
Herding, Second Preimage and Trojan Message

Attacks Beyond Merkle-Damg̊ard

Elena Andreeva1, Charles Bouillaguet2, Orr Dunkelman2, and John Kelsey3

1 ESAT/SCD — COSIC, Dept. of Electrical Engineering,
Katholieke Universiteit Leuven and IBBT

elena.andreeva@esat.kuleuven.be

2 Ecole Normale Supérieure

{charles.bouillaguet, orr.dunkelman}@ens.fr

3 National Institute of Standards and Technology

john.kelsey@nist.gov

Abstract. In this paper we present new attack techniques to analyze the
structure of hash functions that are not based on the classical Merkle­
Damg̊ard construction. We extend the herding attack to concatenated
hashes, and to certain hash functions that process each message block
several times. Using this technique, we show a second preimage attack
on the folklore “hash-twice” construction which process two concatenated
copies of the message. We follow with showing how to apply the herding
attack to tree hashes. Finally, we present a new type of attack — the
trojan message attack, which allows for producing second preimages of
unknown messages (from a small known space) when they are appended
with a fixed suffix.
Key words: Herding attack, Second preimage attack, Trojan message
attack, Zipper hash, Concatenated hash, Tree hash.

1 Introduction

The works of Dean [8] showed that fixed points of the compression function
can be transformed into a long message second preimage attack on the Merkle­
Damg̊ard functions in O

(
2n/2

)
time (n is the size in bits of the chaining and

digest values). Later, the seminal work by Joux [10] suggested a new method
to efficiently construct multicollisions, by turning ℓ pairs of colliding message
blocks into 2ℓ colliding messages. 1 In [12], Kelsey and Schneier applied the
multicollision ideas of Joux to Dean’s attack, and eliminated the need for finding
fixed points in the compression function by building expandable messages, which
are a set of 2ℓ colliding messages each of a distinct length.

Another result in the same line of research is the herding attack by Kelsey
and Kohno in [11]. The attack is a chosen-target prefix attack, i.e., the adver­
sary commits to a digest value h and is then presented with a challenge prefix
P . Now, the adversary efficiently computes a suffix S, such that H(P ||S) = h.

1 We note that in [6] the same basic idea was used for a dedicated preimage attack.

1

mailto:john.kelsey@nist.gov
mailto:orr.dunkelman}@ens.fr
mailto:elena.andreeva@esat.kuleuven.be

The underlying technique uses a diamond structure, a precomputed data struc­
ture, which allows 2ℓ sequences of message blocks to iteratively converge to the
same final digest value. The latter result, together with the long message second
preimage attack, was used in [1] to exhibit a new type of second preimage attack
that allows to construct second preimages differing from the original messages
only by a small number of message blocks.

We note that the work of Joux in [10] also explores concatenated hashing,
i.e., the hash function H(M) = H1(M)||H2(M). It appears that if one of the
underlying hash functions is iterative, then the task of finding a collision (resp.,
a preimage) in H(M) is only polynomially harder than finding a collision (resp.,
a preimage) in any of the Hi(M).

1.1 Our Contributions

Our results may be summarized as follows: All examples assume 128-bit hashes,
and set the work for precomputation equal to the online work of the attack for
concreteness.

Applying herding attacks to more constructions. In this paper, herding
attacks are applied to four non-Merkle-Damg̊ard hash constructions. For ref­
erence, an n bit Merkle-Damg̊ard hash can be herded with a precomputation

+2 2of about 2
n+ℓ

operations, and an online cost of about 2n−ℓ operations. An
Merkle-Damg̊ard hash with a 128-bit state, with the precomputed and online
work set equal, can be herded for about 288 operations.

Applying long message second preimage attacks to new constructions

In this paper, long-message second preimage attacks are applied to two new con­
structions. For reference, a long-message second preimage attack on an Merkle­
Damg̊ard hash with 128 bit state and a 250 block target message requires about
278 work.

Trojan Message Attacks This paper also introduces a new kind of attack,
called the trojan message attack. This involves an attacker producing a kind of
poisoned suffix S (the “Trojan message”) such that, when the victim prepends
one of a constrained set of possible prefixes to it, producing the message P ||S,
the attacker can produce a second preimage for that message. The attack comes
in a less powerful form and a more powerful form, as is described in Section 9.
Note that for both forms of the attack, the number of message blocks in the
Trojan message is at least as large as the number of possible prefixes.

