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Abstract 
The state of knowledge concerning a quantity about which scant specific information is 
available is often represented by a rectangular probability distribution on some interval 
(Z1, Z2) specified by scientific judgment.  Often, the end-points Z1 and Z2 are not exactly 
known.  If the state of knowledge about the left end-point Z1 can be represented by a 
rectangular distribution on the interval (a, c) and the state of knowledge about the right 
end-point Z2 can be represented by a rectangular distribution on the interval (d, b), where 
a ≤ c ≤ d ≤ b, then the resulting probability distribution looks like a trapezoid whose 
sloping sides are curved.  We can refer to such a probability distribution as curvilinear 
trapezoidal distribution.  Depending on the values of a, c, d, and b, the curvilinear 
trapezoidal distribution may be asymmetric.  We describe the probability density function 
(pdf) and the moments of a curvilinear trapezoidal distribution which arises from 
inexactly known end-points of a rectangular distribution.  In particular, we give compact 
algebraic expressions for the expected value and the variance.  Then we discuss how 
random numbers from such a distribution may be generated.  We compare the curvilinear 
trapezoidal distribution which arises from inexact end-points with the corresponding 
trapezoidal distribution whose sloping sides are straight.  We also compare the 
curvilinear trapezoidal distribution which arises from inexactly known end-points with 
the curvilinear trapezoidal distribution which arises when the mid-point of a rectangular 
distribution is known (fixed), the half-width is not exactly known, and the state of 
knowledge about the half-width may be represented by a rectangular distribution. 
 
Keywords: Rectangular distribution, Trapezoidal distribution, Uncertainty in 
measurement  

1. Introduction 
Rectangular distributions are often used in metrology to represent the state of knowledge 
about a quantity for which scant specific information is available.  The best assessments 
based on scientific judgment of the minimum and the maximum possible values of the 
quantity are set as the end-points of the rectangular distribution.  Thus the end-points are 
inexactly known.  The extent of knowledge concerning the end points may be different.  
For example, one of the end-points may be a known boundary for the quantity value, 
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such as zero, and the other end-point may not be exactly known.  Thus, only one end-
point may not be exactly known.  In this paper, we describe a probability distribution 
which represents the state of knowledge about a quantity when the available information 
about one or both end-points of a rectangular distribution may be represented by other 
(narrower) rectangular distributions. 
 
Suppose the end-points of a rectangular distribution on an interval (Z1, Z2) are inexactly 
known, the state of knowledge about Z1 may be represented by a rectangular distribution 
on a specified interval (a, c), and the state of knowledge about Z2 may be represented by 
a rectangular distribution on a specified interval (d, b), where a ≤ c ≤ d ≤ b.  In section 2, 
we show that the resulting distribution looks like a trapezoid whose sloping sides are 
curved.  We can refer to such a distribution as curvilinear trapezoidal distribution.  
Depending on the values of a, c, d, and b, the curvilinear trapezoidal distribution may be 
asymmetric.  We describe the probability density function (pdf) and the moments of a 
curvilinear trapezoidal distribution which arises when one or both end-points of a 
rectangular distribution are inexactly known.  In particular, we give compact algebraic 
expressions for the expected value and the variance.  We will discuss how random 
numbers from such distributions may be generated.  In section 3, we compare the 
curvilinear trapezoidal distribution which arises from inexactly known end-points with 
the corresponding trapezoidal distribution whose sloping sides are straight.  In section 4, 
we compare the curvilinear trapezoidal distribution which arises from inexactly known 
end-points with the curvilinear trapezoidal distribution which arises when the mid-point 
of a rectangular distribution is known (fixed), the half-width is not exactly known, and 
the state of knowledge about the half-width may be represented by a rectangular 
distribution.  Concluding remarks appear in section 5. 
 
2. Curvilinear trapezoidal distribution arising from inexactly known end-points 
We will first discuss the case where both end-points of a rectangular distribution are 
inexactly known then discuss the cases where only one-end point is not exactly known. 
 

2.1 Both end-points inexactly known 

 
Suppose the probability distribution of a variable X is rectangular on the interval (Z1, Z2), 
where both end-points Z1 and Z2 are inexactly known.  Then the pdf of X given Z1 = z1 
and Z2 = z2 is 
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Suppose the probability distribution of Z1 can be represented by a rectangular distribution 
on an interval (a, c), where a ≤ c.  Then the pdf of Z1 is  
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Suppose the probability distribution of Z2 can be represented by a rectangular distribution 
on an interval (d, b), where a ≤ c ≤ d ≤ b.  Then the pdf of Z2 is 
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Then, as discussed in the appendix 1, the unconditional pdf f(x) of X is 
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The unconditional pdf f(x) of X given in (4) can also be expressed as 
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The pdf (4) has four parameters a, c, d, and b.  As indicated in figure 1, a plot of the pdf 
f(x) looks like a trapezoid whose sloping sides are curved.  The parameters a and b 
represent the end-points of the pdf and the intermediate parameters c and d identify the 
flat part of the pdf (4).  We will refer to the probability distribution represented by the pdf 
(4) as Curvilinear Trapezoid (a, c, d, b).  For comparison, figure 1 also displays the 
corresponding Trapezoid (a, c, d, b) with straight sloping sides. 
 
