
 1

Proceedings of the 2009 DETC
2009 ASME International Design Engineering Technica l Conferences

August 30 – September 2, 2009, San Diego, Californi a, USA

DETC2009-86666

QUANTIFYING THE PERFORMANCE OF MT-CONNECT IN A DIST RIBUTED
MANUFACTURING ENVIRONMENT

John Michaloski, Byeongeon Lee, and
Frederick Proctor

National Institute of Standards and Technology
Gaithersburg, MD USA

Sid Venkatesh and Sidney Ly
Boeing Company
Seattle, WA USA

ABSTRACT
In the CNC manufacturing world, the continuing pressure

to reduce costs and improve time to market places a premium
on smarter ways of manufacturing and intensifies the need to
integrate feedback from the shop floor into the enterprise
business systems. There have been many efforts to improve
CNC factory floor integration with varying degrees of success.
Recently, MTConnect has been developed as an open and free
communications standard to facilitate the exchange of data on
the manufacturing floor for machine tools and related devices.
This paper will look at quality of service issues concerned with
implementing MTConnect in a “Dual-Ethernet” machine tool
network configuration.

NOMENCLATURE
API Application Programming Interface
CNC Computer Numerical Control
COM Microsoft Component Object Model
DA Data Access
ERP Enterprise Resource Planning
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
MAP Manufacturing Automation Protocol
MMS Manufacturing Message Specification
MTC MTConnect
OLE Object Linking and Embedding
OMAC Open Modular Architecture Control
OPC OLE for Process Control
PDH Performance Data Helper
QoS Quality of Service
XML eXtensible Markup Language
XSD XML Schema Definition

INTRODUCTION
In today’s manufacturing world, “Design Anywhere, Build

Anywhere, Support Anywhere” is predicated on universal
connectivity and information sharing across all facets of design,
manufacturing, distribution, and maintenance. To achieve this
ubiquity, integration of all company elements, especially
manufacturing, must be done. For years the lack of widely
adopted machine-tool integration standards has hindered factory
integration, making it difficult and costly.

Historically, CNC integration has been an afterthought to
the primary goal, making parts. Indeed, machine tool
monitoring remains a largely untapped area for linking real-time
plant data into the enterprise. Informative, accurate and timely
machine knowledge can be vital to successful manufacturing.
Machine monitoring serves as an analysis and diagnostic tool
that offers greater visibility into manufacturing processes and
help determine ways for improving operation and increasing
productivity. The key paybacks of CNC machine monitoring
include collection and management of pertinent production
information, real-time monitoring and preventive and reactive
maintenance, and real-time quality assurance.

Over the years, numerous standards have been promoted to
enable machine tool integration. An early attempt at control
system integration was the MAP (Manufacturing Automation
Protocol) standard, which is a communication standard for
intelligent factory floors devices. [1] Another legacy factory
floor integration standard is the Manufacturing Message
Specification (MMS), which is a messaging system for
exchanging data between control applications and networked
devices [2;3]. Both MAP and MMS are large and extensive
standards, with requirements for supporting several Open
Systems Interconnection (OSI) Reference Model layers of
communication functionality. These standards enjoyed limited

 2

success as the breadth, complexity and as a consequence,
increased cost, resulted in the lack of vendor and user support.

In general, difficulties arise for companies and vendors to
adopt standards that are excessively broad and complex, making
it costly to develop the required hardware and software. Further,
the limited adoption of a standard yields marginal benefits. The
latest trend in developing successful manufacturing standards is
to leverage widely-adopted, ubiquitous computer technology. In
this manner, MTConnect is a new standard sponsored by the
Association for Manufacturing Technology developed to
facilitate the exchange of data on the manufacturing floor. MTC
is an open and royalty free communications standard “built
upon the most prevalent standards in the manufacturing and
software industry, maximizing the number of tools available for
its implementation and providing the highest level of
interoperability at a reasonable cost with other standards and
tools in these industries.” [4]

Excited by the potential of MTC, Boeing worked with
NIST and other members of the Open Modular Architecture
Controllers (OMAC) User Group, to test MTC on the plant
floor. OMAC is an affiliate organization of the Instrumentation,
Systems and Automation Society (ISA) working to derive
common solutions for technical and non-technical issues in the
development, implementation and commercialization of open,
modular architecture control. The OMAC Machine Tool Group
has been working and promoting the challenging issue of
“mainstreaming” machine tool and factory floor integration.