1.2 Organization of the Paper

Section 2 outlines the definitions used in the paper. Prior work is surveyed in
Section 3. In Section 4 we introduce the diamond structures on κ pipes and use

2

Concatenated Hashes:

(κ concatenated hashes, each n bits wide, using a 2ℓ-wide diamond structure.)

Precomputation:
Online:
Example:

`
n − ℓ + nℓ

2

´
· (κ− 1) · (n/2)κ−2

· 2n/2 + (2 · κ− 1) · 2
n+ℓ
2 +2

2n−ℓ
· [1 + 2 · (κ− 1)] = (2κ− 1) · 2n−ℓ

(Two 128 bit hashes concatenated) 294 work total.

Hash Twice:

(n bit hash state, using a 2ℓ-wide diamond structure.)

Precomputation:

Online:
Example:

3 · 2(n+ℓ)/2+2

3 · 2n−ℓ

(128-bit wide hash) 3 · 288 work.

Zipper Hash:

(n bit hash state, using a 2ℓ-wide diamond structure.)

Precomputation:

Online:
Example:

2 · 2(n+ℓ)/2+2 + (n − ℓ + nℓ
2) · 2

n/2

2 · 2n−ℓ

(128-bit hash) 3 · 288 work.

Tree Hash:

(n bit hash state, binary hash tree with 2ℓ+1 message blocks)
(Note: Width of diamond is limited by message length.)

Precomputation:

Online:
Example:

15.08 · 2
n+ℓ
2

2n−(ℓ−1)

(128 bit binary tree hash, 230 message blocks.) 299 work total.

Hash Twice:

(n bit hash, using a 2ℓ-wide diamond structure, 2κ block target message.)

Precomputation:
Online:
Example:

2
n−ℓ

2 +3

2n−κ

(128 bit hash, 250 block message) about 288 work total.

Tree Hash:

(n bit hash, binary hash tree, 2κ block target message.)

Online:
Example:

2n−κ

(128 bit hash, 250 block message.) 270 work total.

Less Powerful Version:

(n bit hash, N possible prefixes)
(Second preimage changes only small part of S)

Precomputation:
Online:
Example:

N · 2n/2

Negligible
(128 bit hash, 1024 possible prefixes) about 274 work total.

More Powerful Version:

(n bit hash, N possible prefixes)
(Second preimage gives attacker full choice of prefix.)

Precomputation:
Online:
Example:

2
n+ℓ
2 +2 + N · 2n/2

2n−ℓ

(128 bit hash, 1024 possible prefixes) 288 work.

3

them to apply the herding attack to concatenated hashes. We use the same ideas
to present herding attacks on the hash-twice and zipper hash in Section 5. These
herding attacks are used in Section 6 to present a second preimage attacks on
hash-twice, The new results on herding tree hashes are presented in Section 7,
and in Section 8 we present second preimage attacks on tree hashes. We follow
to introduce the new trojan message attack, in Section 9 and conclude with
Section 10.

2 Background

General notation. Let n be a positive integer, then {0, 1}n denotes the set of
all bitstrings of length n, and {0, 1}∗ be the set of all bitstrings. If x, y are strings,
then xiy is the concatenation of x and y. We denote by |x| the length of the
bitstring x, but in some places we use |M | to denote the length of the message

M in blocks. For M = m1 M = mLimL−1i . . . im1.im2i . . . imL we define M
Let f : {0, 1}n × {0, 1}b → {0, 1}n be a compression function taking as inputs

bitstrings of length n and b, respectively. Unless stated explicitly we denote the
n-bit input values by h (chaining values) and the b-bit values by m (message
blocks). A function H : {0, 1}∗ → {0, 1}n built on top of some fixed compression
function f is denoted by Hf . To indicate the use of fixed initialization vectors
for some hash functions, with Hf(IV, M) we explicitly denote the result of eval­
uating Hf on inputs the message M and the initialization vector IV .

f
Merkle-Damg̊ard hash function. MDH : {0, 1}∗ → {0, 1}n takes a mes­
sage M ∈ {0, 1}∗ as an input to return a digest value of length n bits. Given a
fixed initialization vector IV and a padding function padMD that appends to M
fixed bits (a single 1 bit and sufficiently many 0 bits) together with the message

flength encoding of M to obtain a message multiple of the blocksize b, the MDH
function is defined as:

1. m1, . . . , mL ← padMD(M).
2. h0 = IV .
3. For i = 1 to L compute hi = f (hi−1, mi).

f4. MDH (M) £ hL.