As shown in the appendix 2, the k-th moment E(Xk) of the pdf f(x) given in (4) is 
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for k = 1, 2, … .  In particular, the expected value E(X) and the variance V(X) of the pdf 
f(x) are, respectively, 
 

 ( ) ,
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a b c dE X + + +
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and 
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where r = (c – a), s = (d – c), and t = (b – d).  The parameter r = (c – a) is the width of the 
left curvilinear part, s = (d – c) is the width of the middle flat part, and t = (b – d) is the 
width of the right curvilinear part of the pdf (4).  The standard deviation S(X) of the pdf 
f(x) is square-root of the variance V(X).  We note that even though the pdf f(x) of 
Curvilinear Trapezoid (a, c, d, b) has seemingly complicated form, the expected value 
and the variance have very simple forms. 
 
Suppose {u1, …, un}, {v1, …, vn}, and {w1, …, wn}, are three independent sets of random 
numbers obtained by a random number generator from a rectangular distribution on the 
interval [0, 1].  Define z1i = a + (c – a) × ui, then {z11, …, z1n} is a set of n random 
numbers from a rectangular distribution on the interval (a, c) for the left end-point Z1.  
Define z2i = d + (b – d) × vi, then {z21, …, z2n} is a set of n random numbers from a 
rectangular distribution on the interval (d, b) for the right end-point Z2, where a ≤ c ≤ d ≤ 
b.  Now define xi = z1i + (z2i – z1i) × wi, then {x1, …, xn} is a set of n random numbers 
from a curvilinear trapezoidal distribution with parameters a, c, d, and b, which arises 
when the end-points of a rectangular distribution are inexactly known and their 
probability distributions may be represented by independent rectangular distributions. 
 
2.2 Only left end-point inexactly known 
 
Suppose the probability distribution of a variable X1 is rectangular on the interval (Z1, b), 
where the right end-point is known to be b, the left end-point Z1 is inexactly known, and 
the state of knowledge about Z1 can be represented by a rectangular distribution on an 
interval (a, c), where a ≤ c ≤ b.  Then the unconditional pdf f1(x) of X1 can be obtained by 
taking the limit of the pdf (4) as the point d tends to the right end-point b.   
 
When determining the limits we need to use the L’Hospital’s Rule for indeterminate 
forms which states the following.  If the limits of each of the two functions f1(z) and 
f2(z) are zero but the limit of [f1´(z) / f2´(z)] is finite, where f1´(z) and f2´(z) are the first 
order derivatives of f1(z) and f2(z) respectively, then lim [f1(z) / f2(z)] = 
lim [f1´(z) / f2´(z)].  The rule extends to second and higher order derivatives. 
 
Thus the pdf f1(x) of X1 is  
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The pdf (9) has three parameters a, c, and b.  The shape of pdf f1(x) is indicated figure 2.  
The parameters a and b represent the end-points and the parameters c and b identify the 
flat part of the pdf (9).  We will refer to the probability distribution represented by the pdf 
(9) as Curvilinear Trapezoid (a, c, b) with only left-side curving. 
 
The k-th moment E(X1

k), expected value E(X1), and variance V(X1) of the pdf f1(x) are 
determined by taking the limits of (6), (7), and (8) as d tends to b and t = (b – d) tends to 
zero.  Thus 
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for k = 1, 2, … , 
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where r = (c – a) and s = (b – c).  
 
Suppose {u1, …, un} and {w1, …, wn}, are two independent sets of random numbers from 
a rectangular distribution on the interval [0, 1].  Define z1i = a + (c – a) × ui, then 
{z11, …, z1n} is a set of n random numbers from a rectangular distribution on the interval 
(a, c) for the left end-point Z1.  Define xi = z1i + (b – z1i) × wi, then {x1, …, xn} is a set of n 
random numbers from the pdf (9) with parameters a, c, and b. 
 
2.3 Only right end-point inexactly known 
 
Suppose the probability distribution of a variable X2 is rectangular on the interval (a, Z2), 
where the left end-point is known to be a, the right end-point Z2 is inexactly known, and 
the state of knowledge about Z2 can be represented by a rectangular distribution on an 
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interval (d, b), where a ≤ d ≤ b.  Then the unconditional pdf f2(x) of X2 can be obtained by 
taking the limit of the pdf (4) as the point c tends to the left end-point a.  Thus the pdf 
f2(x) of X2 is  
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The pdf (13) has three parameters a, d, and b.  The shape of pdf f2(x) is indicated in 
figure 3.  The parameters a and b represent the end-points and the parameters a and d 
identify the flat part of the pdf (13).  We will refer to the probability distribution 
represented by the pdf (13) as Curvilinear Trapezoid (a, d, b) with only right-side 
curving.   
 
