2009 ASME International Design Engineering Technica
August 30 — September 2, 2009, San Diego, Californi

Proceedings of the 2009 DETC
| Conferences
a, USA

DETC2009-86666

QUANTIFYING THE PERFORMANCE OF MT-CONNECT IN ADISTRIBUTED
MANUFACTURING ENVIRONMENT

John Michaloski, Byeongeon Lee, and
Frederick Proctor
National Institute of Standards and Technology
Gaithersburg, MD USA

ABSTRACT

In the CNC manufacturing world, the continuing s
to reduce costs and improve time to market placpsemium
on smarter ways of manufacturing and intensifies riked to
integrate feedback from the shop floor into theegmise
business systems. There have been many effortmpoove

CNC factory floor integration with varying degreefssuccess.

Recently, MTConnect has been developed as an amtifree
communications standard to facilitate the exchamigdata on
the manufacturing floor for machine tools and diatlevices.
This paper will look at quality of service issuemcerned with
implementing MTConnect in a “Dual-Ethernet” machitwsl

network configuration.

NOMENCLATURE
API Application Programming Interface
CNC Computer Numerical Control
COM Microsoft Component Object Model
DA Data Access
ERP Enterprise Resource Planning
HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MAP Manufacturing Automation Protocol
MMS Manufacturing Message Specification
MTC MTConnect

OLE Object Linking and Embedding
OMAC Open Modular Architecture Control
OPC OLE for Process Control

PDH Performance Data Helper

QoS Quality of Service

XML eXtensible Markup Language

XSD XML Schema Definition

Sid Venkatesh and Sidney Ly
Boeing Company
Seattle, WA USA

INTRODUCTION

In today’s manufacturing world, “Design Anywhereyil
Anywhere, Support Anywhere” is predicated on urseér
connectivity and information sharing across alketaoof design,
manufacturing, distribution, and maintenance. Thia® this
ubiquity, integration of all company elements, esaiéy
manufacturing, must be done. For years the lackvidgly
adopted machine-tool integration standards hasshaabifactory
integration, making it difficult and costly.

Historically, CNC integration has been an aftergituto
the primary goal, making parts. Indeed, machinel too
monitoring remains a largely untapped area forifigkeal-time
plant data into the enterprise. Informative, acuand timely
machine knowledge can be vital to successful matwfag.
Machine monitoring serves as an analysis and di&gntool
that offers greater visibility into manufacturingopesses and
help determine ways for improving operation andréasing
productivity. The key paybacks of CNC machine rtamitig
include collection and management of pertinent petidn
information, real-time monitoring and preventivedameactive
maintenance, and real-time quality assurance.

Over the years, numerous standards have been m@dnmt
enable machine tool integration. An early attemptentrol
system integration was the MAP (Manufacturing Audbion
Protocol) standard, which is a communication steshd@r
intelligent factory floors devices. [1] Anothergkcy factory
floor integration standard is the Manufacturing Shge
Specification (MMS), which is a messaging systenr fo
exchanging data between control applications artdarked
devices [2;3]. Both MAP and MMS are large and esiee
standards, with requirements for supporting seveédgen
Systems Interconnection (OSI) Reference Model Ryef
communication functionality. These standards ergolmited

success as the breadth, complexity and as a cassesju
increased cost, resulted in the lack of vendorwssat support.

In general, difficulties arise for companies anddars to
adopt standards that are excessively broad andleapmaking
it costly to develop the required hardware andvaf. Further,
the limited adoption of a standard yields marglehefits. The
latest trend in developing successful manufactustagdards is
to leverage widely-adopted, ubiquitous computehnetogy. In
this manner, MTConnect is a new standard sponsbyethe
Association for Manufacturing Technology developéd
facilitate the exchange of data on the manufaaguitoor. MTC
is an open and royalty free communications standhudlt
upon the most prevalent standards in the manufagtuand
software industry, maximizing the number of toolsitable for
its implementation and providing the highest levef
interoperability at a reasonable cost with othandards and
tools in these industries.” [4]

Excited by the potential of MTC, Boeing worked with

NIST and other members of the Open Modular Architex
Controllers (OMAC) User Group, to test MTC on thin
floor. OMAC is an affiliate organization of the nsmentation,
Systems and Automation Society (ISA) working to ider
common solutions for technical and non-technicsliés in the
development, implementation and commercializatibropen,
modular architecture control. The OMAC Machine TGooup
has been working and promoting the challenging eissfi
“mainstreaming” machine tool and factory floor igitation.