Often in the sequel we consider chaining values obtained by hashing a given
prefix of the message. When P is a message whose size is a multiple of b bits, we
denote by f∗(P) the chaining value resulting from the Merkle-Damg̊ard iteration
of f without the padding scheme being applied.

Concatenated hash. CH of κ ≥ 2 pipes is defined as:

CH (M) = Hf1 (IV1, M) || Hf2 (IV2, M) || . . . || Hfκ(IVκ, M).

“Hash-Twice”. This is a folklore hashing mode of operation that hashes two
consecutive copies of the (padded) message. Formally, it is defined by:

HT (M) £ Hf (Hf (IV, M), M).

4

Zipper hash. It is proposed in [13] and is proven indifferentiable from a random
oracle up to the birthday bound even if the compression functions in use, f1 and
f2, are weak (i.e., they can be inverted and collisions can be found efficiently).
The zipper hash ZH is defined as:

ZH (M) £ Hf2

(
Hf1 (IV, M), M

)
.M

Throughout the paper, we assume that all Hfi are applications of the Merkle­
Damg̊ard mode of operation and thus the respective padding padMD is present
in the syntax of M , and also MM in the case of Zipper hash.

Tree hash. The first suggested tree hash construction dates back to [14]. Let
f : {0, 1}n × {0, 1}n → {0, 1}n be a compression function and padTH be a
padding function that appends a single 1 bit and as many 0 bits as needed to
the message M to obtain padTH (M) = m1im2i . . . imL, where |mi| = n, L = 2d

for d = ⌈log2(|M | + 1)⌉. Then, the tree hash function Tree is defined as:

1. m1im2i . . . imL ← padTH (M)
2. For j = 1 to 2d−1 compute h1,j = f(m2j−1, m2j)
3. For i = 2 to d:

– For j = 1 to 2d−i compute hi,j = f(hi−1,2j−1, hi−1,2j)
4. Tree (M) £ f(hd,1, |M |).

3 Existing Attack Techniques

3.1 Herding attack.

The herding attack is a chosen-target preimage attack on Merkle-Damg̊ard con­
structions [11]. In the attack, an adversary commits to a public digest value hT .
After the commitment phase, the adversary is challenged with a prefix P which
she has no control over, and she is to produce a suffix S for which hT = Hf(PiS).
Of course, hT is specifically chosen after a precomputation phase by the adver­
sary. The main idea behind this attack is to store 2ℓ possible chaining values
D = {hi} from which the adversary knows how to reach hT . To construct this
data structure, which is in fact a tree, the adversary picks about 2n/2−ℓ/2+1/2

single-block messages mj , and evaluates f(hi, mj) for all i and j. Due to the
large number of values, it is expected that collisions occur, and it is expected
that the adversary knows for all 2ℓ values of hi a corresponding message block
mα(i) such that the set

{
f

(
hi, mα(i)

)}
contains only 2ℓ−1 distinct values. The

process is then repeated ℓ−1 more times until a final digest value is found. These
values (and the corresponding message blocks) are called a diamond structure,
as presented in Figure 1.

In the online phase of the attack, the adversary tries at random message
∗blocks m until f∗(P ||m ∗) ∈ D. Once such a value is found, it is possible to

follow the path connecting this value to the committed hash (which is at the

“root” of the diamond) and produce the required suffix S.

The total time complexity of the attack is about 2n/2+ℓ/2+2 offline compression

function evaluations, and 2n−ℓ online compression function evaluations.

5

mα(1)

mα(8)

Fig. 1. A Diamond Structure

3.2 Collisions on Concatenated Hashes.

We describe the collision attack of [10] against the concatenated hash CH with
two pipes. Starting from two fixed chaining values IV1 and IV2 in the two pipes,
the adversary first finds a 2n/2-multicollision for the first function f1. The ad­
versary then evaluates f2 on the 2n/2 messages of the multicollision, all yielding
the same chaining value for f1, while yielding a set of 2n/2 chaining values for f2,
as shown in figure 2. The adversary then looks for the expected collision in this
set. To construct a 2ℓ-multicollision on the two pipes, just replay Joux’s attack
using the two-pipe collision finding algorithm described above ℓ times.

h1

h2

h3

h4

h7

h8

mα(7)

hT

IV1

IV2

Full collision !