This paper will look at performance and quality of service
issues concerned with using MTC in a distributed factory floor
environment. Section 2 will give a brief overview of
MTConnect technology. Section 3 describes an implementation
of Machine Monitoring using MTC that relies on CNC OPC
Data Access. Section 4 will analyze various MTConnect issues
and then evaluate the quality of service performance. Finally, a
discussion including future directions will be given.

MTC OVERVIEW
Integration of factory floor CNC information has been

difficult, if not impossible, as traditionally, factory floor
machines have been “islands of automation.” So why is
machine tool integration such a problem? Although integration
standards have and are routinely used elsewhere in
manufacturing, acceptance has been slow within the CNC
discrete parts industry. The problem stems from the perceived,
if not actual, lack of return on investment from integration. It is
at times too hard, too costly and/or too complicated. The MTC
specification addresses these issues from the onset bringing an
approach that ensures affordability as well as performance.

MTC is an open, royalty free, standard that acts as a bridge
between all design, manufacturing, distribution, and
maintenance data. MTC is based upon prevalent Web
technology including XML [5] and HTTP [6]. Using prevailing
technology and providing free software development kits
minimizes technical and economic barriers to MTC adoption.

Figure 1 MTC System Architecture

Figure 1 shows the high-level system architecture of the
MTC standard. An “MTC Device” is a piece of equipment
organized as a set of components that provide data. The core of
MTC is the “Agent”, which is a process that acts as a “bridge”
between a factory device and a “Client Application”. The MTC
Agent receives and stores single or a time series of data samples
or events that are made available to the Client Application. An
MTC sample is the value of a continuous data item at a point in
time. An MTC event describes an asynchronous change in state.

MTC uses HTTP as the underlying communication
protocol. HTTP is a standard that serves as the main
communication protocol for the Internet and the World Wide
Web. Devices that support HTTP on the internet are accessible
worldwide. Everybody using the Web is at least vaguely
familiar with the HTTP protocol. After you type in
http://www.nist.gov and click “GO”, HTTP protocol
communicates to the NIST Web Server and the HTTP requests
receive and display Web pages from the NIST Web Server,
most often described by the hypertext markup language
(HTML).

Instead of HTML, MTC uses the more flexible Extensible
Markup Language (XML) which is used to transport data to and
from the MTC Agent (which acts much like a Web Server).
XML is extensible, unlike HTML, because you use it to define
other languages or information, such as the MTC information
model. XML describes information as a series of paired
start/end tags, i.e., <DATA> </DATA> and information is
contained between the tags, e.g., <DATA> 10.0 </DATA>.
XML provides meta-data attributes to the tags such as <DATA
id=”Xaxis”> 10.0 </DATA>.

An MTC device is modeled in XML as a set of
components, and initially the MTC specification is targeted at
machine tools and their substituent components – axes, spindle,
program, and control sequencing. Because XML is a
metalanguage MTC has defined a formal XML Schema
Definition (XSD), which describes the allowed structure of the
MTConnect XML data.

The MTC Agent is flexible and handles incoming Device
stores and outgoing Application requests with the same HTTP
mechanism. Detailed communication with the MTC agent
leverages the concept of the URL parameter, which has been
included within the specification since the earliest HTTP
drafts. [6] The URL parameters are described as
“name=value” pairs appended to the URL query, with
multiple URL parameters separated by a ‘&’.

The “Decorated URL” is sent by either the MTC Client
Application or the Device to the MTC Agent containing all the

 3

command and parameters required for the sample request.
Below, a Decorated URL storeSample command with
parameters from a MTC device is shown:

http://pc1.acme.com/storeSample?deviceName=NistTest&dataI
temName=Srpm&value=2000

The first part of the Decorated URL indicates what

protocol to use (i.e., http). The second part specifies the IP
address or the domain name (i.e., pc1.acme.com) where the
MTC agent is located. Next a series of Decorated
name/value pairs follow, where the deviceName is
NistTest and the dataItem is the Spindle RPM or Srpm.

