the
probability of the event {H < X ≤ H + γ}, which is

Pr{H < X ≤ H + γ} = PT − PD
= ΦH(−j/µX)

[
1− e−γ/µX

]
,

(31)

again assuming that X is exponentially distributed with
mean µX . The risk function we want to minimize is
1 − Pr{H < X ≤ H + γ}. If H has the distribution
in Eq. (23), the risk function is

R(µX) = 1− e
−bH/µX

(
1− e−γ/µX

)
(aHµX)

aH

(aHµX + µH − bH)
aH . (32)

To find the minimum of this function of µX , we take
the derivative and set it to zero. The derivative is zero at
µX = 0, where the function has a maximum, and where
µX satisfies the equation

aH (γ + µH)µX + (bH + γ) (µH − bH)

= eγ/µX (aHµHµX + bH(µH − bH)) . (33)

IV. NUMERICAL RESULTS

In this section, we demonstrate the performance of our
approach. We start by generating operating characteristics
using the weighted risk function in Eq. (18). We use
the minimization criterion in Eq. (28) to determine the
optimal mean time separating the LGD and LD events,
µ∗X , which we plot versus the mean handover time µH .
For each value of µH , we examined the risk function
over a set of µX values that were logarithmically spaced
over the range of values from 10−4 s to 106 s; the value
of µX that resulted in a minimum was returned as the
value for µ∗X . We use µH and µ∗X to compute operating
point values (P ∗D, P

∗
T ), that we plot in a set of operating

characteristics. We also develop operating characteristics
using the simpler risk function from Eq. 32. Finally, we
show how our approach works with a mobile node that
moves according to a random walk, which we discussed
in Sec. II.

A. Case 1: CT ≥ CD
We first consider the case where CT ≥ CD; in

Section III-C, we showed that a solution µ∗X exists that
satisfies Eq. (28), for all values of the tolerance γ and for
all values of handover time parameters aH , bH , and λH
(or µH , equivalently). In Fig. 9, we plot µ∗X versus µH .
The figure shows that the sensitivity of µ∗X to CT /CD
increases with µH , and that µ∗X tends to a finite limit
as µH → ∞. The value of the µ∗X asymptote decreases
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Fig. 9. Plot of the value of µX that minimizes the risk R(µX) for
several values of CT /CD , where CT > CD .
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Fig. 10. Plot of PT versus PD for several cases where CT ≥ CD .
On each curve, sample values of µH are shown and are as follows: ©:
µH = 0.1 s, �: µH = 0.4 s; ♦: µH = 6.0 s.

as CT increases with respect to CD, because a larger
CT weight implies that handing over too soon is less
desirable than risking a LGD event before the handover
completes. Thus, even if the average handover completion
time µH is very large, we would resist increasing the
threshold for the LGD trigger and thereby increasing
µX , in order to prevent migrating mobiles from tying up
network resources to duplicate and tunnel packets.

To characterize the handover performance for a given
value of µ∗X , we can compute P ∗D and P ∗T . Using the
values of µH and µ∗X from Fig. 9, we show the corre-
sponding operating characteristic plots in Fig. 10, using
the same parameter values. For each value of the ratio
CT /CD, we place markers showing the values of P ∗D and
P ∗T for the following values of the mean handover time:
µH = 0.1 s (©), µH = 0.4 s (�), and µH = 6.0 s (♦).
Because reducing PT is more important than reducing
PD, based on our choices of values for CT and CD, we
get curves that are concentrated at the top of the operating
characteristic plot. The figure shows that, for the set of
parameters that we used, letting CT increase beyond 2CD
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Fig. 11. Plot of the value of µX that minimizes the risk R(µX) for
several values of CD/CT , where CD > CT .
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Fig. 12. Plot of PT versus PD for several cases where CD > CT .
On each curve, sample values of µH are shown and are as follows: ©:
µH = 0.1 s, �: µH = 0.4 s; ♦: µH = 6.0 s.

produces little change in the operating point (µH , µ
∗
X);

we are already near a saturation state. Again we see more
variation in the handover performance as µH becomes
larger, indicated by the relative spacing of the © markers
versus that of the ♦’s.