Fig. 2. Joux’s attack against concatenated hashes

Joux also shows that this idea can be extended to find (multi)collisions in the
concatenation of κ hash functions. To build a collision on κ parallel pipes, the
adversary proceeds inductively: first construct a 2n/2-multicollision on the first
κ− 1 pipes and hash the 2n/2 messages in the last pipe. Then, by the birthday
bound, a collision is expected amongst the set of 2n/2 values generated in the last

6

pipe. This collision is present in all the previous κ − 1 pipes, and hence results
in a full collision on all the κ pipes.

The cost of building a collision on κ pipes is the cost of building the multi-
collision, plus the cost of hashing the 2n/2 messages of length (n/2)κ−1. Solving

n

the recurrence yields a time complexity of κ · 22 compression function 2·
(

n
)κ−1

calls. More generally, the complexity of building a 2ℓ-multicollision on κ pipes is

exactly ℓ times the preceding expression, or ℓ · κ ·
(

n
)κ−1

· 22
n
2 .

4 Herding Attack on Concatenated Hashes

We start by showing how to adapt the herding attack to concatenated hashes.
The main idea behind the new attack is to construct multi-pipe diamonds, which
can be done on top of multicollisions. We recall that a multicollision on (κ− 1)
pipes can be used to construct a collision on κ pipes. In the same vein, we succeed
in herding κ pipes by building a κ-pipe diamond using a (κ − 1)-pipe diamond
and (κ− 1)-pipe multicollision.

Assume that the adversary succeeded in herding κ− 1 pipes. Then, she faces
the problem of herding the last pipe. Now, if the adversary tries to connect in
the κ-th pipe with a random block, she is very likely to lose the control over the
previous pipes. However, if she uses a “block” which is part of a multicollision
on the first κ − 1 pipes, she still maintains the control over the previous pipes,
while offering enough freedom for herding the last pipe.

4.1 Precomputation Phase

In the precomputation phase, the adversary starts with the (κ − 1)-diamond
which is already known. The first step is the randomization step: given the
concatenated chaining value the adversary constructs a 2n−ℓ-multicollision on
the first κ− 1 pipes. Let the resulting chaining value be (h1, h2 , . . . , hκ−1).

The second step is the actual diamond construction. The adversary picks at
random 2ℓ values for Dκ = {hκ}. Then, she generates a set of further (in addition i

to the preceding 2n−ℓ multicollisions) 2n/2-multicollisions2 on the first κ−1 pipes,
starting from (h1, h2 , . . . , hκ−1). For each possible message in the multicollision,
and any starting point (h1, h2 , . . . , hκ−1, hκ), the adversary computes the new i

chaining values, expecting to reach enough collisions, such that for any hκ
i , there

exists a “message” mi (i.e., a sequence of message blocks in the multicollision)
∗ where #

{
fκ (hi

κ, mi)
}

= 2ℓ−1 . After this step, the same process is repeated.
Figure 3 depicts the process for κ = 2.

The running time is dominated by the generation of the last diamond struc­
ture. First, we need to generate 2n−ℓ+ nℓ

-multicollisions on κ − 1 pipes, which 2

2	 We note that fewer multicollisions are needed (herding the first layers takes less
messages). However, for the ease of description we shall assume all layers of the
diamond structure require the same number of multicollisions. Hence, the total of
2nℓ/2-multicollisions, can be reduced to 2ℓ(n+1−ℓ)/2-multicollisions.

7

nℓ takes (n − ℓ +) · (κ− 1) · (n/2)κ−2 · 2n/2 compression function calls. Then, we 2
n−ℓ+1

2need to “hash” 2ℓ values under 2 message sequences (for the last layer of
the diamond structure). While at a first glance it may seem that we need a very
long time for each message sequence, it can be done efficiently if we take into
consideration the fact that there is no need to recompute all the chaining values
only if the last block was changed. Hence, the actual time required to construct

the diamond structure is 2 · 2
n+ℓ +2 (twice the time needed for a classic diamond 2

structure). In total, the preprocessing takes

(
nℓ

)
+2 2n − ℓ + · (κ− 1) · (n/2)κ−2 · 2n/2 + (2 · κ− 1) · 2

n+ℓ

.
2

One may ask what is the reason for the randomization step. As demonstrated
in the online phase of the attack, the need arises from the fact that herding the
values in the first κ − 1 pipes fixes the value in the κ-th pipe. Hence, we need
enough “freedom” to randomize this chaining value, without affecting the already
solved pipes.

