

Combinatorial Software Testing

Rick Kuhn, Yu Lei, Raghu Kacker, Justin Hunter

Developers of large data-intensive software often notice an interesting – though
not surprising – phenomenon: when usage of an application jumps dramatically,
components that have operated for months without trouble suddenly develop previously
undetected errors. For example, newly added customers may have account records with
an oddball combination of values that have not been seen before. Some of these rare
combinations trigger faults that have escaped previous testing and extensive use. Or, the
application may have been installed on a different OS-hardware-DBMS-networking
platform. Combinatorial testing, which exercises all t-way combinations up to a pre-
specified level of t, can help find problems like this early in the testing life-cycle.

For example, suppose we wanted to show that a new software application works
correctly on PCs that use Windows or Linux operating systems, Intel or AMD processors,
and IPv4 or IPv6 protocols. This is a total of 2 x 2 x 2 = 8 possibilities, but only four
tests are required to test every component interacting with every other component at least
once (see Table 1). This is only the most basic combinatorial method, “pairwise testing”,
in which all possible pairs of parameter values are covered by at least one test.

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Table 1. Pairwise test configurations

It should be noted that while all pairs of possible values (e.g. (a) OS = Linux & (b)
protocol = Ipv4), are tested for by at least one test case, several combinations of three
specific values are not tested (e.g., (a) OS = Windows & (b) CPU = Intel & (c) Protocol =
IPv6). We will address this potential “lack of thoroughness” issue in a moment.

How does combinatorial testing work in practice?

Even with this acknowledged deficiency, pairwise testing is used because it often
works very well. The reduction in test set size from 8 to 4 shown in Table 1 is not that
impressive, but consider a larger example: a manufacturing automation system that has
20 controls, each with 10 possible settings, a total of 1020 combinations, which is far
more combinations than a software tester would be able to test in a lifetime. Surprisingly,
we can check all pairs of these values with only 180 tests if the tests are carefully
constructed. Pairwise testing has become popular because of this; it can check for
simple, potentially problem-causing interactions with relatively few tests. Several
empirical investigations suggest individual values or pairs of values of two parameters

are responsible for roughly 50% to more than 97% of faults.

One of the authors, Justin Hunter, conducted a 10-project empirical study that
compared the effectiveness of pairwise combinatorial testing with manual test case
selection methods. The findings, shown in Figure 1, speak for themselves.

The ten testing projects were conducted at six companies and tested commercial
applications in development; in each project, two small teams of testers were asked to test
the same application at the same time using different methods. One group of testers
selected tests manually; they relied on “business as usual” methods such as developing
tests based on (a) functional and technical requirements and (b) potential use cases
mapped out on white boards. The other group used a software tool to identify 2-way
combinatorial (pairwise) tests. Test execution productivity was significantly higher in all
ten projects for the testers using combinatorial methods, with test execution productivity
more than doubling on average and more than tripling in three projects. The groups using
the pairwise combinatorial testing approach also achieved the same or higher quality in
all ten projects; all of the defects identified by the teams using manual test case selection
methods were identified by the teams using combinatorial methods, and in five projects,
the combinatorial teams found additional defects that had not been identified by the
teams using manual test case identification methods. These were “proof of concept”
projects which successfully demonstrated to the teams involved that their manual
“business as usual” methods of test case selection were not nearly as effective as the
newly-introduced pairwise combinatorial methods (the simplest form of combinatorial
testing) to find the largest number of defects in the least amount of time.

How much combinatorial testing is needed?

We noted that other empirical studies have concluded that from about 50% to
97% of faults could be identified by well-selected pairs of parameter settings. But what
about the remaining faults? How many failures will be triggered only by an unusual
interaction involving more than two parameters? In a 1999 study that considered faults
arising from rare conditions, the National Institute of Standards and Technology (NIST)
reviewed 15 years of medical device recall data in an effort to determine what types of

testing could detect the reported faults. This study found one case in which a fault
involved a four-way interaction between parameter values. In that example, an error
could be triggered when: (1) demand dose = administered, and (2) days elapsed = 31,
and (3) pump time = unchanged, and (4) battery status = charged. Pairwise testing is
unlikely to detect faults like this, because pairwise testing only guarantees that all pairs
of parameter values will be tested. A particular 4-way combination of values is
statistically unlikely to occur in a test set that only ensures 2-way combination coverage,
so in order to ensure thorough testing of complex applications, it is necessary to generate
test suites for 4-way, or higher degree, interactions.