B. Case 2: CD > CT

Next, we consider the case where CD > CT . We use
the same parameters that we used in Section IV-B. We
plot µ∗X versus µH in Fig. 11 for three values of the
ratio CD/CT . We note that the curve associated with
CD/CT ≈ 1 in the figure is nearly identical to the curve
associated with CT /CD ≈ 1 that was plotted in Fig. 9, in-
dicating that there is no discontinuity or abrupt change in
behavior associated with a change from α < 1 to α > 1.
Note that all the curves in Fig. 11 have vertical asymptotes
whose values are given by µH = CT γ/(CD−CT ), which
was predicted by our analysis in Section III-B. Also, we
again see the relative insensitivity to the relative sizes of
CT and CD when µH is small.
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Fig. 13. Plot of µ∗X versus µH using the optimization criterion in
Eq. (32), for bH = 0 s and various values of aH and γ.

In Fig. 12, we show another operating characteristic
plot of P ∗T versus P ∗D. As in Fig. 10, we place markers
on each curve corresponding to the values of P ∗T and P ∗D
associated with µH = 0.1 s, µH = 0.4 s, and µH = 6.0 s.
This graph is not, as we might have expected, simply a
rotated version of Fig. 10; instead, the curves in Fig. 12
are more outward-bowed than those in Fig. 10. This is
because the risk function is not symmetric with respect
to PD and PT , as we can see from the form of Eq. (19).

C. Results for the Simpler Optimization Criterion

In this subsection we plot results based on the analysis
from Section III-D and compare them to the results from
Section IV-A. In all the plots in this subsection, we set
bH = 0 s, and we consider two values for aH : 1 and 3. We
used the following two values for the tolerance, γ: 100 ms
and 500 ms. Using these parameters, we plot the value
of µX that maximizes Pr{H < X ≤ H + γ} in Eq. (32)
in Fig. 13. The figure shows that µ∗X is insensitive to the
value of aH when µH is small. Increasing γ increases
µ∗X for a given value of µH ; interestingly, the sensitivity
of µ∗X depends strongly on the value of aH . For aH = 3,
the sensitivity of µ∗X disappears for µH > 0, while µ∗X
remains sensitive to γ when aH = 1.

Using the same set of parameter values, we plot
Pr{H < X ≤ H + γ} versus µH in Fig. 14. The
probability is close to unity when µH is small and
decreases as µH increases. The rate of decrease depends
on aH and γ; a larger value of γ, which corresponds to
a looser tolerance for the range of times in which X can
fall, results in a higher value of Pr{H < X ≤ H + γ}.
Also, increasing aH results in worse performance in the
form of a faster rolloff in Pr{H < X ≤ H + γ}. In
fact, the rolloff rate increases as µH increases; this effect
is more noticeable at larger values of aH . We can see
this effect in the figure where the curve associated with
γ = 0.5 s and aH = 3 dips below the curve associated
with γ = 0.1 s and aH = 1 at µH ≈ 104 s.

We also show an operating characteristic plot in Fig. 15,
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Fig. 14. Plot of Pr{H < X ≤ H + γ} versus µH using the
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Fig. 15. Plot of PT versus PD for several cases using the optimization
criterion in Eq. (32), for bH = 0 s and various values of aH and γ.

using the same set of parameters as before. Two curves
are visible rather than four because, for a given value of
aH , the curves for different γ values overlap. However,
the operating points (PD, PT ) are not insensitive to γ.
For a given pair of values for aH and µH , the (PD, PT )
value for a larger γ value lies to the right of the (PD, PT )
value for a smaller γ value. We also note the similarity of
this figure to Fig. 10, including the fact that the optimal
operating points lie within the same region of the graph,
where PT > 0.7 while PD ranges between 0 and 1.

D. Robustness of the Risk Metric

This subsection examines the robustness of our opti-
mization scheme. We examine the performance of the
RLGD boundary assignment using our approach versus
that of the optimal scheme. We obtained our results by
modeling the handover time, H , with a shifted gamma
distribution, where aH = 2 and bH = 50 ms, and we
varied λH so that the range of µH was from 100 ms
to 500 ms. For each value of µH that we considered,

we computed µ∗X using Eq. (33), and computed the
corresponding minimum risk R(µ∗X) by inserting µ∗X into
Eq. (32). We considered two values for the tolerance
parameter, γ: 100 ms and 2 s. In the simulations, we
used the mobility model parameters from Sec. II (these
were used to generate Figs. 2–4), which allowed us to use
Eq. (11) to compute values of R∗LGD from µ∗X .

