
System Testing Using Use Cases for an ER Simulation Model

Guodong Shao
Manufacturing Simulation and Modeling Group
National Institute of Standards and Technology

Gaithersburg, MD 20899-8260, U.S.A.
E-mail: gshao@nist.gov

KEYWORDS
Modeling and Simulation, System Testing, Use Case.

ABSTRACT

Modeling and simulation (M&S) techniques are increasingly
being used to solve problems and aid decision making in
many different fields. It is particularly useful for Department
of Homeland Security (DHS) applications because of its
feature of non-destructive and non-invasive method of
observing a system. Results of simulations are expected to
provide reliable information for decision makers, but
potential errors may be introduced in the M&S development
lifecycle. It is critical to make sure to build the right model
and that the model is built right. System testing is an
effective methodology that can help to ensure the
functionality of a software system. It can also be applied to
M&S applications. Use cases are usually used to specify
requirements of a simulation system. The collection of use
cases can cover the complete functionality of the simulation
system and provide information necessary to generate test
cases for system testing. Since use cases are associated with
the front end of the M&S development lifecycle, testing can
get started much earlier in the lifecycle, allowing simulation
developers to identify and fix defects that would be very
costly if found in the later stages. This paper identified the
needs of system testing using specifications for M&S
applications for DHS applications and providing a novel
approach of Verification, Validation and Testing (VV&T)
for DHS M&S community. As an example application, a
hospital emergency room (ER) simulation model was
introduced. Use cases for the ER model were developed.
Functional system test requirements and testing criteria of
the ER model were discussed. Based on the coverage
criteria, activity diagrams associated with the use case are
created to capture scenarios and allow the specification of
use case to be tested.

INTRODUCTION

Modeling and simulation (M&S) techniques are more and
more being used to model real world problems in many
different applications. M&S is an effective means to shorten
real system development time by answering many what-if
questions first. IEEE standard glossary of modeling and
simulation terminology (IEEE 1989) has the definitions for
model and simulation as “A model is an approximation,
representation, or idealization of selected aspects of the
structure, behavior, operation, or other characteristics of a
real world process, concept, or system.” “Simulation is a
model that behaves or operates like a given system when

provided a set of controlled inputs.” M&S is the process of
constructing a model of a system that contains a problem and
conducting experiments with the model on a computer for a
specific purpose of solving the problem and aiding in
decision-making. The developers and users of the simulation
models, the decision makers using the results of these
models, and individuals affected by decisions based on such
models are all concerned with whether a model and the
simulation results are correct (Sargent 2007).

M&S is particularly valuable for DHS application, because
M&S provides a non-destructive and non-invasive method
of observing a system and also provides a way to test
multiple inputs and evaluate various outputs (Donald and
Brown 2005). Simulations allow users to reconstruct a
comprehensive representation of real-world features during
disaster response (Lisa 2006). The limitations of live
exercises can be overcome through the use of simulation
models that allow emergency response personnel across
multiple levels in multiple agencies to be exposed to the
same scenario. Simulation models can help the decision
makers determine staff and resource levels in hypothetical
terrorist attack scenarios (Shao and Lee 2007). These M&S
applications often introduce new risks associated with
potential errors in creating the model (programming errors)
and inadequate fidelity (errors in accuracy when compared
to real-world results). There are no established procedures
for determining whether the results obtained from an M&S
application are correct or satisfy real world needs. To ensure
that a valid model and a credible simulation that produce
correct results exist, verification, validation and testing of
the model and the resulting simulation must be employed
throughout the life cycle of an M&S application. (Cook and
Skinner 2005). (Balci 2007) defines the model VV&T as
follows: “Model validation is substantiating that the model,
within its domain of applicability, behaves with satisfactory
accuracy consistent with the study objectives. Model
validation deals with building the right model. It is
conducted by running the model under the same input
condition that drive the system and by comparing model
behavior with the system behavior. The comparison of
model and system behaviors should not be made one output
variable at a time. Model verification is substantiating that
the model is transformed from one form into another, as
intended, with sufficient accuracy. Model verification deals
with building the model right. The accuracy of transforming
a problem formulation into a model specification or the
accuracy of converting a model representation in a micro
flowchart into an executable computer program is evaluated
in model verification. Model testing is demonstrating that
inaccuracies exist or revealing the existence of errors in the
model. In model testing, we subject the model to test data or

test cases to see if it functions properly. “Test failed” implies
the failure of the model, not the test. Testing is conducted to
perform validation and verification. Some tests are devised
to evaluate the behavioral accuracy (i.e., validity) of the
model, and some tests are intended to judge the accuracy of
model transformation from one forming another
(verification).”