As an example of the HTTP/XML communication between
the MTC Agent and MTC Client Application, we will assume
an MTC Agent is running on our local machine localhost .
To retrieve current Device status from the MTC agent, we can
simply do an HTTP query in Internet Explorer by navigating to
the following Web address:

http://localhost/current

This HTTP request will retrieve all the current data and
events in the MTC device. Figure 2 shows the MTC XML
response as displayed by Internet Explorer.

FACTORY IMPLEMENTATION
The OMAC MTC deployment was constrained by the

security configuration of the targeted factory network. The
networking scheme uses a dual Ethernet solution to provide a
safety and security buffer for every CNC by isolating it from the
main corporate intranet but still allowing TCP/IP connectivity
through a front-end PC (FEPC).

A major issue was the lack of native MTC Agent support
for some of the targeted CNC machine tools. As an alternative,
these CNCs supported OPC, which also allows machine
integration. OPC is a more established open specification, for
which the authors have previous factory-floor integration
experience. [7;8] OPC provides a standard mechanism for
communicating to data sources on a factory floor historically
targeting process and batch industries, but now with some CNC
market presence.

The OPC specification describes a client/server object
model to allow communication between client applications
(OPC Clients) and control device servers (CNC OPC Server).
The OPC-DA specification leverages Microsoft COM [9] to
specify OPC COM objects and their interfaces. The control
device object and interface are called OPC Servers.
Applications, called OPC Clients, can connect to OPC Servers
provided by one or more vendors. At runtime, OPC Clients

���������	
���	
���

 4

connect to an OPC Server, and an OPC Group is created and
OPC Items are added for data monitoring and control.

The next design option was whether to tightly integrate the
MTC Agent and OPC in the CNC or to use an OPC Client
Adapter to communicate to a standalone MTC Agent. MTC
provides the Georgia Tech Agent Software Development Kit
(SDK) to help implement a turnkey MTConnect agent for the
Microsoft .Net software environment. [10] The MTC SDK is
flexible and can meet different integration requirements, either
embedded or standalone application outside of the device using
an MTC Adapter.

The Dual-Ethernet networking scheme led to the decision
of using an OMAC MTC Agent to run as a standalone
application on the FEPC, so that the CNC would need an
Adapter to communicate to it using HTTP. Embedding the
MTC Agent on the CNC is possible, but would still require
some forwarding agent through the FEPC to allow MTC Clients
on the Corporate Intranet. Further, embedding the .Net
Framework in the CNC was also not as straightforward.

Figure 3 shows the Dual-Ethernet Network Architecture
with the OPC Client/Server running on the CNC PC and the
MTC running on Front-End PC to the CNC acting as either a
Relay Agent or as the MTC data server. A simple C# .Net
windows wrapper program was written around the Georgia Tech
MTC Agent core .Net DLL. It runs as a standalone Microsoft
Windows Service. A C++ OPC client Windows application was
developed that uses COM to communicate to the CNC OPC
Server and transmit this data to the MTC Agent using HTTP.

One major architecture design consideration was the
decision to avoid DCOM. OPC supports remote Data Access
using DCOM, so that the OPC Client could have run on the
FEPC. However, this architecture has many disadvantages as
OPC and DCOM are beset with security issues, firewall
problems, and a multitude of Windows security policies.
Further, HTTP is generally not blocked by a firewall, making
MTC setup and deployment easier.

DESIGN AND PERFORMANCE ANALYSIS
A reliable CNC must exhibit deterministic performance

under all conditions. To achieve determinism, the system must
account for both functional and timing requirements. Clearly,

performance is important to maximize a system’s potential.
However, in the realm of CNC systems, the guarantee of correct
and real-time quality of service (QoS) reigns paramount.

MTC provides a useful specification for machine tool and
device integration, but to guarantee CNC QoS requirements, the
need for better understanding of the network and resource
performance is essential. We took a performance engineering
approach to predicting the likely performance of systems [11]
where our goal was to run some tests that would assess MTC
QoS.