This paper will look at performance and qualitysefvice
issues concerned with using MTC in a distributeztdey floor
environment. Section 2 will give a brief overviewf o
MTConnect technology. Section 3 describes an impigation
of Machine Monitoring using MTC that relies on CNQPC
Data Access. Section 4 will analyze various MTCatrigsues
and then evaluate the quality of service perforraaiinally, a
discussion including future directions will be give

MTC OVERVIEW

Integration of factory floor CNC information has dme
difficult, if not impossible, as traditionally, famry floor
machines have been “islands of automation.” So \vigy
machine tool integration such a problem? Althougedration
standards have and are routinely used elsewhere
manufacturing, acceptance has been slow within GiNC
discrete parts industry. The problem stems frompthieeived,
if not actual, lack of return on investment fronteigration. It is
at times too hard, too costly and/or too complidaithe MTC
specification addresses these issues from the bnisging an
approach that ensures affordability as well asqoeréance.

MTC is an open, royalty free, standard that acta bedge
between all design, manufacturing,
maintenance data. MTC
technology including XML [5] and HTTP [6]. Usingegvailing
technology and providing free software developméiis
minimizes technical and economic barriers to MTGibN.

._program,

distribution, d an
is based upon prevalent Web .

MTConnect
_ & HTTP_

Decorated

MTConnect "URL & HTTR.

Device

MTConnect
Agent

Client
Application

Figure1 MTC System Architecture

Figure 1 shows the high-level system architecturéhe
MTC standard. An “MTC Device” is a piece of equipthe
organized as a set of components that provide @atcore of
MTC is the “Agent”, which is a process that actsadbridge”
between a factory device and a “Client Applicatiohhe MTC
Agent receives and stores single or a time sefidata samples
or events that are made available to the Clientidaiion. An
MTC sample is the value of a continuous data itemn @oint in
time. An MTC event describes an asynchronous cheanggate.

MTC uses HTTP as the underlying communication
protocol. HTTP is a standard that serves as then mai
communication protocol for the Internet and the M/dNide
Web. Devices that support HTTP on the internetamaessible
worldwide. Everybody using the Web is at least ueyg
familiar with the HTTP protocol. After you type in
http://mww.nist.gov and click “GO”, HTTP protocol
communicates to the NIST Web Server and the HTTiRagts
receive and display Web pages from the NIST Weblve3er
most often described by the hypertext markup laggua
(HTML).

Instead of HTML, MTC uses the more flexible Extédubesi
Markup Language (XML) which is used to transportada and
from the MTC Agent (which acts much like a Web Seyv
XML is extensible, unlike HTML, because you uséoitdefine
other languages or information, such as the MT®@rinétion
model. XML describes information as a series ofrguh
start/end tags, i.e., <DATA> </DATA> and informatiois
contained between the tags, e.g., <DATA> 10.0 </BAT
XML provides meta-data attributes to the tags sashkDATA
id="Xaxis"> 10.0 </DATA>.

An MTC device is modeled in XML as a set of
components, and initially the MTC specificationtésgeted at
machine tools and their substituent componentses,aspindle,
and control sequencing. Because XML is @
metalanguage MTC has defined a formal XML Scheme
Definition (XSD), which describes the allowed sture of the
MTConnect XML data.