IEEE Standard Computer Dictionary (IEEE 1990) defines
system testing as “System testing is testing conducted on a
complete, integrated system to evaluate the system's
compliance with its specified requirements. System testing
falls within the scope of black box testing, and as such,
should require no knowledge of the inner design of the code
or logic.” System testing is concerned with testing an entire
system based on its specifications. It is independent of the
process used to create any application. The tester evaluates
the application from a user perspective. Internal design
details are irrelevant and do not affect how tests are defined.
The application’s behavior, whether presented as use cases
or other forms of requirements, drives the development of
test cases (Tamres 2002). Effective system testing requires a
concrete and testable system-level specification. A system
specified with use cases provides much of the information
necessary for system testing…the collection of use cases is
the complete functionality of the system (Booch et al. 1999)
(Kaner 2002). Unified Modeling Language (UML) (Fowler
2005) (Gomma 2003) use cases are usually used to define
the M&S system requirement, specification and design.

Normally, testing addresses only verification by checking if
the implementation meets the specifications. System testing
using use case models also assists model validation. A
complete analysis of the use case models not only evaluates
whether the generated tests cover the requirements, but also
evaluates whether the use case description meet the intended
use needs (Hasling et al. 2008).

Traditionally, test case design techniques include analyzing
the functional specifications, the software paths and the
boundary values. These techniques are still valid, but use
case testing provides a new perspective and identifies test
cases in its unique way (Collard 1999). Early in the lifecycle
of a software system there is no code to execute but there are
models – requirement models, analysis models, architecture
models, and others (McGregor 2007). Briand and Labiche
presented the testing object-oriented systems with the UML
functional system test methodology. They derive test
requirements from use case description, interaction diagram
(sequence or collaboration) associated with each use case,
and class diagram (composed of application domain classes
and their contracts). This early use of analysis artifacts is
very important as it helps devising a system test plan, size
the system test task, and plan appropriate resources early in
the life cycle (Briand and Labiche 2001).

A test case is a description of a test with the expected
outcome. A set of test cases can be created based on the use
case of the simulation systems to verify if the model is
correctly implemented according to its requirements. The
test cases are defined as instantiations of the use cases of the
simulation system. An important advantage of creating test

cases from specifications is that they can be produced earlier
in the development lifecycle and be ready for use before any
codes are developed. Additionally, when the test cases are
generated early, simulation developers can often find
inconsistencies and ambiguities in the requirements
specification and design documents. This will definitely
bring down the cost of modeling and simulation systems as
errors are eliminated early during the life cycle.

This paper has described a novel method to test DHS M&S
applications. Currently there is no existing procedure within
DHS for VV&T of M&S applications. Many DHS M&S
applications are developed by different contractors. As a
user, DHS may not be familiar with all the simulation tools
and associated programming techniques, but they know what
they want, understand the requirements well, therefore,
performing a system testing using use cases to create test
cases is a very useful approach to verify the requirements.
Further more, the test cases can be reused if multiple
contractors develop similar M&S applications using
different tools.

As a DHS M&S application, a hospital ER simulation model
is introduced to apply the system testing technique that
generates test cases from use case specifications. The ER
simulator is a discrete event simulation model of an
emergency patient’s flow in a hospital. The purpose of this
simulation is to provide a small but realistic model of
resources and patient’s flow and congestion in the ER of the
hospital in response to an emergency incident including the
deployment of resources and actions for triage and treatment
of the injured, movement of casualties to hospitals, and
treatment at the hospitals. Ensuring the model’s creditability
is very critical. Only a correctly implemented model can
provide valuable information for the hospital management
teams to make the right decisions that will affect others
including medical staff and patients. A system testing for the
simulation model based on the UML use case model will
assist to make sure the system meets the intended user needs
and is implemented right.

This paper is organized as follows: next section introduces a
prototype of the hospital ER simulation model. Then use
cases for the ER model are discussed. An example activity
model is generated based on the use cases. Test requirements
and criteria for the use case and the activity diagram are
discussed. Finally the test cases associated with the use case
and activity model are identified.

