NONLINEAR CALIBRATION OF
POLARIMETRIC RADAR CROSS SECTION SYSTEMS

Lorant A. Muth

Electronics and Electrical Engineering Laboratory
National Institute of Standards and Technology
325 Broadway
Boulder, Colorado 80305-3328

Abstract

Polarimetric radar cross section systems are charac-
terized by polarimetric system parameters €, and €,,.
These parameters can be measured with the use of
rotating dihedrals. The full polarimetric dataset as a
function of the angle of rotation can be analyzed with
a nonlinear set of calibration equations to yield the
system-parameter complex constants and the four po-
larimetric calibration amplitudes. These amplitudes
appropriately reproduce the system drift and satisfy
a drift-free system configuration criterion very accu-
rately. The results indicate that the nonlinear ap-
proach is better than the previously studied linear ap-
proach, which yielded system parameters that are se-
riously distorted by drift.
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1. Introduction

A complete set of monostatic radar cross section
(RCS) scattering matrix calibration data, taken with a
dihedral rotating about the line-of-sight to the radar,
is used to obtain the cross-polarimetric system param-
eters and the channel calibration constants of a po-
larimetric RCS measurement system [1-7]. Our model
assumes that the two cross-polarimetric hv and vh pa-
rameters are constants of the polarimetric RCS system
and that the four channel amplifications are specified
by complex constants. In the next section we see that
each of the four polarimetric measurements M, with
p and g denoting either the horizontal h or vertical v
polarization, can be written as

Mpy = ¢2.pq 0820 + $2 pq sin 20. (1)

The Fourier coefficients ¢z, and sg,, are propor-
tional to the channel calibrations constants A,, and
are functions of the cross-polarization system param-
eters. A linear method of solving for the system pa-
rameters by means of only the copolar measurements
seems to be theoretically sound [1,2]. However, two
realistic observations challenge the appropriateness of
the linear approach to calibration:

(1) the system cross-polarimetric parameters are very
small, and (2) a RCS system is subject to unpre-
dictable and arbitrary drift in the channel amplifica-
tions. Because any method of analysis will be based
on a least-squares technique, the solutions for the sys-
tem parameters can be significantly distorted by the
presence of drift in the data.

In more detail, we will see in the next section that

conn = Annl€, — 1),  Sonn = 2Apnen. (2)
Hence, the ratio s pn/conn is a simple function of
e, that is independent of the channel amplitude Apj,.
The linear approach to obtain the system parameters
relies on this simple algebraic step. However, this as-
sumes that the coefficients cp pp, and ss pp are known
exactly. Since we can obtain these coefficients only in
the least-squares sense, the ratio of the coefficients will
not, in general, be independent of the channel ampli-
tude because of drift. Under the conditions (1) and (2)
above, the distortion due to drift could be significant.
In fact, we have found this to be the case.

Consequently, a set of constant system parameters
cannot be obtained repeatedly without adequately con-
trolling the drift. We cannot ignore the basic require-
ment of repeatability in this process. Obviously, when
we obtain the system parameters from just a single
dataset, we will not reveal any problems. However,
when we repeatedly obtain the system parameters
from N = 10 datasets, the linear approach will most
certainly produce very large, hence unacceptable, vari-
ations in the system parameters. This is the problem
that we address in this paper.

In a nonlinear polarimetric calibration model we use
all four components M, in eq (1) and incorporate the
nonlinear signal-path condition
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which is valid even in the presence of drift. The valid-
ity of this condition can be easily ascertained if we con-
sider the indices to represent the transmit and receive
signal paths (see Appendix). The nonlinear system of
egs (1) and (3) are then solved for the channel calibra-
tion amplitudes and the system parameters. The drift
will be adequately reflected in the channel calibration
amplitudes, and we can expect that the system param-
eters will be approximately constant with acceptable
repeatability.

We show with real data that the nonlinear technique is
superior to the linear approach in that we can exhibit
drift-dependent amplitudes A,, and constant cross-
polarimetric ratios that are repeatable within small
uncertainties.

2. Theoretical Model

We use a rotating dihedral to calibrate a polarimetric
radar. The receive matrix is given by [1-7]

T:(Thh Thv). (4)

Toh  Tov

The dihedral scattering matrix (in the high frequency
limit) is given by [1-7]

— cos 20
D(#) = kD( sin 260

where 0, with respect to the vertical, is the angle of
rotation about the line-of-sight from the radar to the
dihedral, and kp depends on the dimensions of the
dihedral and is assumed to be known. We define

62(611, 61h)’ (6)
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where

€p =

are the cross-polarimetric system parameters that we
wish to determine. After normalization (see Ap-
pendix), the polarimetric signal scattered from a di-
hedral M o rDt [1-7] is given by the matrix product