The MTC Agent is flexible and handles incoming evi
stores and outgoing Application requests with thmes HTTP
mechanism. Detailed communication with the MTC a&gen
leverages the concept of the URL parameter, whah lieen
included within the specification since the eatli¢dTTP
drafts. [6] The URL parameters are described a
name=value” pairs appended to the URL query, with
multiple URL parameters separated byga

The “Decorated URL” is sent by either the MTC Ctien
Application or the Device to the MTC Agent contaigiall the

<?xml version="1.0" encoding="utf-8" 2>

bufferSize="100000" version="1.0" />
- <Streams:=

- <Samples>
subType="ACTUAL">5000</mt:SpindleSpeed:>
</Samples>
</ComponentStream:
- <Samples>
subType="ACTUAL">55.176</mt:Position>

</Samples>
</ComponentStream>

- <Samples>

subType="ACTUAL">7.391</mt:Position>
</Samples>
</ComponentStream>

- <Samples>

subType="ACTUAL">148.997 </mt:Position>
</Samples>
</ComponentStream:

+

- <Events>

<fEvents>
</ComponentStream>

- <mt:MTConnectStreams xmins:mt="urn:mtconnect.com:MTConnectStreams:0.9">
<Header creationTime="2008-11-18T15:05:48-05:00" instanceld="101" nextSequence="13042" sender="NIST MTConnect Instance"

- <DeviceStream name="NistTest" uuid="nist-opcda-net-2-mt-connect">
- «ComponentStream component="Spindle" name="8" componentld="id101">

<mt:SpindleSpeed name="Srpm" timestamp="2008-11-18T15:05:47" sequence="13039" dataltemld="id3"

- <ComponentStream component="Linear" name="X" componentld="id102">

«<mt:Position name="Xabs" timestamp="2008-11-18T15:05:47" sequence="13038" dataltemld="id4"

<ComponentStream component="Linear" name="Y" componentld="id103">

<mt:Position name="Yabs" timestamp="2008-11-18T15:05:47" sequence="13037" dataltemId="id6"

<ComponentStream component="Linear" name="Z" componentld="id104">

<mt:Position name="Zabs" timestamp="2008-11-18T15:05:47" sequence="13036" dataltemId="id8"

<ComponentStream component="Controller" name="Controller" componentld="id106">
<ComponentStream component="Power" name="power" componentld="id107">

<mt:PowerStatus name="power”" timestamp="2008-11-18T15:05:47" sequence="13035" dataltemId="id14">0</mt:PowerStat

Figure 2 MTC XML Response to Client Application Status Query

command and parameters required for the sampleesequ
Below, a Decorated URLstoreSample command with
parameters from a MTC device is shown:

http://pcl.acme.com/storeSample?deviceName=Nisiflasal
temName=Srpm&value=2000

The first part of the Decorated URL indicates what
protocol to use (i.ehttp). The second part specifies the IP
address or the domain name (ipel.acme.com) where the
MTC agent is located. Next a series of Decorated
name/value pairs follow, where thedeviceName is
NistTest and thedataltem is the Spindle RPM d8rpm.

As an example of the HTTP/XML communication between
the MTC Agent and MTC Client Application, we wilssume
an MTC Agent is running on our local machiloealhost
To retrieve current Device status from the MTC dgem can
simply do an HTTP query in Internet Explorer by igating to
the following Web address:

http://localhost/current

This HTTP request will retrieve all the current aland
events in the MTC device. Figure 2 shows the MTC LXM
response as displayed by Internet Explorer.

FACTORY IMPLEMENTATION

The OMAC MTC deployment was constrained by the
security configuration of the targeted factory ratev The
networking scheme uses a dual Ethernet solutiopraide a
safety and security buffer for every CNC by isaigtit from the
main corporate intranet but still allowing TCP/IBnaectivity
through a front-end PC (FEPC).

A major issue was the lack of native MTC Agent supp
for some of the targeted CNC machine tools. Asltarnative,
these CNCs supported OPC, which also allows machin
integration. OPC is a more established open spatiiin, for
which the authors have previous factory-floor imgtign
experience. [7;8] OPC provides a standard mecharfam
communicating to data sources on a factory flostanically
targeting process and batch industries, but now sotme CNC
market presence.