ℓ blocks n − ℓ blocks ℓ · n/2 blocks

2ℓ

2ℓ

h1

h2

Fig. 3. Diamond Structure on two pipes

4.2 Online Phase

Given a precomputed κ-diamond structure, it is possible to apply the herding
attack to κ concatenated hash functions. The adversary is given a prefix P , and

∗∗tries various message blocks m until f1 (P ||m ∗) gives one of the 2ℓ values in
D1 of the diamond structure on the first pipe. Then, the adversary traverses the
first diamond structure to its root, finding the first part of the suffix S1 (so far
all computations are done in the first pipe). At this point, the adversary starts

∗ computing f2 (P ||m ∗||S1), and for all 2n−ℓ paths of the multicollision in the
randomization path, until one of them hits one of the 2ℓ values in D2. At this
point, the adversary can use the paths inside this second diamond (built upon

8

ℓ · n/2 blocks 1 block ℓ blocks n − ℓ blocks

h ′ 1

h ′ 2

h1

h2

Fig. 4. The Online Phase of the Herding Attack for κ = 2

a multicollision). This process can start again (with a randomization part, and
traversing the diamond structure) until all κ pipes were herded correctly. We
outline the process for κ = 2 in Figure 4.

We note that once a pipe is herded, there is no longer a need to compute it
(as the multicollision predicts its value), and then it is possible to start analyzing
the next pipe. In each new pipe, we need to evaluate 2n−ℓ “messages” (for all
pipes but the first one, these messages are multicollisions on the previous pipes),
each takes on average (in an efficient implementation) two compression function
calls (besides the first layer). Hence, the online time complexity of the attack is

2n−ℓ · 2n−ℓ · [1 + 2 · (κ− 1)] = (2κ− 1)

compression function calls.

5 Herding Beyond Merkle-Damg̊ard

In this section we show that the previous technique can be applied to two other
hash constructions which previously appeared to be immune to herding attacks
— the Hash Twice construction and Zipper Hash. Both attacks make use of the
two-pipe diamond structure described above.

5.1 Herding the Hash-Twice Function

It follows from the very general result of [9, 15] that it is possible to build Joux­
style multicollisions efficiently on the hash-twice construction. In this section,
we extend their results by describing a herding attack against the hash-twice
construction. This attack can then be adapted into a full second-preimage attack,
following the ideas of [1, 12] (as described in Section 6).

Because each message block enters the hashing process twice, choosing a
message block in the second pass may change not only the chaining value going
out but also the chaining value going into the second pass. Choices of the message

9

intended to affect the second pass must thus be done in a way that does not
randomize the result of the first pass.

r 1 ℓ n − ℓ ℓ · n
2

IV

hc

he

h1

h2
hc ′

he ′

h3

challenge 1st diamond 2nd diamond

Fig. 5. Herding the Hash-Twice construction

Apart from this technicality, the attack is essentially the same as the one
against the concatenation of two hash functions, as shown in figure 5. The ad­
versary commits to h3, and is then being challenged with an unknown prefix P .
Hashing the prefix yields a chaining value hc. Starting from hc, she chooses a

∗message block m connecting to a chaining value he which is one of the starting
points of the first diamond, then a path S1 inside it yields the chaining value h1

on the first pass, from which we traverse a precomputed 2n−ℓ+nℓ/2-multicollision,
producing h2 as the input chaining value to the second pass. Starting from h2,
the challenge prefix P leads to a random chaining value hc ′ in the second pass.
Then, the second pass can be herded without losing control of the chaining value
in the first pipe thanks to the diamond built on top of a multicollision. Amongst
the 2n−ℓ messages in the multicollision following the first diamond, we expect
one to connect to the chaining value he ′ in the starting points of the second
diamond. We can then follow a path inside the second diamond, which is also a
path in the multicollision of the first pipe, that yields the chaining value at the
root of the second diamond, namely h3.