THE ER SIMULATION MODEL

The emergency department simulator models the resources,
patients flow and congestion in response to an emergency
incident. The model demonstrates how the incident affects:
dispatch of ambulance to transport of injured to the hospital,
as well as the waiting time in different areas, and evaluates
the resources needed according to different scenario. The
simulation will allow hospital management teams to train by
responding in real-time to crises that affect ER flow and
evaluate the impact of their decisions.

The primary entities in the model are patients, medical
records, and soiled linen; resources are medical staffs, and
specialists, emergency vehicles, triage and exam rooms, test
lab, and beds. Patients are modeled as first in – first out
queues. The model allows the user to make modifications to
selected model parameters through a graphical user
interface. The user can change the number of patient arrival
quantities and the average number of trauma and average
number of cardiac patients per day. There are trauma rooms,
cardiac rooms and specialty treatment rooms. Ambulatory
and ambulance entrances exist as patient arrival points. The
arrival of a cardiac or trauma patient, who will use more
resources, will cause the backlog of regular patients (Shao
and McLean 2008).

Model inputs

The inputs of the simulation model are listed as follows:
Patient’s arrivals are modeled using statistical distributions.
 Number, location and type of casualties
 Availability of staff at work and off (on-call)
 Availability of resources
 Time and resources required for attending to each
 casualty type
 Probabilities of death from different casualty types
 over time.
 Hospital location
 Layout of the hospital
 Process stations
 Station capacities
 Processing times
 Patient arrivals rate
 Hospital shifts
 Medical resources
 Symptom-treatment profiles

Model outputs

The outputs of the simulation model may include the
operation of the ER over time such as:
 System utilization
 Utilization of process stations and resources
 Updates of the status of the patients and medical
 staff
 Number of people treated and released, admitted,
 dead, waiting for treatment over time
 State of the staff and facilities (to determine their
 capability to deal with another incident)
 Run Time Interactions
 Simulated clock time – from Execution Control
 Supervisor
 Number of EMTs and ambulances dispatched over
 time to Traffic Simulation
 Number of ambulances and casualties arrivals over
 time from Traffic Simulation

Model logic

Figure 1 shows the model overview. There are two kinds of
patients as arrival entities of the model: Ambulance and
General. Ambulance patients are those patients who are in
critical situation, such as trauma and cardiac patients. There
are limited rooms and beds for ambulance patients. If all the
rooms are occupied at the time; the patient has to be
redirected to an alternate facility. After a patient is taken into
the room, a Technician and Registered Nurse (RN) will treat
the patient right away, create a medical record, and take the
patient to the Medical Doctor (MD) for review. The MD will
make a decision, and the patient will be moved to the
nursing unit when the necessary procedures are done.
General patients are ambulatory patients who can walk into
the hospital and wait for an exam and treatment. They have
to go through the triage process first. If all seats are taken, a
triage-waiting area is provided. After the triage, patients are
sent to the main waiting area waiting for calls to the different
exam rooms based on their categories. Exam rooms include
general exam, orthopedic exam, OB/Gyn exam, pediatric
exam, and critical exam rooms. If it is not critical, the patient
can be discharged. If further tests or X rays are needed,
patients have to be in the queue for these procedures.

 Figure 1: ER Model Overview

USE CASE

UML use cases are widely used to define the M&S
application requirements. They are also used for the ER
model. Use cases tell the user what to expect, the developer
what to code, the technical writer what to document, and the
tester what to test (McGregor 2007). They are used to
describe sequences of actions that the simulation system
performs as a result of input from the users; use cases help to
express the workflow of the application. A use case
describes interactions between users and system. This makes
use cases independent from the implementation (EODiSP
2008) and reusable because they shall apply to every
implementation of the system, regardless of what simulation
tool is selected and the graphical user interface looks like.

Use cases represent the high level functionalities provided
by the system to the user, so they are a good source for
deriving system test requirements. When planning test cases
for use cases, all possible execution sequences need to be
identified and then covered during testing as they may be
sources of different failures. But the use case diagram itself

is not a very typical graph for testing; it is too high level and
not many node and branches can be covered. However, a use
case can be described in more detailed form as a table. The
table provides details of operation and includes alternatives,
which model choices or conditions during execution
(Ammann and Offutt 2008).