The OPC specification describes a client/servereaibj
model to allow communication between client appiaes
(OPC Clients) and control device servers (CNC ORG/&).
The OPC-DA specification leverages Microsoft CO®] fo
specify OPC COM objects and their interfaces. Tbatrol
device object and interface are called OPC Server:
Applications, called OPC Clients, can connect tadCCHervers
provided by one or more vendors. At runtime, OPi&nts

C++ Client M
: C Agent
Server
CNC PC Front End PC (FEPC)

Private Ethernet ——

Machine Monitoring Dashboard

[CCo—

o

e

Company Intranet——

Figure 3 MTC and OPC Dual-Ethernet Networking Architecture

connect to an OPC Server, and an OPC Group isecreatd
OPC Items are added for data monitoring and cantrol

The next design option was whether to tightly indég the
MTC Agent and OPC in the CNC or to use an OPC Clien
Adapter to communicate to a standalone MTC Agent.CM
provides the Georgia Tech Agent Software Developnkén
(SDK) to help implement a turnkey MTConnect agent the
Microsoft .Net software environment. [10] The MTDIS is
flexible and can meet different integration reqoients, either
embedded or standalone application outside of éwiced using
an MTC Adapter.

The Dual-Ethernet networking scheme led to the sigci
of using an OMAC MTC Agent to run as a standalone
application on the FEPC, so that the CNC would naad
Adapter to communicate to it using HTTP. Embeddihg
MTC Agent on the CNC is possible, but would sti#quire
some forwarding agent through the FEPC to allow Mliénts
on the Corporate Intranet. Further, embedding tNet
Framework in the CNC was also not as straightfodwar

Figure 3 shows the Dual-Ethernet Network Architeetu
with the OPC Client/Server running on the CNC Pd &me
MTC running on Front-End PC to the CNC acting dhegia
Relay Agent or as the MTC data server. A simple .N#&t
windows wrapper program was written around the Giadfech
MTC Agent core .Net DLL. It runs as a standalonierkoft
Windows Service. A C++ OPC client Windows applioativas
developed that uses COM to communicate to the CNRC O
Server and transmit this data to the MTC Agentaisii TP.

One major architecture design consideration was the
decision to avoid DCOM. OPC supports remote Dataels
using DCOM, so that the OPC Client could have ruantle
FEPC. However, this architecture has many disadgast as
OPC and DCOM are beset with security issues, filewa
problems, and a multitude of Windows security pelc
Further, HTTP is generally not blocked by a firdwataking
MTC setup and deployment easier.

DESIGN AND PERFORMANCE ANALYSIS

A reliable CNC must exhibit deterministic perfornsan
under all conditions. To achieve determinism, thstesn must
account for both functional and timing requiremer@early,

performance is important to maximize a system’sepiidl.
However, in the realm of CNC systems, the guaraoteerrect
and real-time quality of service (QoS) reigns parant.

MTC provides a useful specification for machineltand
device integration, but to guarantee CNC QoS requénts, the
need for better understanding of the network argbuece
performance is essential. We took a performancéneagng
approach to predicting the likely performance ofteyns [11]
where our goal was to run some tests that wouldsasMTC
QoS.

Several design issues required attention up-fiéinst, the
question arises as to the frequency of MTC Agemhpda
updates. The first constraint was the OPC Servea decess
speed, which was limited to a rate at 10 Hz (or deva every
100 ms). This update limit was weighed against the
requirements of the potential Application Clien&le and
event updates of a second were deemed sufficiesdtisfy the
majority of requirements. Even though MTC allowmdling
of a larger group of samples for storing and reinig data to
approximate real-time performance, one second wepdat
preclude any sorts of real-time adaptive controld @o was
deemed out of scope.

Within these update limits, the range of potential
Application Clients was quite extensive, includisigop floor
dashboard, Overall Equipment Effectiveness (OERY data
mining of asset and process knowledge. The negt \stes to
use these design timing bounds and examine conymahtnd
network performance under various conditions. Weewaost
interested in computational loading and QoS unde
progressively higher network traffic and under reatwfailure
conditions.