Several design issues required attention up-front. First, the
question arises as to the frequency of MTC Agent sample
updates. The first constraint was the OPC Server data access
speed, which was limited to a rate at 10 Hz (or new data every
100 ms). This update limit was weighed against the
requirements of the potential Application Clients. Sample and
event updates of a second were deemed sufficient to satisfy the
majority of requirements. Even though MTC allows bundling
of a larger group of samples for storing and retrieving data to
approximate real-time performance, one second updates
preclude any sorts of real-time adaptive control, and so was
deemed out of scope.

Within these update limits, the range of potential
Application Clients was quite extensive, including shop floor
dashboard, Overall Equipment Effectiveness (OEE), and data
mining of asset and process knowledge. The next step was to
use these design timing bounds and examine computational and
network performance under various conditions. We were most
interested in computational loading and QoS under
progressively higher network traffic and under network failure
conditions.

The testing setup included a desktop PC hosting the MTC
Agent and a PC running both the OPC Client and the Siemens
840D “Sinutrain” CNC simulator. The Sinutrain CNC simulator
includes an OPC server. This dual-PC networked setup has
proved invaluable in testing and verifying the basic integration
software. The MTC testing hardware consists of Commercial
Off–the–Shelf (COTS) PCs and Ethernet networking: two Intel
x86 CPUs, running Windows XP SP2 operating system (OS),
communicating over a 10Base-T (100 Mbps) local area
Ethernet network through a router. The CNC PC simulator

���������	
�������������� !�"������#��$��%�������"���������

 5

clock speed was 2GHz and had 2G Physical RAM. The MTC
FEPC contained a Pentium 4, with controller clock speed was
3.59GHz, and had 2G Physical RAM.

We used the Intel Pentium processor Read Time Stamp
Counter (RDTSC) feature which is ably suited for analyzing
timing performance on single-processor machines. RDTSC
tracks processor cycles and is incremented every clock
cycle [12]. Since RDTSC keeps track of cycles, not time,
resolution is based on processor frequency. Thus, a 1GHz CPU
has five times the resolution as a 200MHz CPU.

MTC adopts the Internet paradigm, which is based on the
Ethernet network and is a shared resource. Contention can
result as more and more systems share the Ethernet, and at some
point results in lower network throughput between any pair than
the nominal bandwidth available. However, since the OPC
Client and MTC Agent communicate over a dedicated Ethernet,
contention is not a QoS issue.

Another QoS aspect of OPC Client and MTC Agent
communication related to network failure – either the cable is
broken or disconnected or the MTC Agent program is
terminated or the FEPC is turned off. The OPC Client uses the
Microsoft Windows Internet (WinINet) C++ API that enables
applications to interact with HTTP, FTP and other protocols to
access Internet resources. Initially, the OPC client configured
WinINet functions using synchronous communication and
default options for HTTP communication. Table 1 shows the
test results timing the performance of storeSample , which
sent a WinInet HttpSendRequest to the MTC Agent server
under “Running” and “Down” conditions, with the Client and
MTC Agent running on different computers. An average was
generated from one thousand test cycles. The uncertainty uc of
the measurements was computed using the square root of the
sum-of-the-squares methodology.

�&���'�
�(����)�������**������	
�������������

Action
Between Machines

Time
(sec)

uc
(sec)

MTC Agent Running 0.002030 0.000548
MTC Agent “Down” – Default
Timeout

0.955262 0.037581

MTC Agent “Down” – 20 ms Timeout 0.030824 0.000118
Network “Down” – 20 ms Timeout 0.030889 0.000126

Clearly, there is significant performance degradation when
the connection to the MTC Agent is down. This performance
drop led to software reconsiderations. First, the substantial
timing difference between “Running” and “Down” was
determined to be due to the WinINet timeout setting, which was
lowered. When WinInet was configured to timeout after 20 ms,
a corresponding drop can be seen in Table 1 from almost one
second to about 30 ms for between machine MTC messaging.