The k-th moment E(X2

k), expected value E(X2), and variance V(X2) of the pdf f2(x) are 
determined by taking the limits of (6), (7), and (8) as c tends to a and r = (c – a) tends to 
zero.  Thus 
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for k = 1, 2, … , 
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where s = (d – a) and t = (b – d).  
 
Suppose {v1, …, vn} and {w1, …, wn}, are two independent sets of random numbers from 
a rectangular distribution on the interval [0, 1].  Define z2i = d + (b – d) × vi, then 
{z21, …, z2n} is a set of n random numbers from a rectangular distribution on the interval 
(d, b) for the right end-point Z2.  Define xi = a + (z2i – a) × wi, then {x1, …, xn} is a set of 
n random numbers from the pdf (13) with parameters a, d, and b.  
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Note 1:  If we take the limit as the point c tends to the point a and the point d tends to the 
point b, then the pdf (4) reduces to 
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We recognize (17) as the pdf of a rectangular distribution on the interval (a, b).  Thus as 
one would expect, if the left end-point Z1 is the known value a, and the right end-point Z2 
is the known value b, then the pdf (4) reduces to the pdf of a rectangular distribution on 
the interval (a, b).  If we take the limit of the k-th moment (6), the expected value (7), and 
the variance (8) of the pdf (4) as the point c tends to the point a and the point d tends to 
the point b, then we obtain 
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for k = 1, 2, … , 
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As one would expect, the expressions(18), (19), and (20) are the k-th moment, for k = 1, 
2, … , the expected value, and the variance of a rectangular distribution on the interval 
(a, b) [1]. 

 

3. Comparison with trapezoidal distribution 
We will discuss trapezoidal distributions corresponding to the curvilinear trapezoidal 
distributions discussed in sections 2.1, 2.2, and 2.3. 
 

3.1 Trapezoidal distribution with both sides sloping 

As discussed in [2, section 2], the pdf of a variable Y having the trapezoidal distribution 
Trapezoid (a, c, d, b) is  
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The k-th moment E(Yk) of the pdf g(y) is 
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for k = 1, 2, … [2].  In particular, the expected value and the variance of the pdf g(y) are, 
respectively, 
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and  
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where r = (c – a), s = (d – c), and t = (b – d) [2, Table 1].  The standard deviation S(Y) of 
the variable Y is the square-root of the variance V(Y). 
 
The GUM [3, section 4.3.9] suggests that in some cases a trapezoidal distribution is a 
more realistic expression of the state of knowledge than a rectangular distribution.  
Therefore, we compare the expected value and the variance of the curvilinear trapezoidal 
distribution having the pdf (4) with the expected value and the variance of the 
corresponding trapezoidal distribution having the pdf (21) with the same parameters a, c, 
d, and b.  The difference E(Y) – E(X) (equation (23) minus equation (7)) between the 
expected values of trapezoidal and curvilinear trapezoidal distributions is  
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The difference V(Y) – V(X) (equation (24) minus equation (8)) between the variances of 
trapezoidal and curvilinear trapezoidal distributions is 
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Metrology Example 3.1:  
Suppose scant specific information is available concerning a quantity X involved in 
measurement.  Further suppose that the best estimate of the quantity value is μ and the 
minimum and maximum possible quantity values are estimated to be, respectively μ – D1 
and μ + D2, where μ is regarded as known but D1 and D2 are inexactly known.  In the 
absence of additional knowledge, suppose the state of knowledge about X is represented 
by a rectangular distribution on the interval (μ – D1, μ + D2).  Suppose the inexact state of 
knowledge about D1 is represented by a rectangular distribution on some interval (δ1 – 
ε1, δ1 + ε1) with expected value δ1 and half-width ε1, where δ1 ≥ ε1 > 0, and suppose the 
inexact state of knowledge about D2 is represented by a rectangular distribution on some 
interval (δ2 – ε2, δ2 + ε2) with expected value δ2 and half-width ε2, where δ2 ≥ ε2 > 0.  
 
Let us consider the case μ = 0, δ1 = δ2 =1, ε1 = 0.25, and ε2 = 0.5.  A corollary of 
section 2.1 is that the unconditional state of knowledge distribution of X is Curvilinear 
Trapezoid (a, c, d, b) with pdf f(x) given in (4), where a = μ – δ1 – ε1 = –1.25, c = μ –
 δ1 + ε1 = –0.75, d = μ + δ2 – ε2 = 0.5 and b = μ + δ2 + ε2 = 1.5.  The corresponding 
trapezoidal distribution is Trapezoid (a, c, d, b) with pdf g(x) given in (21) where a = –
1.25, c = –0.75, d = 0.5 and b = 1.5.  Both pdfs f(x) and g(x) are plotted in figure 1.  The 
expected value and the standard deviation of Curvilinear Trapezoid (–1.25, –0.75, 0.5, 
1.5) are 0 and 0.6067, respectively.  The expected value and the standard deviation of 
Trapezoid (–1.25, –0.75, 0.5, 1.5) are 0.0156 and 0.6206, respectively.  We can use ε1/δ1 
and ε2/δ2 as indicators of the relative uncertainties associated with δ1 and δ2, respectively.  
Even when ε1/δ1 is as large as 25 % and ε2/δ2 is as large as 50 % the expected values and 
the standard deviations of the curvilinear trapezoid and the corresponding trapezoid are 
not very different. 
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Figure 1: The pdf f(x) of Curvilinear Trapezoid (a, c, d, b) displayed in solid lines and the 
pdf g(x) of trapezoid (a, c, d, b) displayed in dotted lines both having the same 
parameters a = μ – δ1 – ε1 = –1.25, c = μ – δ1 + ε1 = –0.75, d = μ + δ2 – ε2 = 0.5 and b = 
μ + δ2 + ε2 = 1.5 corresponding to μ = 0, δ1 = δ2 = 1, ε1 = 0.25, and ε2 = 0.5. 
 