The offline complexity of the attack is the time required for generating a
diamond structure of 2ℓ starting points (which takes 2(n+ℓ)/2+2), finding (n −
ℓ) + n · ℓ/2 collisions (which takes [(n − ℓ) + n · ℓ/2] · 2n/2), and constructing
a two-pipe diamond (which takes 2 · 2(n+ℓ)/2+2). The total offline complexity is

· 2(n+ℓ)/2+2 therefore 3 .

The online complexity is composed of finding two connecting “messages”. The
first search takes 2n−ℓ, while the second takes 2 · 2n−ℓ, or a total of 3 · 2n−ℓ .

10

Attacks on Hash-Thrice. It is relatively clear that the attack can be gen­
eralized to the case where the message is hashed three or more times (by using
multicollisions on 3 pipes, or the respective number of passes). The complexity
of the attack becomes polynomially higher, though.

5.2 Herding the Zipper Hash Function

It is also possible to mount a modified herding attack against the zipper-hash.
The regular herding attack is not feasible, because the last message block going
into the compression function is the first message block of the challenge. There­
fore, an adversary who is capable of doing the herding attack can be used to
invert the compression function. We therefore consider a variant of the herding
attack where the challenge is placed at the end: the adversary commits to a hash
value hT , then she is challenged with a suffix S, and has to produce a prefix P
such that ZH (P || S) = hT .

ℓ · n
2 n − ℓ Challenge S

IV

hT

he

h1

hm

Fig. 6. Herding the Zipper Hash

The attack is relatively similar to the hash-twice case. The offline part is as
follows:

1. Starting from the IV , build a 2nℓ/2+n−ℓ-multicollision that yields a chaining
value h1.

2. Build a diamond structure on top of the reversed multicollision (i.e., where
the order of colliding messages in the multicollision is reversed). The chaining
value at the root of the second diamond is hT .

3. Commit to hT .

And the online part:

1. Given a challenge suffix S, compute the chaining value after the two copies

of the challenge: hm = f2
∗
(
f1

∗ (h1, S) , S�
)
.

2. From hm, find a connecting path in the part of (reversed) multicollision that
is just before the diamond (in the second run) yielding a chaining value

11

he ∈ D1 of the diamond structure. Then find a path inside the (reversed)
diamond structure towards the committed hash hT .

We note that the fact that two different hash functions f1 and f2 are used in
the two passes has no impact on our results, as the attack technique is indepen­
dent of the actual functions used. The precomputation phase takes 2·2(n+ℓ)/2+2 +

nℓ (n−ℓ+) ·2n/2, and the online computation takes 2 ·2n−ℓ compression function 2
calls.

6 From Herding to Second Preimages: Hash-Twice

If a construction is susceptible to the herding attack, then it is natural to ask
whether the second preimage attack of [1] is applicable. The general idea of this
attack is to connect the root of the diamond structure to some chaining value
encountered during the hashing of the target message, and then connect into
the diamond structure (either from the corresponding location in the original
message or from a random prefix). This ensures that the new message has the
same length (foiling the Merkle-Damg̊ard strengthening).

In this section, we present a second preimage attack against the Hash-Twice
construction. The general strategy is to build a diamond structure, and try to
connect it to the challenge message (in the second pass). Some complications
appear, because the connection may happen anywhere, and the diamond only
works on top of a multicollision that has to be located somewhere in the first
pass. However, we can use an expandable message [12] to move the multicollision
(and therefore the diamond) around. Here is a complete description of the attack.
Let us assume that the adversary is challenged with a message M of 2κ blocks.

The offline processing is as follows:

1. Generate a Kelsey-Schneier expandable message which can take any length
between κ and 2κ +κ− 1, starting from the IV yielding a chaining value ha.

2. Starting from ha, generate a multicollision of length (n − ℓ) + ℓ · n/2 blocks,
that yields a chaining value hb.

3. Build a diamond structure on top of the multicollision. It yields a chaining
value hx. It is used to herd the second pass.

The online phase, given a message M , is as follows (depicted in Figures 7 and 8):

∗1. Given hx, select at random message blocks m until f(hx, m ∗) equals to a
chaining value hi0 appearing in the second pass of the hashing of M . Let us
denote by m the right message block.

2. To position the end of the diamond at the i0 − 1-th block of M , instantiate
the expandable message in length of i0 − 1− n · ℓ/2− (n − ℓ) blocks.