M(0) = kA * eD(0)e, (8)

where k is a complex constant, A is the channel am-
plification matrix, and we assumed reciprocity so that
the transmit matrix is ¢ = 7 (transpose of r). In eq
(8) the * denotes element-by-element multiplication.
The matrix elements of M are

(kkpApp) "My = (=1 + €2) cos 20 + 2¢;, 5in 20, (9)

(kkpAyy) ' My, = (1 — €2) cos 20 + 2¢,sin 20, (10)

(kkDAhv)ilM}w = (Eh — EU) cos 20 + (1 + Ehev) sin 26,
(11)

and
(kkDAvh)ileh = (Eh — EU) cos 20 + (1 + Ehev) sin 26.
(12)

For all polarizations, we can write
Mpq = €2.pq €08 20 + S92 pq sin 26, (13)

where p and ¢ are either h or v. We can use Fourier
analysis to obtain all coefficients ¢ pq and sg ,q from
measured data.

In the linear approach we obtain the system parame-
ters €, with only the copolar expressions in eqs (9-10).
We form the ratio of the n = 2 Fourier coefficients ob-
tained from the data and express this ratio in terms
of the system parameters by use of the theoretical ex-
pressions for the coefficients in eqs (9-10). Thus

_ S2,9q _ 26ql4
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where I, = —1 and I, = 1. We then easily get two
solutions for each polarization,

—I, £ /1+ r;q 5)

72,9

€q =

The solutions are negative reciprocals of each other;
we choose |eq| < 1, which is true for RCS systems.
In eq (14) we assumed that the ratio of coefficients
are independent of all amplitudes in eqs (9-10), which
implies that A4, are constants throughout the mea-
surements. Thus, we have assumed that drift is in-
significant! This is generally untrue.

In a nonlinear approach we use all the component eqs
(9-12) to obtain least-squares solutions to all A4,, and
€q. We also demand that the signal-path configuration
condition eq (3) be satisfied at every point of measure-
ment. We note that eqs (11-12) differ only in the cross-
polar channel-amplification constants, which, together
with the increased complexity of the cross-polar de-
pendence on the polarimetric system parameters, sig-
nificantly reduces the least-squares solution space and
decouples the independent parameteres A,, and €,. In
addition, we have the option to subdivide any full ro-
tation into seqments and solve for different amplitudes
Apq in each segment as we keep €, constant through-
out a rotation. We expect that drift-dependent am-
plitudes and a repeatable set of system parameters can
be obtained with this approach.



3. Polarimetric calibration data

Full polarimetric measurements using a 12-inch-square
rotating dihedral were obtained at 9.6 GHz for N =9
rotations. The dihedral was located at approximately
12,800 ns from the radar.

Polarimetric drift was monitored with a stationary
trihedral approximately 550 ns behind the dihedral.
Consequently the drift data could not be used to re-
move drift analytically from the dihedral data; here
we merely demonstrate system drift and provide an
estimate of the drift modifying the dihedral data.

Polarimetric clutter data were recorded in front of the
dihedral, and polarimetric noise data were recorded
behind the trihedral. All clutter and noise data ex-
hibited a random character, and the recorded magni-
tudes were substantially below the dihedral and the
trihedral responses. Hence, we assumed that clutter
and noise do not introduce significant errors into the
determination of the polarimetric system parameters
and were ignored in the analysis. However, contri-
butions from clutter and noise must still be included
in the uncertainty in the system parameters, but we
expect such contributions to be small.

In Figure 1, we show the polarimetric drift responses
of the trihedral located behind the dihedral. We in-
clude only the copolar hh response; other polarimetric
components of the data were qualitatively similar.

In Figure 2, we show the amplitude and phase of the
hh polarimetric dihedral response as a function of the
rotation angle 6 as the dihedral underwent nine full
rotations. The rotations are delineated by solid verti-
cal lines; the broken lines indicate angles at multiples
of 90°. Ideally, the rotations would be identical, but
drift is seen to have introduced changes in both ampli-
tude and phase from rotation to rotation. The other
polarimetric components show qualitatively the same
influence of drift.

In Figure 3, we show evidence that the n = 4 compo-
nent of the drift has modified the data [3]. We com-
pare the unprocessed hh data with its n = 2 Fourier
component. We can explicitly verify that the features
observed in the discrepancy at angles of multiples of
45° (dotted lines) are due to the presence of a small
but significant n = 6 Fourier component in the data.
This Fourier component is the harmonic produced by
the dihedral response (n = 2) and the drift (n = 4).
The other components of the data exhibit the same
features.
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Figure 1. The amplitude and phase of the hh response of a
trihedral located behind the rotating dihedral. Ideally the
response would be constant. The drift is due to changing
environmental conditions. The solid vertical lines delineate
the nine rotations.
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Figure 2. The amplitude and phase of the hh dihedral re-
sponse as a function of rotation angle for nine rotations.
The solid vertical lines delineate the rotations; broken lines
are at multiples of 90°.