3.2 Trapezoidal distribution with only left-side sloping 

The pdf of a variable Y1 having the trapezoidal distribution Trapezoid (a, c, b) with only 
left-side sloping can be obtained from the pdf (21) by taking the limit as the point d 
approaches the point b [2, section 3.1].  The resulting pdf g1(y) of Y1 with parameters a, c, 
and b is 
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The k-th moment E(Y1
k) of the pdf g1(y) is 
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for k = 1, 2, … [2].  In particular, the expected value and the variance of the pdf g1(y) are, 
respectively, 
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where r = (c – a) and s = (b – c).  The difference E(Y1) – E(X1) (equation (29) minus 
equation (11)) between the expected values of the pdfs g1(y) and f1(x) is  
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The difference V(Y1) – V(X1) (equation  (30) minus equation (12)) between the variances 
of the pdfs g1(y) and f1(x) is 
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Metrology Example 3.2: 

Suppose the maximum possible value of a quantity X1 involved in measurement is known 
to be μ and the minimum possible value is not exactly known.  In the absence of 
additional knowledge, suppose the state of knowledge about X1 is represented by a 
rectangular distribution on the interval (μ – D1, μ), where D1 is not exactly known.  This 
is a special case of example 3.1 corresponding to D2 ≡ 0.  Suppose the state of knowledge 
about D1 is represented by a rectangular distribution on the interval (δ – ε, δ + ε) with 
expected value δ and half-width ε, where δ ≥ ε > 0.   
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Let us consider the case μ = 0, δ = 1, ε = 0.75.  A corollary of the section 2.2 is that the 
unconditional state of knowledge distribution of X1 is Curvilinear Trapezoid (a, c, b) with 
only left-side curving having the pdf f1(x) given in (9), where a = μ – δ – ε = –1.75  c = 
μ – δ + ε  = –0.25 and b = μ = 0.  The corresponding trapezoidal distribution is Trapezoid 
(a, c, b) with only left-side sloping with the pdf g1(x) given in (27) where a = –1.25, c = –
0.25, and b = 0.  Both pdfs f1(x) and g1(x) are plotted in figure 2.  The expected value and 
the standard deviation of Curvilinear Trapezoid (–1.75, –0.25, 0) with only left-side 
curving are –0.5 and 0.3819, respectively.  The expected value and the standard deviation 
of Trapezoid (–1.75, –0.25, 0) with only left-side sloping are –0.5938 and 0.4102, 
respectively.  Even when ε/δ is as large as 75 % the differences between the expected 
values and standard deviations of the curvilinear trapezoid and the corresponding 
trapezoid are not very large. 
 

-2 -1.75 -0.25 0.25
x

f1 HxL, g1HxL

 
 
Figure 2: The pdf f1(x) of Curvilinear Trapezoid (a, c, b) with only left-side curving 
displayed in solid lines and the pdf g1(x) of trapezoid (a, c, b) with only left-side sloping 
displayed in dotted lines both having the same parameters a = μ – δ – ε = –1.75  c = μ –
 δ + ε  = –0.25 and b = μ = 0 corresponding to μ = 0, δ = 1, ε = 0.75. 
 

3.2 Trapezoidal distribution with only right-side sloping  

The pdf of a variable Y2 having the trapezoidal distribution Trapezoid (a, d, b) with only 
right-side sloping can be obtained from the pdf (21) by taking the limit as the point c 
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approaches the point a [2, section 3.2].  The resulting pdf g2(y) of Y2 with parameters a, d, 
and b is  

 

 2

2 if
( )

( ) .
2 ( ) if

( ) ( )

a y d
b a d a

g y
b y d y b

b a d a b d

⎧ ≤ ≤⎪ − + −⎪= ⎨ −⎪ ≤ ≤
⎪ − + − −⎩

 (33) 

 

The k-th moment E(Y2
k) of the pdf g2(y) is 

 

 
2 2

1
2

1 2( ) ( 2) ,
( 2)( 1) ( )

k k
k kb dE Y k a

k k b a d c b d

+ +
+⎛ ⎞−

= − +⎜ ⎟+ + − + − −⎝ ⎠
 (34) 

 

for k = 1, 2, … [2].  In particular, the expected value and the variance of the pdf g2(y) are, 
respectively, 
 

 
2 2 2

2
3( ) ,

3( 2 )
b d bd aE Y

b d a
+ + −

=
+ −

 (35) 

 

and  

 

 
2 2 4

2 2

(2 )( ) ,
48 24 144(2 )

s t t tV Y
s t

+
= + −

+
 (36) 

 

where s = (d – a) and t = (b – d).  The difference E(Y2) – E(X2) (equation (35) minus 
equation (15)) between the expected values of the pdfs g2(y) and f2(x) is  

 

 
2 2

2 2
( )( ) ( ) .