3. Let hc = f∗(hb, mi0 ||mi0 +1 || . . . ||m2κ). Compute the second pass on the
expandable message, until hd is reached. Now, using the freedom in the first
n− ℓ blocks of the multicollision, find a message that sends hd to a chaining
value he occurring in the starting points of the diamond in the second pass.

12

2k

m

IV

H(M)

IV ha hb

hx

hi0

2k
− i0

n − ℓ ℓ · n/2

Fig. 7. Second preimage attack on Hash-Twice: first online step

i0 − (n − ℓ)− ℓ · n/2− 1 n − ℓ ℓ · n/2 1 2k
− i0

m

IV

H(M)

ha hb

hc hd

he

hx hi0

Fig. 8. Second preimage attack on Hash-Twice: online steps 2 to 5

13

4. Find a path inside the diamond in the second pass (this is also a path inside

the multicollision of the first pass). It yields the chaining value hx at the

root of the diamond in the second pipe.

5. Append the connection block m and the suffix of M to obtain the second

preimage.

Note that the message forged by assembling the right parts has the same
length as M , therefore the padding scheme act the same way on both.

The offline complexity of the attack is the mostly dominated by the need
to construct a diamond structure on two pipes, i.e., 2 · 2(n+ℓ)/2+2. The online
time complexity is 2n−κ for finding m, and 2 · 2n−ℓ connecting to the diamond
structure. Hence, the total online time is 2n−κ + 2n+1−ℓ .

7 Herding Tree Hashes

In this section we introduce a new method for mounting herding attacks on tree
hashes. As in the previous attacks, our method is composed of two steps: offline
computation (presented in Section 7.1) and online computation (presented in
Section 7.2).

The main differences with the regular herding attacks is the fact that in the
case of tree hashes the adversary may suggest embedding the challenge in any
block she desires (following the precomputation step). Moreover, the adversary,
may publish in advance a great chunk of the answer to the challenge.

7.1 Precomputation Phase

In the offline precomputation phase of the herding attack, the adversary deter­
mines the position for inserting the challenge block and commits to the digest
value hT . The diamond-like structure built in this attack allows for freedom in
choosing the location of the challenge. Let the length of the padded message
(the answer to the challenge, after the embedding of it) be 2ℓ n-bit blocks, and
assume that the compression function is f : {0, 1}n × {0, 1}n → {0, 1}n . The
details of the offline computation are as follows:

1. Determine the location for the challenge block, i.e., m3.
2. Choose some set A1 of 2ℓ−1 arbitrary chaining values for h1,2.
3. Fix the message block m2 (alternatively fix m1, or parts of m1 and m2). For

j j jarbitrary m1, and compute h1,1 = f(m1, m2). For each hi
1,2 find a value hi

1,1,
jsuch that #A2 £ {h2,1 = f(h1

i
,1, h1,2)} = 2ℓ−2 .

j j j4. Fix m6, m7 and m8. For arbitrary m5 compute h = f(f(m5, m6), f (m7, m8)). 2,2

For each hi
2,1, find a value h2

i
,2, such that #A3 £ {h3,1 = f(hi

2,1, h
j
2,2)} =

2ℓ−3 .
5. Repeat the above step (each time with a larger set of fixed values), until fixing

m2ℓ−1+2 , m2ℓ−1+3 , . . . , m2ℓ . For m2ℓ−1+1 , find two possible values, such that

hℓ,1 collides for the two values in Aℓ−1.

14

6. Commit to hT = f(hℓ,1, |M |).

The chosen points in the set A1 serve as target values for the online stage
of the computation. The goal is to compute the hash digest hT , such that it is
reachable from all points in A1. For that we reduce the size of A1 by a factor
of 2 to form A2 by means of collision search through the possible values of m1.
The same principle is followed until the root hash value is computed.
To reduce the complexity of the precomputation it is more efficient for the ad­
versary to fix the known message blocks from the precomputation to constants,
rather than to store the exact values needed for each collision in the tree. For a
tree of depth ℓ, the adversary can fix all but ℓ + 1 message blocks, leaving one
message block for the challenge, and controlling the paths in the tree through
the remaining ℓ blocks. The adversary also can publish the fixed message blocks
in advance. However, this is not a strict requirement since these message blocks
are already under the control of the adversary.