Investigations of other applications found similar distributions of fault-triggering
conditions: usually, many faults were caused by a single parameter value, a smaller
proportion resulted from an interaction between two parameter values, and progressively
fewer were triggered by 3, 4, 5, and 6-way interactions. Figure 2 summarizes these
results.

Figure 2. Cumulative error detection rate at interactions 1 to 6.

With the web server application, for example, roughly 40% of the failures were
caused by a single value, such as a file name exceeding a certain length. Another 30% of
the problems were triggered by the interaction of two parameters, and a cumulative total
of almost 90% triggered by three or fewer parameters. While not conclusive, these
results suggest that combinatorial testing which exercises high degree interaction
combinations (4-way or above) can be very effective for achieving a higher level of
thoroughness in software testing.

The key ingredient for this kind of testing is known as a covering array, a
mathematical object in which all t-way combinations of parameter values are covered at
least once. For the pairwise testing example in Table 1, t = 2, and it is relatively easy to
generate tests that cover all pairs of parameter values. Generating covering arrays for

more complex interactions (beyond pairwise) is a much more difficult problem, but new
algorithms have been developed that make it possible to generate covering arrays orders
of magnitude faster than previous algorithms, making up to 6-way covering arrays
tractable for many applications.

Figure 3 gives an example of a covering array for all 3-way interactions of 10
binary parameters (columns) in only 13 tests (rows). It can be seen that any three
columns of Fig. 3, selected in any order, contain all eight possible values of three
parameters: 000,001,010,011,100,101,110,111.

Parameters
Test 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 1 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1
10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Figure 3: Three-way covering array for 10 parameters with 2 values each

Referring back to Fig. 2, we saw that three-way interaction testing detected
roughly 90% of bugs or more in all four empirical studies. In Figure 3, exhaustive testing
(all possible combinations) would require 210 = 1,024 tests. What are the pragmatic
implications of being able to achieve 100% 3-way coverage in 13 test cases on real-world
software testing projects? If we assume for the sake of argument that there are 10 defects
in this hypothetical application and that 9 of them are identified through the 13 tests listed
here, testing these 13 cases (and thereby uncovering 9 of 10) would result in finding 71
times more defects per test case ((9/13) / (10/1024)) than testing exhaustively(and
uncovering all 10).

What issues are important when considering combinatorial testing?

There are a number of practical testing takeaways for software testing
practitioners considering combinatorial methods. Below we compare pairwise and more
thorough methods:

•	 Resources: Teams in a hurry seeking to efficiently maximize testing
thoroughness given tight time and/or resource constraints may want pairwise (2­
way) testing. When more time is available or more thorough testing is required, t-
way testing for t > 2 is better.

•

Fault detection: Although much more empirical research is needed, available
data suggest that pairwise testing may find 50% to > 90% of faults, but higher
strength combinations (t > 2) can detect 90% to 100% of faults, and variability
among detection rates appears to decrease as t increases.

•

Awareness and adoption: Pairwise testing is well known among researchers and
practitioners, although still not widely used, so training may be needed for many
testers. Research interest in higher strength t-way testing has increased recently
as better algorithms have become available.

While the most basic form of combinatorial testing – pairwise – is established,
and adoption by practitioners continues to increase, usage in industry remains patchy at
best. Practitioners who face significant time and resource pressure (and who currently
use manual test case selection methods) will find pairwise methods deliver large
efficiency improvements. Practitioners who require very high quality software will find
t-way combinatorial testing efficiently detects many hard-to find faults. It is only in the
past few years that efficient algorithms for complex covering arrays – for 4-way coverage
or more – have become available, so empirical experience is sparse, but these methods
appear to enable extremely thorough testing of applications with manageable numbers of
test cases. New algorithms (packaged in an increasing number of user-friendly tools)
with fast, inexpensive processors, are making sophisticated combinatorial testing a
practical approach that holds considerable promise for better software testing at a lower
cost.

Disclaimer: Certain commercial products are identified in this document, but such
identification does not imply recommendation by the US National Institute of Standards
and Technology or other agencies of the US Government, nor does it imply that the
products identified are necessarily the best available for the purpose.