12( 2 ) 12(2 )
b d tE Y E X

b d a s t
−

− = =
− − +

 (37) 

 
The difference V(Y2) – V(X2) (equation  (36) minus equation (16)) between the variances 
of the pdfs g2(y) and f2(x) is 
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2 4

2 2 2( ) ( ) .
72 144(2 )
t tV Y V X

s t
− = −

+
 (38) 

 

Metrology Example 3.3: 

As in example 3.2, if the state of knowledge about a quantity X2 is represented by a 
rectangular distribution on the interval (μ, μ + D2), where about D2 has a rectangular 
distribution on (δ – ε, δ + ε) where δ ≥ ε > 0 then a corollary of the section 2.3 is that the 
unconditional state of knowledge distribution of X2 is a Curvilinear Trapezoid (a, d, b) 
with only-right-side curving having the pdf f2(x) given in (13), where a = μ, d = μ + δ – ε, 
and b = μ + δ + ε.  The corresponding trapezoidal distribution is Trapezoid (a, d, b) with 
only right-side sloping having the pdf g2(x) given in (33).  Let us consider the case μ = 
0, δ = 1, ε = 0.75.  The expected value and the standard deviation of the Curvilinear 
Trapezoid (0, 0.25, 1.75) with only-right-side curving having the pdf f2(x) are 
respectively 0.5 and 0.3819.  The expected value and the standard deviation of the 
Trapezoid (0, 0.25, 1.75) with only right-side sloping having the pdf g2(x) are 
respectively 0.5938 and 0.4102.  Thus even when ε/δ is as large as 75 % the differences 
between the expected values and standard deviations of the curvilinear trapezoid and the 
corresponding trapezoid are not very large. 
 

-0.25 0.25 1.75 2
x

f2HxL, g2 HxL
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Figure 3: The pdf f2(x) of Curvilinear Trapezoid (a, d, b) with only right-side curving 
displayed in solid lines and the pdf g2(x) of Trapezoid (a, d, b) with only right-side 
sloping  displayed in dotted lines both having the same parameters a = μ = 0, d = μ + δ – ε 
= 0.25 and b = μ + δ + ε = 1.75 corresponding to μ = 0, δ = 1, ε = 0.75. 
 
The expected values and variances of curvilinear trapezoidal distributions which arise 
when one or both end-points of a rectangular distribution are inexactly known are 
summarized in Table 1.  Also included in Table 1 are the expected values and variances 
of the corresponding trapezoidal distributions. 
 
Table 1: Expected values and variances of curvilinear trapezoidal distribution and 
corresponding trapezoidal distribution 

 

 Expected value  
E(X) 
 

Variance  
V(X) 

Curvilinear Trapezoid  
(a, c, d, b), pdf (4), 
figure 1 

4
a b c d+ + +  

 

2 2 2( 2 ) ( )
48 36

r s t r t+ + +
+  

where r = (c – a), s = (d – c), t = (b – d) 

Trapezoid  
(a, c, d, b), pdf (21), 
figure 1 

3 3 3 3b d c a
b d c a

⎛ ⎞− −
−⎜ ⎟− −⎝ ⎠

÷

3(b – a + d – c) 

2 2 2 2 2 2

2

( 2 ) ( ) ( )
48 24 144( 2 )

r s t r t r t
r s t

+ + + −
+ −

+ +
where r = (c – a), s = (d – c), t = (b – d) 
 

Curvilinear Trapezoid 
(a, c, b) with only left-
side curving, pdf (9), 
figure 2 
 

2
4

a b c+ +  
2 2( 2 )

48 36
r s r+

+  

where r = (c – a) and s = (b – c) 

Trapezoid (a, c, b) with 
only left-side sloping, 
pdf (27), figure 2 
 

2 2 23
3(2 )

b a c ac
b a c

− − −
− −

 
2 2 4

2

( 2 )
48 24 144( 2 )

r s r r
r s

+
+ −

+
 

where r = (c – a) and s = (b – c) 

Curvilinear Trapezoid 
(a, d, b) with only 
right-side curving, pdf 
(13), figure 3 

2
4

a b d+ +  

 

2 2(2 )
48 36

s t t+
+  

where s = (d – a) and t = (b – d) 
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Trapezoid (a, d, b) 
with only right-side 
sloping, pdf (33), 
figure 3 

2 2 23
3( 2 )

b d bd a
b d a

+ + −
+ −

 
2 2 4

2

(2 )
48 24 144(2 )

s t t t
s t

+
+ −

+
 

where s = (d – a) and t = (b – d) 

 
4. Comparison with isocurvilinear distribution arising from uncertain half-width 
If the mid-point of a rectangular distribution is known but the half-width is uncertain and 
the state of knowledge about the half-width may be represented by another (narrower) 
rectangular distribution then it is shown in [4] that the resulting distribution is 
isocurvilinear trapezoidal.  We will compare the isocurvilinear trapezoidal distribution 
which arises from uncertain half-width with the isocurvilinear trapezoidal which arises 
when the end points are uncertain. 
 