4. Polarimetric data analysis and results

We rely on the model eqs (9-12) to determine the
channel-amplification amplitudes kkpAp,, and the
cross-polarimetric system parameters €, defined in eqs
(6-7). First, we have applied the linear model to ob-
tain €, for each rotation [1]; these results are shown
in Figure 4 with small circles. We observe a strong
rotation-to-rotation variation in the imaginary ¢, and
a weaker variation in the real part. As discussed above
this is due to the inability of the linear model to de-
couple the drifting amplitudes and the system param-
eters. Next, we applied the nonlinear model to solve
for the unknowns. Figure 4 shows these results with
circles with dots in them. We observe that the system
parameters obtained with the nonlinear model cluster
within a small area of uncertainty. In Figure 5, we
show amplitudes A,, for each half rotation. The first
180° of each rotation is shown with a smaller circle.
The drift in amplitudes is clearly evident. Figure 6
shows x4 as defined in eq (3) for two cases: first, the
amplitudes apply to each full rotation, and, second,
the amplitudes apply to each half-rotation. The nine
open circles indicate x4 & 1 in the first case, and the
18 X-s represent x4 = 1 for the second case. Because
of the least-squares procedure, we see some deviation
away from x4 = 1 in the first case, but the agreement
is still excellent. For each half rotation, we demon-
strate that the driftless condition x4 = 1 has been
very accurately satisfied for 18 sets of A,, as they
drift during the rotations (see Figure 5).

5. Summary and suggestions

We have demonstrated that the nonlinear set of equa-
tions can decouple the polarimetric signal-path ampli-
tudes Ap, and the cross-polarization system parame-
ters €4 that describe the full scattering-matrix RCS
response of a rotating dihedral. In comparison, the
previously recommended linear analysis procedure is
seen to provide poorly determined system parameters.
This is an important observation, since up to now all
procedures reported in the polarimetric RCS litera-
ture are variants of the linear model. However, we still
observe residual variations in the system parameters
obtained with the nonlinear procedure that cannot be
explained as due to clutter or noise. We need to re-
visit the model on drift published previously [3] to see
whether the nonlinear model proposed in this study
could be modified to include drift explicitly. Further-
more, additional datasets need to be obtained in vari-
ous environments to further test and validate the pro-
cedure developed here and in future studies.
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Figure 3. The real and imaginary components of the dihe-
dral response (thick line) during the first rotation and its
n = 2 Fourier component. The discrepancies in the neigh-
borhood of multiples of 45° (dotted lines) and 90° (solid
lines) are due to the presence in the data of a n = 6 Fourier
component due to the interaction of drift and the dihedral
response.
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Figure 4. The cross-polarimetric system parameters ¢, and
€, as determined by the linear model (small circles) and by
the nonlinear model (large circles with dots). We expect
the parameters to be constants of the measurement system.
The linear solution is strongly affected by drift and produces
unacceptable variations in the parameters.
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Figure 5. The 18 channel-amplification complex amplitudes A,, for each 180° segment of rotation. The drift is due to

changing environmental conditions.
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Appendix

Here we present in detail the derivation of eq (8). In
general, the monostatic polarimetric signal scattered
by the dihedral is given by [1-7]

M'(0) = kA"« rD(0)t, (A1)

where the transmit matrix ¢ = 7, the transpose of the
receive matrix, and the elements of A’ give the ap-
plied amplification (or attenuation) to each polarimet-
ric channel, the * indicates element-by-element mul-
tiplication, and k is a complex constant that depends
on the separation between the target and the radar.
We can write

(A2)
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Figure 6. x4 plotted when Ay, are formed using the ampli-
tudes of each rotation (circles). The small deviations from
1 are due to averaging of drift by the least-squares analysis.
When the amplitudes are determined for each 180° segment
(X-s), the deviations from 1 almost vanish.



where 0
r
ra= ("), (43)
and € is defned in eq (6). Equation (A1) now becomes
M(e) = k‘A/ * TdED(Q)gfd. (A4)

We note that 7y = r4, and that the inverse is given by

-1
-1 _ (rhh 0 ) (A
T, = _1 - )
d 0 1y )
We now rewrite eq (A4) by performing element-by-
element division by A’; then we pre- and post-multiply
by the inverse of ry and perform element-by-element
multiplication with

2 / /
_( ThnAhn  ThRTwo AL, )
A B (Tmﬂ"hhA;h T?M)A;v ’ (AG)

The result is
M(0) = kA xeD(0)e, (A7)
which is eq (8).

In general, the channel amplifications Aj},, = 7,p, are
the products of the transmit 7, and receive p, channel
amplifications, which can be adjusted arbitrarily and

satisfy oA
hv{lvh
L A
AhhAvv ( 8)
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