Depicted in Figure 2 is the use case model diagram for the
ER model. The ovals represent use case, and the stick figure
represents actors that can be either humans or other software
systems that interact with the simulation system. The lines
represent communication between an actor and a use case.
Each use case represents that functionality that is going to be
implemented. In the context of the ER model, there are two
kinds of actors (Shao and Lee 2007):

 Simulation Analyst: The Simulation Analyst is the core

user of the system. The simulation analyst is responsible
for executing the model and analyzing the simulation
results on a daily basis. S/he might be involved in the
simulation system development and is capable of
performing data collection. The simulation analyst can
define various scenarios for other users, verify the
model based on the scenario, make suggestions
regarding the length of the simulation run, the number
of runs needed, and the initial conditions. S/he is
responsible for analyzing the simulation results and
documenting the findings.

 Simulation User: The Simulation User is the primary
user of the system. By simulating different scenarios in
a virtual environment using different settings, S/he is
trained to respond to all kinds of situations. The
response actions may include the deployment of
resources, actions for triage, treatment of the injured,
movement of casualties to other facilities, and
transferring patients to another hospital/facility under
different scenarios in the virtual world.

There are a total of 11 use cases in this use case model. The
actor Simulation Analyst has five use cases; define scenarios,
initial/reset simulation, configure simulation environment,
analyze simulation results, and turn-on facility layout. The
actor Simulation User has six use cases: simulate patient
arrival, simulate patient departure, simulate triage process,
simulate emergency treatment, run simulation and simulate
lab test and exam.

As a sample, a detailed introduction of the simulate patient
arrival use cases is provided in Table 1. The table will
provide a basis for creating the activity diagram, which is
more useful for testing.

Hospital Emergency Room Simulation
System

Simulation analyst

configure simulati
on environment

initial/reset
simulation

run simulation
experiment

turn-on facility
layout

analyze simulation
 results

define scenarios
simulate paitent

arrival

Simulation user

simulate triage
process

simulate emergency
 treatment

simulate lab
test and exam

simulate patient
departure

Figure 2: Use Case of ER Simulation System

Table 1: Use Case for Simulate Patient Arrival

Use Case Name Simulate Patient Arrival
ID 1
Summary Patient arrival rate and other characteristics are

being entered and simulated
Actors Simulation user
Preconditions Simulation software is launched

 Simulation model is loaded
 Simulation scenario is defined

Description 1 Simulation user starts to run the simulation
 model
2 Simulation system prompts user to select type
 of patient from a list (ambulatory patients,
 trauma patient, and cardiac patient)
3 Simulation user chooses the patient type
4 Simulation system prompts user to input
 number of patients
5 Simulation user inputs number of patients
6 Repeat step 2, 3, and 4 three times in order
 to enter all three kinds of patients
7 Simulation system executes with the patient
 type and arrival rate entered

Alternatives If the user inputs invalid data, the simulation model
will abort with an error message.
Line 2, 3, 4, and 5: based on the different
implementations, the user interface may vary, the
way the user inputs data may be different.

Post conditions Patient type and quantities are entered into the
system

 Patient arrival rates are calculated and stored in
the system

 Simulation continues to run

ACTIVITY DIAGRAM

A UML activity diagram can be created based on a use case.
An activity diagram shows the flow among activities. In
many ways, UML activity diagrams are the object-oriented
equivalent of flow charts and data flow diagram from

structured development (Ambler 2004). Activities can be
used to model a variety of things, including state changes,
returning values, and computations. In this paper, the
activity diagram is used to model the logic capture by the
use cases as considering activities as user level steps. Two
kinds of nodes are used: action states and sequential
branches. The numeric items in the use case description
presented in table 1 express steps that the actors undertake.
These correspond to inputs to or outputs from the simulation
model and appear as nodes in the activity diagram as action
states. The alternatives in the use case represent decisions
that the model or actors make and are represented as nodes
in the activity diagram as sequential branches (Ammann and
Offutt 2008). One activity diagram could represent several
test cases because of decision points and data variations
described in the activity diagrams.

The activity diagram for the “Simulate Patient Arrival” is
shown in Figure 3. As described in section 2, there are three
types of patients: General patients, trauma patients and
cardiac patients. The user needs to input the number of
patients for each type. Once all three types of patients are
entered into the model, the system will check to see if the
inputs are valid or not. If the input is valid, the simulation
will continue to execute smoothly, otherwise, if any of the
inputs is invalid, an error message will be displayed and the
simulation will abort. In order to generate the test cases from
the activity diagram that derived from the original use cases,
we need to define the testing requirement and coverage
criteria.