Suppose the probability distribution of a variable XC is rectangular on the interval (μ – D, 
μ + D), whose mid-point μ is known and the half-width D has a rectangular distribution 
on the interval (δ – ε, δ + ε), where δ > ε > 0, then as shown in [4] the distribution of XC is 
Isocurvilinear Trapezoid (a, c, d, b), where a = μ – δ – ε, c = μ – δ + ε, d = μ + δ – ε and b 
= μ + δ + ε.  The pdf of XC is 
 

 1( ) ln( ) for ( ) ( ) .
4 max{| |, }

h x x
x
δ ε μ δ ε μ δ ε

ε μ δ ε
+

= − + ≤ ≤ + +
− −

 (39) 

 
As discussed in [4], the pdf h(x) has expected value  
 

 C( )E X μ=  (40) 

 
and 
 

 
2 2

C( )
3 9

V X δ ε
= +  (41) 

 
  
Suppose the probability distribution of a variable X is rectangular on the interval (μ – D1, 
μ + D2) where D1 and D2 are uncertain.  If D1 and D2 are independent but have the same 
rectangular distribution on the interval (δ – ε, δ + ε), where δ > ε > 0, then the distribution 
of X is Curvilinear Trapezoid (a, c, d, b) with pdf f(x) given in (4), where a = μ – δ – ε, c 
= μ – δ + ε, d = μ + δ – ε and b = μ + δ + ε.  Since D1 and D2 have identical distributions 
the pdf f(x) is symmetric about = μ, i.e. the distribution of X is Isocurvilinear Trapezoid 
(a, c, d, b).  The expected value and the variance of this isocurvilinear trapezoidal 
distribution arising from uncertain end points can be obtained by substituting a = μ – δ –
 ε, c = μ – δ + ε, d = μ + δ – ε, and b = μ + δ + ε in  (7) and (8), respectively.  Thus 
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 ( )E X μ=  (42) 

 
and 

 
2 22( )

3 9
V X δ ε

= +  (43) 

 
Suppose the probability distribution of a variable XS is Isosceles Trapezoid (a, c, d, b) 
with the pdf g(x) given in (21), where a = μ – δ – ε, c = μ – δ + ε, d = μ + δ – ε and b = 
μ + δ + ε.  The expected value and variance of Isosceles Trapezoid (a, c, d, b) with the 
pdf g(x) can be obtained by substituting a = μ – δ – ε, c = μ – δ + ε, d = μ + δ – ε, and b = 
μ + δ + ε in (23) and (24) respectively.  Thus 
 

 S( )E X μ=  (44) 

 
and 
 

 
2 2

S( )
3 3

V X δ ε
= +  (45) 

 
Figure 7 displays the pdfs f(x), g(x), and h(x) all with the same parameters a, c, d, and b, 
where a = μ – δ – ε = –1.75, c = μ – δ + ε = –0.25, d = μ + δ – ε = 0.25, and b = μ + δ + ε = 
1.75 corresponding to μ = 0, δ = 1 and ε = 0.75.   
 
The probability distributions of XC, X, and XS have the same parameters and the same 
expected values but the variances are different.  The variance V(X) of the pdf f(x) arising 
from uncertain end-points is larger than the variance V(XC) of the pdf h(x) arising from 
uncertain half-width because two end points are independently uncertain rather than one 
parameter half-width.  The variance V(XS) of the pdf g(x) of isosceles trapezoidal 
distribution is largest.  But the differences in variances are not large. 
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-1.75 -0.25 0.25 1.75
x

f HxL, g HxL, hHxL

 
 
Figure 7: The pdf f(x) of Isocurvilinear Trapezoid (a, c, d, b) which arises from uncertain 
end-points displayed in solid lines, the pdf h(x) of Isocurvilinear Trapezoid (a, c, d, b)  
which arises from uncertain half-width displayed in dashed lines, and the pdf g(x) of 
Isosceles Trapezoid (a, c, d, b) displayed in dotted lines, all having the same parameters 
where a = μ – δ – ε = –1.75, c = μ – δ + ε = –0.25, d = μ + δ – ε  = 0.25, and b = μ + δ + ε 
= 1.75 corresponding to μ = 0, δ = 1 and ε  = 0.75. 
 