The testing setup included a desktop PC hostiagtiiC
Agent and a PC running both the OPC Client andSikeenens
840D “Sinutrain” CNC simulator. The Sinutrain CNitnslator
includes an OPC server. This dual-PC networkedpséts
proved invaluable in testing and verifying the basitegration
software. The MTC testing hardware consists of Cencial
Off-the—Shelf (COTS) PCs and Ethernet networkiagy intel
x86 CPUs, running Windows XP SP2 operating syst&x8)(
communicating over a 10Base-T (100 Mbps) local are:
Ethernet network through a router. The CNC PC shoul

clock speed was 2GHz and had 2G Physical RAM. TAECM
FEPC contained a Pentium 4, with controller clopkexd was
3.59GHz, and had 2G Physical RAM.

overhead and was determined to be unnecessarilglioatng.
Finally, if a HTTP problem was detected; the OPCOAT
software was changed so that MTC Agent communicatias

We used the Intel Pentium processor Read Time Stamp postponed until the next update cycle

Counter (RDTSC) feature which is ably suited foalgming
timing performance on single-processor machines. TRD
tracks processor cycles and is incremented eveogckcl
cycle [12]. Since RDTSC keeps track of cycles, tiate,
resolution is based on processor frequency. Thli§kz CPU
has five times the resolution as a 200MHz CPU.

MTC adopts the Internet paradigm, which is basedhen
Ethernet network and is a shared resource. Coatergan
result as more and more systems share the Ethantegt some
point results in lower network throughput betweay pair than
the nominal bandwidth available. However, since ®PC
Client and MTC Agent communicate over a dedicatdeet,
contention is not a QoS issue.

Another QoS aspect of OPC Client and MTC Agent

communication related to network failureeither the cable is

broken or disconnected or the MTC Agent program is

terminated or the FEPC is turned off. The OPC Clieses the
Microsoft Windows Internet (WinINet) C++ API thahables
applications to interact with HTTP, FTP and othestpcols to
access Internet resources. Initially, the OPC tl@mfigured
WinINet functions using synchronous communicationd a
default options for HTTP communication. Table 1 whahe
test results timing the performance sitbreSample , which
sent a WinlnetHttpSendRequest to the MTC Agent server
under “Running” and “Down” conditions, with the €lfit and
MTC Agent running on different computers. An aggravas
generated from one thousand test cycles. The ety of
the measurements was computed using the squareofrabe
sum-of-the-squares methodology.

Table 1 Timing Under Different MTC Conditions

Action Time Ulg
Between Machines (sec) (sec)
MTC Agent Running 0.002030 [0.000548
MTC Agent “Down” — Default 0.955262 | 0.037581
Timeout
MTC Agent “Down” — 20 ms Timeout | 0.030824 | 0.000118
Network “Down” — 20 ms Timeout 0.030889 | 0.000126

Clearly, there is significant performance degramativhen
the connection to the MTC Agent is down. Thisfgenance
drop led to software reconsiderations. First, substantial
timing difference between “Running” and “Down”
determined to be due to the WinINet timeout seftimgich was
lowered. When Winlnet was configured to timeouea0 ms,
a corresponding drop can be seen in Table 1 fronostl one
second to about 30 ms for between machine MTC rgegsa