For the simulation runs themselves, we determined
the value of RLGD that minimizes the risk function
1 − Pr{H < X ≤ H + γ}. We used a range of values
from 99.2 m to 99.95 m, in increments of 0.01 m. For
each value of RLGD, we performed 500 trials for each
of the µH values that we used; each trial consisted of
50 random walks where we recorded the value of X , the
time from the start of the walk at the LGD boundary to
the time when the mobile reached the LD boundary. At
the end of each random walk, we computed a gamma
random variate, H , using the current value of µH , and
we recorded where X fell with respect to the interval
[H,H + γ] for each walk. At the end of each trial, we
estimated Pr{H < X ≤ H+γ} using the tallies from the
50 random walks; we used these estimates to get means
and standard deviations for the risk function for that pair
of RLGD and µH values.

In Fig. 16, we show our results for the case where
γ = 0.1 s. Fig. 16(a) shows the surface that results from
plotting the risk function (i.e. the probability that X falls
outside the range [H,H + γ]) versus RLGD and µH . The
shape of the surface reveals easily visible minima with
respect to RLGD for small values of µH ; the variation in
the risk with respect to RLGD becomes smaller as µH
increases. Fig. 16(b) shows a contour plot of the surface
in Fig. 16(a) using ten contour lines. Superimposed on
the contour plot, we use diamonds to plot the values of
RLGD that minimize the risk in the simulations, and we
use circles to show the set of points {RLGD(µ∗X)} that we
obtained from Eq. (33) and Eq. (11).

Comparing the two sets of operating points shown in
Fig. 16(b), we observe that our optimization scheme sets
the RLGD boundary an average of 5 cm closer to the RLD
boundary than it would be based on minimizing the risk
using the surface shown in Fig. 16(a). For smaller values
of µH (100 ms to 150 ms), this offset is approximately
4 cm. This means that we can expect a higher risk if we
use the approach that assumes that X is exponentially
distributed. This is also shown in Fig. 17, which shows
the risk that results from using and the mean a minimum
risk, versus µH . The figure also shows the value of the
risk function in Eq. (32). The figure demonstrates that the
difference between the risk associated with computing the
LGD boundary and the average minimum risk decreases
as µH increases, such that the risk associated with the
computed boundary using µ∗X is consistently within one
standard deviation of the optimum risk for µH > 300 ms.
In addition, the risk associated with computing the bound-
ary is with in one standard deviation of the optimized risk
function Eq. (32) over the entire range of µH , indicating
that the risk function is a reasonably accurate predictor
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of performance for this set of parameters.
Next we examine the effect of using a looser tolerance,

specifically where γ = 2.0 s, in Fig. 18. We show the risk
surface in Fig. 18(a), and the contour plot in Fig. 18(b),
along with the values of of RLGD that minimize the risk
in the simulations, and the set of points {RLGD(µ∗X)}. In
this case, we see that the offset between the two sets of
RLGD values is smaller than it was for γ = 0.1 s, and
that the offset changes sign as µH increases, with our
optimization criterion placing RLGD about 1 cm farther
away when µH = 100 ms but placing RLGD about 1 cm
closer for larger values, such as µH ≈ 420 ms.

In Fig. 19, we plot the value of the risk R(µ∗X) from
Eq. (32) and the average minimum risk from simulation

versus µH for γ = 2.0 s. In this figure, we see less diver-
gence between the optimal risk and the risk that we get
from using a RLGD value developed from µ∗X . This agrees
with the differences in RLGD values that were shown in
Fig. 18(b). It is interesting to note that both computed
risks are significantly less than the theoretical minimum
risk, although the divergence is less for smaller values of
µH . We see from this figure and from Fig. 17 that the
risk function in Eq. (32) is a conservative performance
estimate and that its deviation from the true risk increases
with γ. We also observe that the deviation between the
risk function and the actual risk increases with as µH
increases when γ is large, but that the gap appears to
narrow with increasing µH when γ is small.

V. SIMULATION RESULTS

In this section, we show results from a series of simu-
lations to illustrate how one can experimentally compute
values for the LGD threshold, TLGD, based on the risk
functions described in Section III. We used the ns-2 tool
[10] to do packet-level simulations of a handover involv-
ing a single mobile node migrating from one AP coverage
area to another. We show the topology of the simulated
network in Fig. 20. Because of the short distances used
in this scenario, we use the free space path loss in the
link budget computations, which is