Second, WinINet asynchronous communication was
evaluated as an alternative to the synchronous. In asynchronous
communication, the data packet is sent without waiting for an
acknowledgement. Because of the small size of the MTC Agent
XML responses, asynchronous was slower due to a higher

overhead and was determined to be unnecessarily complicating.
Finally, if a HTTP problem was detected; the OPC-MTC
software was changed so that MTC Agent communication was
postponed until the next update cycle.

Figure 4 Progressive MTC CPU Loading

To assess the MTC QoS for CPU loading, a dedicated
MTC–communication–only program was developed. Inside the
program, a Windows timer ran every second and in stages sent
progressively more and more storeSamples to the MTC
Agent. While this progressive MTC message loading was
running, a separate program captured the CPU loading using the
Microsoft Performance Data Helper (PDH) Library [13]. PDH
provides a query interface to retrieve a variety of detailed
performance data, such as process CPU utilization, disk activity,
etc. Figure 4 shows Progressive MTC CPU loading, captured as
a percentage of total Windows processor loading. The graph
shows MTC communication as a linear CPU loading factor. Our
“Dual-Ethernet” system expected to make less than 50 MTC
messages per second, so our expected MTC-only load was
under 10%.

In conjunction with MTC communication, MTC Adapter
could use either OPC synchronous polling or asynchronous
notification updates. Data change notification requires less
average bandwidth, but in some cases can succumb to excessive
loading. Previous work found that data values can jitter
minutely, triggering continuous OPC updates that resulted in a
sluggish Operator Interface (ultimately no effect on the real-
time CNC.) From this observation, even updates at a rate of
10Hz can lead to Operator Interface process starvation and must
be acknowledged.

With this in mind, QoS design considerations were
undertaken to prevent this problem. First, the OPC Client MTC
Adapter communicated to the OPC Server using synchronous
data updates exclusively. This data polling approach bounded
the computational and communication bandwidth to a fixed
limit, and was fixed at the Client Application update rate.
Second, the OPC Client Windows process priority was reduced
from “Normal” to “IDLE_PRIORITY_CLASS”.

 6

0

10

20

30

40

50

60

70

80

90

100

Time in Seconds

P
ro

ce
ss

or
 L

oa
d

Total Processor Load

OPC Server Load

OPC+ MTC Load

Figure 5 Snapshot OPC and MTC Loading

Next we considered the CPU loading when MTC
communications was combined with MTC-OPC communication
activity. Figure 5 shows the CPU loading mix for the Siemens
simulation measured in 100 ms intervals. The test had 1) a part
program a continuous loop, 2) 20 items of data communication
per second update, and 3) loading measurement for Total
Processor Load, OPC server loading and the combination of the
OPC-MTC communication. Note, the Total Processor load
often reflects the summed loading of the OPC Server and the
OPC-MTC together. Our previous MTC-only tests measured
loading to about 10%. When OPC and MTC communication
are combined, surges in OPC-MTC loading double that to about
20% that occur for about 10 ms out of the 1 second cycle.
Overall, there are surges in CPU loading that can be tied to the
OPC Server and OPC. Although there is sufficient
computational bandwidth to spare, we are evaluating better
ways to bundle any data communication.

CNC kernels reside in a hard real-time operating system
and are mostly immune Operator Interface issues. However, the
Operator does interact with the CNC in a command and control
fashion so that problems can arise should the Operator Interface
fail or suffer process starvation. Often, the machine tool itself
may not be vulnerable, but any part being made could be
compromised. Since Windows XP is not a real-time operating
system, there are no absolutes when it comes to evaluation of
the QoS tests. The QoS tests do not indicate correctness of
operation. Instead QoS tests can be best used to determine and
avoid problems. Since QoS only measured for one set of
computer hardware and software, the QoS tests can only offer
realistic approximations to performance. However, using our
QoS tests, we did find that a network disconnection led to
excessive timeout delay, which we fixed. In this realm, the
MTC QoS CPU and network QoS tests showed MTC QoS
performance to be met our 1Hz performance bandwidth
requirements.