5. Conclusion 
When meager specific information is available about a quantity involved in measurement, 
a rectangular distribution is often used to represent the state of knowledge and to quantify 
the uncertainty associated with the best estimate of the quantity value.  The GUM 
suggests that in some cases an isosceles trapezoidal distribution represents the state of 
knowledge better than a rectangular distribution.  In a previous paper we showed that if 
the mid-point of a rectangular distribution is known and the state of knowledge about the 
half-width may be represented by another (narrower) rectangular distribution then the 
resulting distribution is isocurvilinear trapezoidal.  In some metrology applications, the 
extent of knowledge concerning the end points of a rectangular distribution is different.  
In particular one of the end-points may be known and only one end-point may not be 
exactly known.  In this paper, we showed that when the available information about the 
end-points of a rectangular distribution may be represented by other (narrower) 
rectangular distributions, then the resulting distribution is curvilinear trapezoidal which 
may be asymmetric.  We described the moments of a curvilinear trapezoidal distribution 
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which arises when one or both end-points of a rectangular distribution are inexactly 
known.  In particular, we gave compact algebraic expressions for the expected value and 
the variance.  We compared the curvilinear trapezoidal distribution which arises from 
inexactly known end-points with the corresponding trapezoidal distribution whose 
sloping sides are straight.  In many metrology applications the differences between the 
expected values and variances of a curvilinear trapezoidal distribution arising from 
inexactly known end-points and the corresponding trapezoidal distribution are likely to 
be small. 
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Appendix 1 
From the expressions (1), (2), and (3), the joint pdf of X, Z1, and Z2 is 
 

1 2, , 1 2 1 2 1 2
2 1

1 1( , , ) if , , and .
( )( )X Z Zf x z z z x z a z c d z b
c a b d z z

= ≤ ≤ ≤ ≤ ≤ ≤
− − −

 

 

The unconditional pdf f(x) for a particular value x of X is obtained by integrating the joint 
pdf of X, Z1, and Z2 with respect to the possible values of z1 and z2 corresponding to that x.  
The region of the possible values of z1 and z2  in the z1 × z2 plane for a given x depends on 
which of the three line segments, a ≤ x ≤ c, c ≤ x ≤ d, and d ≤ x ≤ b, contains that value x.  
If a ≤ x ≤ c, the possible values of z1 and z2 are in the rectangle defined by: a ≤ z1 ≤ x and d 
≤ z2 ≤ b.  If c ≤ x ≤ d, the possible values of z1 and z2 are in the rectangle defined by: a ≤ z1 
≤ c and d ≤ z2 ≤ b.   If d ≤ x ≤ b, the possible values of z1 and z2 are in the rectangle defined 
by: a ≤ z1 ≤ c and x ≤ z2 ≤ b. 

 
To determine the unconditional pdf f(x), we will need to evaluate the integrals 

 

1 2 2
2 1

1  d and ln( ) d ,z z t z
z z

−
−∫ ∫  for some constant t.  

 

In the first integral, putting u = z2 – z1 and du = – dz1, we have  
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1 2 1
2 1

1 1 d  d ln( ) ln( ).z u u z z
z z u

= − = − = − −
−∫ ∫  

 
In the second integral, putting u = z2 – t and du = dz2, we have  
 

2 2 2 2 2ln( )d ln( )d ln( ) ( ) ln( ) ( ).z t z u u u u u z t z t z t− = = − = − − − −∫ ∫  

 

If a ≤ x ≤ c, then the possible values of z1 and z2 are in the rectangle [a ≤ z1 ≤ x, d ≤ z2 ≤ b] 
of the z1 × z2 plane.  Now  

 

( ) ( )

1 2 2 1 2 2 2 2
2 1

2 2 2 2 2 2 2 2 2 2

1 d d ( ln( ) )d (ln( ) ln( ))d

ln( )d ln( )d ( ) ln( ) ( ) ( ) ln( ) ( )

( ) ln( ) ( ) ln( ) ( ) ln( ) ( ) ln( ).

b x b b
x

a
d a d d

b b
b b

d d
d d

z z z z z z a z x z
z z

z a z z x z z a z a z a z x z x z x

b a b a d a d a b x b x d x d x

= − − = − − −
−

= − − − = − − − − − − − − −

= − − − − − − − − + − −

∫ ∫ ∫ ∫

∫ ∫

 

Therefore,  

 

( )

1 2, , 1 2 1 2 1 2
2 1

1 1( ) ( , , )d d d d
( )( )

1 ( ) ln( ) ( ) ln( ) ( ) ln( ) ( ) ln( ) .
( )( )

b x b x

X Z Z
d a d a

f x f x z z z z z z
c a b d z z

b a b a d a d a b x b x d x d x
c a b d

= =
− − −

= − − − − − − − − + − −
− −

∫ ∫ ∫ ∫
 

 

Alternatively if a ≤ x ≤ c, then 
( ) ( )

( ) ( )

1 ( ) ( )( ) ln .
( )( ) ( ) ( )

b a d x

d a b x

b a d xf x
c a b d d a b x

− −

− −

− −
=

− − − −
  

Similarly if c ≤ x ≤ d, then the possible values of z1 and z2 are in the rectangle [a ≤ z1 ≤ c, d 
≤ z2 ≤ b] of the z1 × z2 plane and 

 

( )