Lpath,dB(`) = 20 log10

(
4π ` f

c

)
, (34)

where ` is the path length in meters, f = 2.412 GHz is
the carrier center frequency, and c = 2.997× 108 m/s is
the propagation speed of the carrier wave in air. We do
not consider fading or shadowing in these simulations.
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The mobile and the APs communicate using IP in the
network layer over IEEE 802.11 at the link layer. The
transmitter power of each AP is 100 mW. We use isotropic
transmit and receive antennas (unity gains), and assume
no system losses. The radius of each AP’s coverage area
is 50.0 m; a mobile at that distance would experience a
RSS of −84.069 dBW, from Eq. (34). When the mobile’s
RSS falls to this level, it causes a LD trigger event and
the connection with AP1 breaks. The central AP, AP1,
is surrounded by six other APs as shown in Fig. 20.
The coverage limit of AP1 is shown in red in the figure.
All seven APs are connected to a single router, which
is also connected to the mobile’s MIPv6 Home Agent
(HA) and the Corresponding Node (CN), with which the

Router

Home Agent

CN

AP1AP7

AP2 AP3

AP6 AP5

AP4

Fig. 20. Network topology used in ns-2 simulations.

mobile is communicating. The data rate on all of the wired
links from the router to other entities in the network is
100 Mb/s.

We examined a range of values of RLGD from 40.0 m
to 47.75 m, at intervals of 0.25 m. Each value of RLGD
corresponds to a unique value for the LGD threshold,
TLGD, where, from Eq. (34),

TLGD = −10 dBW− Lpath,dB(RLGD).

We performed 18 000 runs for each value of TLGD and
recorded the results in an ASCII output file; for each
run we recorded the time when the LGD trigger fires,
the time when the LD trigger fires, and the time when
the handover completes. Each simulation run begins at
time t = 0.0 s with the mobile located close to AP1 so
that it can perform all the signaling to attach itself to the
network. The mobile then moves outward from the center
of AP1’s coverage area so that at t = 5.0 s, the mobile
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is located on the circle with radius RLGD centered on
AP1, with a phase angle that is uniformly distributed over
the interval [0, 2π). The mobile’s initial velocity vector is
aligned with the radius vector from AP1 to the mobile,
i.e. it is moving away from AP1.

In each simulation run, the mobile’s LGD trigger fires
once the mobile detects a beacon signal that allows it
to determine that its RSS has fallen to TLGD; the mobile
immediately begins scanning for a target network at the
link layer, and uses RSS from each of the six other APs to
decide which one will be its target AP. We record the LGD
time, tLGD, in the output file. Because this simulation uses
the free-space path loss model, the chosen AP will be the
one whose distance to the mobile is the smallest. Once the
mobile has selected a target AP, it uses FMIPv6 predictive
signaling to set up a tunnel between the target access
point and AP1, followed by MIPv6 signaling between
the mobile and the HA. The handover time is random,
with mean packet delays of 50.0 ms and 30.0 ms between
the APs and the router and between the router and the
HA, respectively. The are no packet losses on the wired
links. When the handover completes, the time thandover is
recorded and stored in the output file.

The mobile moves according to a random walk model
while maintaining a constant speed of 2.0 m/s. Ev-
ery 0.5 s, the mobile changes direction by picking
an angle that is uniformly distributed over the interval
[−π/20, π/20]. It adds this to the current angle of its
velocity vector and then moves 1.0 m in the new direction.
The mobile repeats this process until its distance from
AP1 reaches 50.0 m or until the run time reaches 200.0 s;
either criterion causes the run to end. If the run ends
because a LD event occurs, we record the time, tLD, in
the output file. If the run ends because the time limit
was reached without the mobile’s RSS falling to the LD
threshold, the LD time for the run is recorded as −1.

For each value of TLGD, we obtained sample values
ĥ and x̂ of H and X , respectively, for each of the
18 000 runs that did not end in a timeout by computing
ĥ = thandover − tLGD and x̂ = tLD − tLGD. We calculated
an estimate of the risk function for a given value of γ
by computing the relative frequency of the probabilities
P̂D = Nx̂≤ĥ/NLD and P̂T = Nx̂≤ĥ+γ/NLD, where Nx̂≤ĥ
is the number of runs in which the recorded handover
duration was less than the recorded time between the
LGD and LD events, Nx̂≤ĥ+γ is the number of runs in
which the recorded handover duration was less than the
sum of γ and the recorded time between the LGD and
LD events, and NLD is the number of runs that ended in
a LD event. In all the simulations that we performed,
the smallest value of NLD was 17 125 when we used
RLGD = 40.25 m; this value corresponds to a 95.1 %
probability of a run terminating in a LD event rather than
a timeout. The resulting estimated risk is

R̂(TLGD, γ) = CDP̂D + CT (1− P̂T ),
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Fig. 21. Estimated simple risk function versus TLGD for four values
of γ, with 99 % confidence intervals shown.