DISCUSSION
In this paper, we analyzed MTC Agent performance in a

distributed “Dual-Ethernet” factory setup. We presented a
summary of MTC features and an MTC configuration matching
the requirements of Dual-Ethernet distributed shop floor
architecture. In verifying the MTC QoS, our performance tests
measured computational load under different network
conditions – network failure and increasing computational and
network load. If we limit our areas of concentration to machine
monitoring with timing expectations on the order of seconds,
while avoiding adaptive or other real-time control areas, we
found that MTC performance exceeded our requirements.

MTC has laid the groundwork for a factory communication
(HTTP with Decorated URLs) and Information Models (XML
with XSD for structural correctness) that satisfied their initial
goals. Since MTC leverages the software and hardware Internet
paradigm, and because of the systemic prevalence of the
Internet, there are an abundance of tools to ease MTC
deployment. For example, Microsoft .Net Framework
underscores the embracing of Internet technology with code to
simplify parsing XML and handling HTTP communication for
the average programmer. The Ga. Tech SDK reflects this
parsimony, as much of the code leverages the existing .Net
Framework in a concise and straightforward manner.

This is not to say MTC solves all the machine tool
integration problems. Rather, although MTC recently approved
its first official Version 1.0, it acknowledges that it is as a work-
in-progress standard, with plans for improving alarms, and
many manufacturing information model elements, such as
tooling. We anticipate as the complexity of MTC specification
grows, so will the evaluations of its efficacy. But, with our
testing facilities in place, we should be able to quantify the QoS
performance of future MTC versions.�

DISCLAIMER
 Commercial equipment and software, many of which are

either registered or trademarked, are identified in order to
adequately specify certain procedures. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology or Boeing
Aerospace, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

REFERENCES
 [1] C. D. Valenzano and L. Ciminiera, MAP and TOP

Communications: Standards and Applications. New
York: Addison Wesley Publishers, 1992.

 [2] International Organization for Standardization, "ISO/IEC
9506-1, Industrial Automation Systems - Manufacturing
Message Specification - Part 1: Service Definition,"
Geneva, Switzerland: 1990.

 7

 [3] International Organization for Standardization, "ISO/IEC
9506-1, Industrial Automation Systems – Manufacturing
Message Specification - Part 2: Protocol Specification,"
Geneva, Switzerland : International Organization for
Standardization, 1990.

 [4] A. Vijayaraghavan, W. Sobel, A. Fox, P. Warndorf, and
D. Dornfeld, "Improving Machine Tool Interoperability
Using Standardized Interface Protocols: MTConnect,"
University of California, Laboratory for Manufacturing
and Sustainability, Green Manufacturing Group: 2008.

 [5] The World Wide Web Consortium, "Extensible Markup
Language (XML) 1.0 (Fourth Edition),". T. Bray, J.
Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau, Eds. 2006.

 [6] The Internet Society, "Hypertext Transfer Protocol -
HTTP/1.1," http://www.isoc.org : 1999.

 [7] S. Venkatesh, B. Sides, J. Michaloski, and F. Proctor,
"Case Study in the Challenges of Integrating CNC
Production and Enterprise Systems," in Proceedings of
IMECE 2007 ASME International Mechanical
Engineering Congress and Exposition Seattle,
Washington: 2007.

 [8] S. Venkatesh, R. Morihara, J. Michaloski, and F. Proctor,
"Closed Loop CNC Manufacturing - Connecting the
CNC to the Enterprise," in Proceedings of IDETC/CIE
2007 ASME International Computers and Information in
Engineering Conference Las Vegas, NV: 2007.

 [9] Microsoft Corporation, "COM Specification,"
www.microsoft.com/com.

 [10] Georgia Institute of Technology, "MTConnect .NET
Agent Software Development Kit,"
http://www.mtconnect.org: 2009.

 [11] F. Gao and J. Gutierrez, "Challenges in Providing
Management Strategies For Networked Systems," in
Proceedings of the First International Conference on
Information Technology (ICITA) Bathurst, Australia:
2002.

 [12] Intel, "Intel Processor Identification and the CPUID
Instruction," Application Note 485: 2008.

 [13] K. Braithwaite, "Custom Performance Analysis using the
Microsoft Performance Data Helper," IBM WebSphere
Developer Technical Journal, Oct.2003.