1 2, , 1 2 1 2 1 2
2 1

1 1( ) ( , , )d d d d
( )( )

1 ( ) ln( ) ( ) ln( ) ( ) ln( ) ( ) ln( ) .
( )( )

b c b c

X Z Z
d a d a

f x f x z z z z z z
c a b d z z

b a b a d a d a b c b c d c d c
c a b d

= =
− − −

= − − − − − − − − + − −
− −

∫ ∫ ∫ ∫
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Alternatively if c ≤ x ≤ d, then 
( ) ( )

( ) ( )

1 ( ) ( )( ) ln .
( )( ) ( ) ( )

b a d c

d a b c

b a d cf x
c a b d d a b c

− −

− −

− −
=

− − − −
  

Likewise, if d ≤ x ≤ b, then the possible values of z1 and z2 are in the rectangle [a ≤ z1 ≤ c, x 
≤ z2 ≤ b] of the z1 × z2 plane and 

 

( )

1 2, , 1 2 1 2 1 2
2 1

1 1( ) ( , , )d d d d
( )( )

1 ( ) ln( ) ( ) ln( ) ( ) ln( ) ( ) ln( ) .
( )( )

b c b c

X Z Z
x a x a

f x f x z z z z z z
c a b d z z

b a b a x a x a b c b c x c x c
c a b d

= =
− − −

= − − − − − − − − + − −
− −

∫ ∫ ∫ ∫
 

 

Alternatively if d ≤ x ≤ b, then 
( ) ( )

( ) ( )

1 ( ) ( )( ) ln .
( )( ) ( ) ( )

b a x c

b c x a

b a x cf x
c a b d b c x a

− −

− −

− −
=

− − − −
  

 

Appendix 2 
The joint pdf of X, Z1, and Z2 is 
 

1 2, , 1 2 1 2 1 2
2 1

1 1( , , ) if , , and .
( )( )X Z Zf x z z z x z a z c d z b
c a b d z z

= ≤ ≤ ≤ ≤ ≤ ≤
− − −

 

 

Therefore the k-th moment E(Xk) of the unconditional distribution of X, for k = 1, 2, … , is  

 
2 2

1 2

1 1

z z

, , 1 2 2 1 2 1
2 1z z

1( ) ( , , ) d d d d d d .
( )( )

c b c b k
k k

X Z Z
a d a d

xE X x f x z z x z z x z z
c a b d z z

= =
− − −∫ ∫ ∫ ∫ ∫ ∫  

 

Since 
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1 1

1 11
2 1

1 2
02 1 2 1 2 1

1 1 1d ,
1 1 1

zz k kk k k
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z zx xx z z
z z k z z k z z k

+ ++
−

=

⎛ ⎞ −
= = =⎜ ⎟− + − + − +⎝ ⎠

∑∫  

 

therefore 
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1 2 2 1 1 2 2 1
0 0

1 1 1 1( ) d d d d .
( )( ) 1 ( )( ) 1

c b c bk k
k j k j j k j

j ja d a d

E X z z z z z z z z
c a b d k c a b d k

− −

= =

= =
− − + − − +∑ ∑∫ ∫ ∫ ∫  

 

Since 

 

1 1 1
2

2 2d
1 1

bb k j k j k j
k j

d d

z b dz z
k j k j

− + − + − +
− −

= =
− + − +∫  

 

and 

 
1 1 1

1
1 1d

1 1

cc j j j
j

a a

z c az z
j j

+ + +−
= =

+ +∫   

 

we have 

 
1 1 1 1

0

1 1( ) .
( )( ) 1 1 1

j j k j k jk
k

j

c a b dE X
c a b d k j k j

+ + − + − +

=

− −
=

− − + + − +∑  

 

The expected value E(X) is obtained by substituting k = 1; thus, 

 
2 2 2 21 1( ) .

( )( ) 2 1 2 2 1 4
c a b d c a b d a b c dE X

c a b d
⎛ ⎞− − − − + + +

= + =⎜ ⎟− − ⎝ ⎠
 

 

The second moment E(X2) is obtained by substituting k = 2; thus, 

 
3 3 2 2 2 2 3 3

2 1 1( ) ,
( )( ) 3 1 3 2 2 3 1

c a b d c a b d c a b dE X
c a b d

⎛ ⎞− − − − − −
= + +⎜ ⎟− − ⎝ ⎠

 

 

which simplifies to 
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2 2 2 2
2 1 ( ) ( )( ) .

3 3 2 2 3
b bd d c a b d c ca aE X

⎛ ⎞+ + + + + +
= + +⎜ ⎟

⎝ ⎠
 

 

The variance V(X) is then 

 
22 2 2 2

2 2 1 ( ) ( )( ) ( ) ( ( )) .
3 3 2 2 3 4

b bd d c a b d c ca a a b c dV X E X E X
⎛ ⎞+ + + + + + + + +⎛ ⎞= − = + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Let r = (c – a), s = (d – c), and t = (b – d), then the variance V(X) can be expressed as 

 
2 2 2( 2 ) ( )( ) .

48 36
r s t r tV X + + +

= +  

 