and the estimated variance of the sample risk [11] is

s2
R̂

=
R̂(TLGD, γ)(1− R̂(TLGD, γ))

NLD − 1
. (35)

In Fig. 21, we plot the estimated risk function versus TLGD
for four values of γ. The error bars in the figure show
the limits of the 99 % confidence interval at each point,
where the size of the interval is 2(2.58)sR̂. The small
size of the intervals indicates that we can identify the
minimum value of the risk function and its associated
LGD threshold with reasonable accuracy. There is some
overlap of the confidence intervals when γ = 100 s, but
we expect that in practice one would not use such a large
tolerance value.

In Fig. 22, we plot the simple risk function defined in
Eq. (31), which is Eq. (18) with CD = CT . We show the
risk for the full range of LGD threshold values that we
considered, and for various values of γ on a logarithmic
scale from 10−2 s to 101 s. If we take the minimum risk
associated with each value of γ, we find that all of them
occur at the same value of TLGD, −83.485 dBW. This
threshold corresponds to a distance of 46.75 m from AP1,
or 3.25 m inward from the maximum coverage radius.

Because the optimal LGD threshold is insensitive to
γ when the weights for PD and 1 − PT are equal, we
want to examine the sensitivity to γ when the weights
are not equal. We varied the ratio CT /CD from 10−2 s
to 102 s and computed the value of TLGD that minimized
the weighted risk for each value of γ from 10−2 s to
101 s. We plot the resulting optimal values of TLGD in
Fig. 23. The figure confirms that the value of TLGD that
minimizes the risk function is constant with respect to γ
when CT = CD. The figure also shows that the optimal
threshold is insensitive to γ for a broad range of values
of CT /CD, which we expect since PT is deemphasized
when CT /CD is very small and PD, which does not
depend on γ, becomes the dominant component of the
risk function.

In both the surface and contour plots, a steep transition
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in the optimal value of TLGD is clearly visible; this
transition is associated with a critical value of the weight
ratio CT /CD for a given value of γ. When γ is very
small, this critical value of the weight ratio is around
four or five as shown in Fig. 23(b); as γ increases, the
critical value of the weight ratio increases to around 10.
For values of CT /CD above the critical value, the optimal
value of TLGD is −83.669 dBW when γ < 1.0 s. When
CT /CD is greater than the critical value and γ is larger
than 1.0 s, the optimal value of TLGD is −83.623 dBW,
as shown in Fig. 23(a); this occurs when the ordered
pair (CT /CD, γ) lies within the region in the upper
right portion of Fig. 23(b). This larger threshold value is
associated with the relaxation of the handover promptness
criterion measured by PT that occurs when γ is large.
An interesting result from this figure is that over a large
portion of the parameter space, we would use one of
two possible values of TLGD, depending on the relative
importance of the performance criteria associated with PD
and PT .

VI. SUMMARY

In this paper, we developed a weighted risk function to
characterize the cost associated with using a particular
value of µX , the mean time between the LGD and
LD trigger events. We also developed a simplified risk
function that expressed the risk is the probability that
the Link Down event would occur outside the time range
[H,H+γ], and that is a special case of the weighted risk
function, where the weights are equal. Both risk functions
assume that X has an exponential distribution. We showed
that for the case where the mobile’s path can be modeled
as a random walk and the LGD boundary is close to the
LD boundary, this assumption is reasonable.

For our first set of experimental results, we used a
shifted gamma distribution to model the handover time

and showed how the resulting µ∗X value varies with
respect to the mean handover time, µH . We created
operating characteristics to examine the effect of the
value of µH and the risk function weights CD and
CT on handover performance. We also simulated the
performance of a handover scheme that used our sim-
plified risk function to obtain a value for the distance
from the AP to the boundary where the Link Going
Down event is triggered. We showed that our approach
provides results that are nearly optimal even when X is
not exponentially distributed, although the deviation from
the optimal performance depends on various parameter
values such as the tolerance variable γ.

Finally, we used a packet-level simulation of a mobile
migrating from one access point to another to show how
the risk function can be used to determine the optimal
LGD threshold for a given set of cost weights CT and
CD and a given tolerance γ. We showed that for the
example that we considered, the optimal threshold value
is insensitive to changes in the weights and tolerance over
large regions of the parameter space. Using this approach,
network operators can devise thresholds for their event
triggers that optimize handover performance based on
the relative importance of prompt handovers versus LGD
trigger sensitivity.
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