TESTING CRITERIA

There is no such thing as “complete testing” and “exhaustive
testing.” Coverage criteria are used to decide which test
inputs to use and also provide useful rules for when to stop
testing. The definition of test requirement and coverage
criteria by (Ammann and Offut 2008) are: “Test
Requirement: A test requirement is a specific element of a
software artifact that a test case must satisfy or cover.
Coverage Criteria: A coverage criterion is a rule or
collection of rules that impose test requirements on a test
set.”

Ammann and Offutt introduced four distinct coverage
criteria: Graphs, logical expressions, input space and syntax
structures. In the use cases and activity diagram discussed
in previous sections, where user language is used, there is no
complicated predicate that contains multiple clauses, so logic
coverage criteria is not useful. Also because there are no
obvious data definition-use pairs, the data flow coverage
criteria are not applicable. The two applicable criteria to use
case graphs are node coverage and edge coverage. Test case
values are derived from interpreting the nodes.

Another criterion for use case graphs is based on scenarios.
A use case scenario is an instance of a use case, or a
complete path through the use case. End users of the
complete system can go down many paths as they execute
the functionality specified in the use case. Multiple scenarios
may be needed to completely describe a system.

Following the basic flow would be one scenario. Following
the basic flow plus first alternate flow would be another. The
basic flow plus second alternate flow would be a third, and
so on (Zielczynski 2006).

Figure 3: Activity Diagram for “Simulate Patient
Arrival” Use Case

Figure 4 shows that every use case may have many
scenarios; it is a one–to-many relationship. One scenario
may also have many test cases, so it is also a one–to–many
relationship. In this paper, we applied the scenario criteria to
generate test cases for the ER model.

To create test cases from activity diagrams, every path or
transition need to be considered. Test procedure for these
test cases are used to verify successful and/or acceptable
implementation of the simulation system requirements. This
provides good traceability to original requirements, to test
and verify requirements and to discover inconsistency in the
requirements. Missing test cases are only a result of an
incomplete use cases model (Hasling et al. 2008).

-name : String
-ID : Integer
-summary : String
-actor : String
-precondition : Email
-description : String
-alternative : String
-post condition : String

User Case

-name : String
-ID : Integer
-description : String

Scenario

1 1..*

has 1..*1 has

-name : String
-ID : Integer
-use case associated : String
-objective : String
-input data : String
-initial condition : String
-test step : String
-expected result : String

Test Case

Figure 4: Relationship Diagram of Use Case, Scenario and
Test Cases

TEST CASE

The purpose of a test case is to identify conditions that will
be implemented in a test and expected results. Test cases are
needed to verify acceptable implementation of the system
requirement, which is a use case model in this paper.
(Samurin 2008) defines test case as “a set of test inputs,
executions, and expected results developed for a particular
objective: to exercise a particular program path or verify
compliance with a specific requirement.”

An excellent test case should satisfy the following criteria
(McGregor 2007):
 Reasonable probability of catching an error
 Exercises an area of interest
 Doesn’t do unnecessary things
 Not redundant with other tests
 Makes failures obvious
 Allows isolation and identification of errors

Here is the three-step process for generating test cases from
a fully detailed use case (Heumann 2001):
 For each use case, generate a full set of use case
 Scenarios such as a use case description table and
 activity diagrams.
 For each scenario, identify at least one test case
 (basic flow) and the conditions that will make it
 execute.
 For each test case, identify the data values that are
 used to test.

Based on the use case description, each combination of basic
and alternate flows and the scenarios can be identified. Test
cases can be created as soon as a use case is available, well
before any code is written.

As an example, test cases for simulate patient arrival are
created in Table 2 and Table 3. Table 2 presents the normal
basic flow process, we need to make sure this scenario
works correctly, and then we need to cover the major
alternative path that the user can take through this use case
and think about what could go wrong. Table 3 shows the
invalid input scenario.

Data coverage for the test can also be specified. If you want
to create tests with every possible data variation in every
possible test path, you may end up with too many tests,
impossible for you to handle. Therefore, sample the data
variation choice in each test path is a practical way to do
(Heumann 2001). We used the Input Domain Modeling
(IDM) method discussed in (Ammann and Offutt 2008) and
category - partitioning technique to decide the testing data

values in the test steps. The details are not discussed in this
paper.