Second, WinINet
evaluated as an alternative to the synchronoussynchronous
communication, the data packet is sent withoutimgifor an
acknowledgement. Because of the small size of th€ Mgent
XML responses, asynchronous was slower due to &aehig

was

asynchronous communication was

68

50 -

48 -

age Total Pr

38 -

20 -

CPU Load as Per

18 -

L L L L .
] 1608 288 388 408 ne8
Hunber of HTC Hessages

Figure 4 Progressve MTC CPU L oading

To assess the MTC QoS for CPU loading, a dedicate
MTC-communication—only program was developed. gl
program, a Windows timer ran every second andagest sent
progressively more and mogoreSamples to the MTC
Agent. While this progressive MTC message loadives
running, a separate program captured the CPU Igadiimg the
Microsoft Performance Data Helper (PDH) Library][1BDH
provides a query interface to retrieve a variety detailed
performance data, such as process CPU utilizadisk,activity,
etc. Figure 4 shows Progressive MTC CPU loadingtwad as
a percentage of total Windows processor loading @raph
shows MTC communication as a linear CPU loadingpfa®©ur
“Dual-Ethernet” system expected to make less thanva C
messages per second, so our expected MTC-only \essd
under 10%.

In conjunction with MTC communication, MTC Adapter
could use either OPC synchronous polling or asyuus
notification updates. Data change notification iegpl less
average bandwidth, but in some cases can succusitéssive
loading. Previous work found that data values céter]
minutely, triggering continuous OPC updates thatlted in a
sluggish Operator Interface (ultimately no effect the real-
time CNC.) From this observation, even updates &ite of
10Hz can lead to Operator Interface process siarvand must
be acknowledged.

With this in mind, QoS design considerations were
undertaken to prevent this problem. First, the @®i€nt MTC
Adapter communicated to the OPC Server using spncus
data updates exclusively. This data polling appnroacunded
the computational and communication bandwidth tdixad
limit, and was fixed at the Client Application upearate.
Second, the OPC Client Windows process priority reaiced
from “Normal” to “IDLE_PRIORITY_CLASS".

— — — -Total Processor Load
———-0OPC Server Load
OPC+ MTC Load

80 - 1" I [
1 N I

70 - " ooh

100

90 -

|
[
[
[
60 .
50 4

40 A

Processor Load

30 A
20 A

10 1

Time in Seconds

Figure5 Snapshot OPC and MTC Loading

Next we considered the CPU loading when MTC
communications was combined with MTC-OPC commuiocat
activity. Figure 5 shows the CPU loading mix foe tBiemens
simulation measured in 100 ms intervals. The tadt1) a part
program a continuous loop, 2) 20 items of data canmioation
per second update, and 3) loading measurement doal T
Processor Load, OPC server loading and the conibmat the
OPC-MTC communication. Note, the Total Processadlo
often reflects the summed loading of the OPC Seavet the
OPC-MTC together. Our previous MTC-only tests meagu
loading to about 10%. When OPC and MTC commurocati
are combined, surges in OPC-MTC loading doubletthabout
20% that occur for about 10 ms out of the 1 secoyale.
Overall, there are surges in CPU loading that aatidal to the
OPC Server and OPC. Although there is sufficient
computational bandwidth to spare, we are evaluabeger
ways to bundle any data communication.

CNC kernels reside in a hard real-time operatingtesy
and are mostly immune Operator Interface issuewseder, the
Operator does interact with the CNC in a commardicmtrol
fashion so that problems can arise should the @uelsterface
fail or suffer process starvation. Often, the maehiool itself
may not be vulnerable, but any part being made dcdod
compromised. Since Windows XP is not a real-timerafing
system, there are no absolutes when it comes toaian of
the QoS tests. The QoS tests do not indicate doess of
operation. Instead QoS tests can be best useddardee and
avoid problems. Since QoS only measured for one ofet
computer hardware and software, the QoS tests ugnodfer
realistic approximations to performance. Howevesing our
QoS tests, we did find that a network disconnectiah to
excessive timeout delay, which we fixed. In thiglng the
MTC QoS CPU and network QoS tests showed MTC QoS
performance to be met our 1Hz performance bandwidth
requirements.