Table 2: Test Case for “Simulate Patient Arrival” Use Case

Test Case Name Simulate Patient Arrival –Normal Basic flow

process
Use case name Simulate Patient Arrival basic flow
Objective To verify using valid patient arrival data
Input data Ambulatory patients: 250

 Trauma patient: 10
 Cardiac patient: 6

Initial conditions 1. The hospital ER simulation model is
 running.
2. Graphic user interface prompt for patient
 type selection

Test steps 1. Simulation user selects an unselected
 patient type from the list (ambulatory
 patients, trauma patient or cardiac patient).
2. Simulation System prompt “Enter the avg
 number of daily ambulatory patients
 (default avg =150);” “Enter the avg
 number of daily trauma patients (default
 avg=4);” or “Enter the avg number of
 daily trauma patients (default avg=4);”
 based on the patient
3. Simulation user enters a valid input (not
 one of the three 0, A, or 10000)
4. Repeat 1, 2, and 3 steps three times to
 cover all the three patient types.
5. Simulation system runs smoothly with the
 valid inputs entered.

Expected results After the user input valid data, the simulation
model will continue to run using the input to
calculate patient arrival rate.

Table 3: Test Case for “Simulate Patient Arrival” Use Case

Test Case Name Simulate Patient Arrival – Enter invalid input
Use case name Simulate Patient Arrival alternate flow
Objective To verify using invalid patient arrival data
Input data Ambulatory patients: 0

 Trauma patient: A
 Cardiac patient: 200000

Initial conditions The hospital ER simulation model is running.
 Graphic user interface prompt for patient type

selection
Test steps 1. Simulation user selects an unselected patient

 type from the list (ambulatory patients,
 trauma patient,
 or cardiac patient).
2. Simulation System prompt “Enter the avg
 number of daily ambulatory patients (default
 avg =150);” “Enter the avg number of daily
 trauma patients (default avg =4);” or “Enter
 the avg number of daily trauma patients
 (default avg =4);” based on the patient types.
3. Simulation user enters an invalid input (one
 of the three 0, A, or 10000)
4. Repeat 1, 2, and 3 steps three times to cover
 all the three patient types.

Expected results If any of the input is invalid, a error message
 will be displayed and simulation will abort.

CONCLUSION

M&S techniques are increasingly used to solve problems
and aid decision making in many different fields, and are
particularly useful for DHS applications because the actual
system simulated may be impossible to be built, or has not
been built yet, or testing an actual system is too dangerous or

costly (Cook and Skinner 2005). Results of simulations are
expected to provide reliable information for the decision
makers to make wise decisions and predictions, but potential
errors may be introduced in the process of the M&S
development lifecycle. It is critical to build the right model
and that the model is built right.

System testing is an effective methodology to help ensure
the functionality of a software system. It can also apply to
M&S applications. A well-defined concrete and testable
system-level specification is needed for that purpose. Use
cases are usually used to specify the requirements for a
simulation system. The collection of use cases can cover the
complete functionality of the simulation system and provide
information necessary to generate test cases for system
testing. Since use cases are associated with the front end of
the M&S development lifecycle, testing can get started much
earlier in the lifecycle, allowing simulation developers to
identify and fix defects that would be very costly if found in
the later stages. This also provides good traceability to
original requirements, to test and verify requirements and to
discover any inconsistency in requirements.

Using a use case model for test generation has been done in
software development. This paper identified the importance
of testing in early stages of the lifecycle of M&S, and
presented the test methodology based on the UML use case
diagram for DHS M&S applications. As a case study, a
hospital emergency room (ER) simulation model was
introduced. Use cases for the ER model were developed, and
the use case description, activity diagram associated with the
use case are created. Functional system test requirements and
testing criteria of the ER model were discussed. We showed
how activity diagrams can be used to capture scenarios and
allow the specification of a use case to be tested. By
executing the testing cases, we got expected results and
improved the model based on the testing results. Problems
such as array size and error messages have been fixed. The
ER simulator is a relatively simple model; it’s a good
example to try out this system testing approach. This system
testing approach can also be applied to more complex DHS
or manufacturing simulation models.

This paper demonstrated a novel approach to test DHS M&S
applications for the DHS community. Currently no
procedure exists within DHS for VV&T of M&S
applications. As a user, DHS may not familiar with all the
simulation techniques, but understand the requirements well.
Therefore, using use cases to create test cases is a very
useful approach to verify the requirements. Further more, the
test cases can be reused if multiple contractors develop
similar M&S applications using different tools.

REFERENCES

Abdurazik, A. and J. Offutt. 2000. “Using UML Collaboration
Diagrams for Static Checking and Test Generation”. In
Proceedings of the Third International Conference on the
Unified Modeling Language (UML '00), York, UK, 383--395.

Ammann, P.; and J. Offutt. 2008. Introduction to Software Testing.
Cambridge University Press, New York.

Balci, O. 2007. “Validation, Verification, and Testing Techniques
throughout the Life Cycle of a Simulation Study.” Annals of
Operation Research, 53 (1994), 121-173.

Booch, G.; I. Jacobson; and J. Rumbaugh. 1999. The Unified
Modeling Language User Guide. Addison-Wesley.

Briand, L. and Y. Labiche. 2001. “A UML-Based Approach to
System Testing”. In Proceedings of the Fourth International
Conference on the Unified Modeling Language (UML 2001).
(Toronto, Canada, October 2001).

Collard, R. 1999. “Test Design: Developing Test Cases from Use
Cases”, Better Software Magazine. (Vol. 1, Issue 4). 1-10.

Cook, D. and J. Skinner. 2005. “How to Perform Credible
Verification, Validation, and Accreditation for Modeling and
Simulation.” The Journal of Defense Software Engineering.

Fowler, M. 2005. UML Distilled Third Edition A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley,
Boston.

Gomaa, H. 2003. Designing Concurrent, Distributed, and Real-
Time Applications with UML, Addison-Wesley, Boston.

Heumann, J. 2001. “Generating Test Cases from Use Cases.” The
Rational Edge.

Kaner, C. 2002. “Black Box Software Testing – Professional
seminar”.

McGregor, J. 2007. “Test Early, Test Often.” Journal of Object
Technology (vol. 6, no. 4), 7-14.
http://www.jot.fm/issues/issue_2007_05/column.

Sargent, R. 2007. “Verification and validation of simulation
models”. In Proceedings of the 2007 Winter Simulation
Conference. IEEE, Picataway, N.J., 124--137.

Shao, G. and C. McLean. 2008. “Emergency Room Simulation
Prototypes for Incident Management Training”. In Proceedings
of Industrial Simulation Conference 2008, (Lyon, France, June
2008). 323-327.

Shao, G. and Y. Lee. 2007. “Applying Software Product Line
Technology to Simulation Modeling of Emergency Response
Facility.” Journal of Defense Modeling and Simulation, The
Society for Modeling and Simulation International, Vol. 4(4),
October 2007,
http://www.scs.org/pubs/jdms/vol4num4/vol4num4.html.

Tamres, L. 2002. Introducing Software Testing, Addison-Wesley,
Boston.

Zielczynski, P. 2006. “Traceability from Use Cases to Test Cases.”
The Rational Edge.

Hasling, B.; H. Goetz; and K. Beetz. 2008. “Model Based Testing
of System Requirements Using UML Use Case Models”. In
Proceedings of 2008 International Conference on Software
Testing, Verification, and Validation. 367--376.

EODiSP. 2008. “Use Cases and Test Cases.” http://www.pnp-
software.com/eodisp/resources/archive/useAndTest.

Samurin, A. 2008. “Test case template for those who are using or
would like to implement the Use Case modeling technique.”
http://www.geocities.com/xtremetesting/TCtemplate.html.

IEEE. 1989. “IEEE Standard Glossary of modeling and simulation
Terminology.” IEEE STD 610.3.

IEEE. 1990. “IEEE Standard Computer Dictionary: A Compilation
of IEEE Standard Computer Glossaries.” IEEE New York, NY.

Ambler, A. 2004. The Object Primer: Agile Model-Driven
Development with UML 2.0. Cambridge University Press, New
York.

Donald, R. and D. Brown. 2005. “Development of Metrics to
Evaluate Effectiveness of Emergency Response Operations”. In
Proceedings of the 10th International Command and Control
Research and Technology Symposium.

Lisa, P. 2006. “Simulation Model for Bioterronrism Preparedness
in an Emergency Room”. In Proceedings of the 2006 Winter
Simulation Conference.