DISCUSSION

In this paper, we analyzed MTC Agent performance in
distributed “Dual-Ethernet” factory setup. We prsel a
summary of MTC features and an MTC configuratioriahig
the requirements of Dual-Ethernet distributed shitgor
architecture. In verifying the MTC QoS, our perfance tests
measured computational load under different networl
conditions — network failure and increasing compatel and
network load. If we limit our areas of concentratio machine
monitoring with timing expectations on the order seftonds,
while avoiding adaptive or other real-time contevkas, we
found that MTC performance exceeded our requiresnent

MTC has laid the groundwork for a factory commutima
(HTTP with Decorated URLS) and Information ModeXM(L
with XSD for structural correctness) that satisftbeir initial
goals. Since MTC leverages the software and hael\vernet
paradigm, and because of the systemic prevalence¢hef
Internet, there are an abundance of tools to ea3e&C M
deployment. For example, Microsoft .Net Framework
underscores the embracing of Internet technologly wade to
simplify parsing XML and handling HTTP communicatior
the average programmer. The Ga. Tech SDK refleuis t
parsimony, as much of the code leverages the egistiet
Framework in a concise and straightforward manner.

This is not to say MTC solves all the machine tool
integration problems. Rather, although MTC receapiproved
its first official Version 1.0, it acknowledges thais as a work-
in-progress standard, with plans for improving msr and
many manufacturing information model elements, sash
tooling. We anticipate as the complexity of MTC aifieation
grows, so will the evaluations of its efficacy. Butith our
testing facilities in place, we should be able tartify the QoS
performance of future MTC versions.

DISCLAIMER
Commercial equipment and software, many of whigh a

either registered or trademarked, are identifiedorder to
adequately specify certain procedures. In no cams cuch
identification imply recommendation or endorsemést the
National Institute of Standards and Technology areiBg
Aerospace, nor does it imply that the materialssguipment
identified are necessarily the best available Hiergurpose.

REFERENCES
[1] C.D. Valenzano and L. CiminierlAP and TOP
Communications: Sandards and Applications. New
York: Addison Wesley Publishers, 1992.

[2] International Organization for StandardizatidlSO/IEC
9506-1, Industrial Automation Systems - Manufactgri
Message Specification - Part 1: Service Definition,
Geneva, Switzerland: 1990.

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

International Organization for Standardizati6lSO/IEC
9506-1, Industrial Automation Systems — Manufactyiri
Message Specification - Part 2: Protocol Specificgt
Geneva, Switzerland : International Organizatian fo
Standardization, 1990.

A. Vijayaraghavan, W. Sobel, A. Fox, P. Waonil and

D. Dornfeld, "Improving Machine Tool Interoperabjli
Using Standardized Interface Protocols: MTConnect,"
University of California, Laboratory for Manufacing
and Sustainability, Green Manufacturing Group: 2008

The World Wide Web Consortium, "Extensible idap
Language (XML) 1.0 (Fourth Edition),". T. Bray, J.
Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau, Eds. 2006.

The Internet Society, "Hypertext Transfer @l -
HTTP/1.1,"http://www.isoc.org 1999.

S. Venkatesh, B. Sides, J. Michaloski, an@ractor,
"Case Study in the Challenges of Integrating CNC
Production and Enterprise Systems,Phoceedings of
IMECE 2007 ASME International Mechanical
Engineering Congress and Exposition Seattle,
Washington: 2007.

S. Venkatesh, R. Morihara, J. Michaloski, &dProctor,
"Closed Loop CNC Manufacturing - Connecting the
CNC to the Enterprise," iRroceedings of IDETC/CIE
2007 ASME International Computers and Information in
Engineering Conference Las Vegas, NV: 2007.

Microsoft Corporation, "COM Specification,"
wWww.microsoft.com/com

Georgia Institute of Technology, "MTConnesET
Agent Software Development Kit,"
http://www.mtconnect.org: 2009.

F. Gao and J. Gutierrez, "Challenges in Riiog
Management Strategies For Networked Systems," in
Proceedings of the First International Conference on
Information Technology (ICITA) Bathurst, Australia:
2002.

Intel, "Intel Processor ldentification arftetCPUID
Instruction,” Application Note 485: 2008.

K. Braithwaite, "Custom Performance Analysgng the
Microsoft Performance Data HelpetBM WebSphere
Developer Technical Journal, Oct.2003.