The time complexity of the precomputation with 2ℓ−1 starting points is about
n+(ℓ−1)+1

2

n−(ℓ−1)+1

2·2 for finding the first layer of collisions. This follows from the fact that

2we need to try about 2 possible message blocks for m1 (or its equivalent)
to find collisions between any pair in the target set A1, and we need to perform
2 compression function calls to evaluate h2,1. For the collisions on the second

n+(ℓ−1)−1+1
2level 3 · 2 + 1 compression function calls are needed (the last term is

due to the computation of f(m7, m8) which can be done once). The third level
n+(ℓ−1)−2+1

2requires 4 · 2 + 4 compression function calls. Hence, in total we have

ℓ−1


ℓ−1


ℓ2
n+ℓ−j+1 n+ℓ+1

2 2

� �
(j + 1) · 2 + 2j+1 − (j + 2)

�
≤

�
(j + 1) · 2−j/2·2 +2ℓ+1 −

2
j=1 j=1

√
2 ≤ 10.66 as a limit when ℓ goes √The sum in the right-hand side admits 1−2

2 2−3
n+ℓ
2to infinity, which yields an approximate offline complexity of 15.08 · 2 com­

pression function calls. The space complexity here is 2ℓ − 1 and is determined
by the amount of memory blocks that are required for the storage of the target
points in A1 and the precomputed values for the non-fixed message blocks (in

∗∗∗this example chosen to be m . . .). 1, m 5, m 9,

7.2 Online Phase

Here the adversary obtains the challenge P , and has to:

∗∗
4, such that f(P, m4)

the rest of the message blocks m
1. Find m = h1,2 where h1,2 ∈ A1. Note that h1,2 fixes

∗∗∗∗
1, m 5, m 9, . . . , m .2ℓ−1+1

∗
1, m2), h2,1)

ing the correct intermediate chaining values, arrive to the correct value for

∗2. Retrieve the stored value for m for which f(f(m ∈ A2. Trac­1

∗ which leads to hℓ,1 and hTm .2ℓ−1+1
∗∗ m1, m2, P, m4, m 5, m6, m7, m8, m 9, m10 , . . . , mℓ as the answer.

15

∗∗3. Output

The workload in the online phase of the computation reflects the cost of
linking to a point contained in the set A1. Approximately 2n−(ℓ−1) compression
function calls are required to link correctly to one of the 2(ℓ−1) points in A1.

7.3	 Variants and Applications of the Herding Attack on Tree Hash

Functions

Precomputed challenge messages. If there exists a limited set of possible
challenges, it is possible to precompute the points in A1. This allows for a very
efficient connection in the online stage, however, at the cost of losing flexibility–
only the precomputed message blocks can be “herded” to hT .

Herding sequences of adjacent message blocks. The herding attack also
allows for inserting sequences (instead of a single block) of adjacent challenge
blocks. In this case the set of target chaining values A1 has to be embedded
deeper in the tree structure. This results in larger online complexity due to the
evaluation of additional nodes on the path to the target linking set A1.

Herding both sides of the hash tree. The diamond-like structure used for
herding trees can accommodate the insertion of a challenge message blocks on
both sides of the hash tree due to symmetry of the structure. It is thus no more
expensive to construct a diamond structure that allows 2ℓ−1 choices on both
sides of the root. This means that an adversary can either herd one message
block on the left half of the message, and another on the right, or satisfying two
challenges simultaneously with the same diamond structure.

Applicability. We note that the proposed herding attack is applicable to other
variants of the tree hash function. Even if the employed compression functions
in the tree are distinct (e.g., as considered in MD6 [17]), it is still possible to
apply the attack, because an adversary knows (and controls) the location of the
challenges.3 The attack also works irrespective of the known random XOR masks
(e.g., tree constructions of the XOR tree type [2, 18]) applied on the chaining
values at each level.

8 Long-Message Second Preimages in Tree Hashes

Tree hashes that apply the same compression function to each message block (i.e.,
the only difference between f(m2i−1, m2i) and f(m2j−1, m2j) is the position of
the resulting node in the tree) are vulnerable to a long-message second preimage
attack which changes at most two blocks of the message.

We know that h1,j = f(m2j−1, m2j) for j = 1 to L/2 for a message M of
length L = 2κ blocks. Then given the target message M , there are 2κ−1 chaining
values h1,j that can be targeted. If the adversary is able to invert even one of

3 Still, note that the herding attack on MD6 has increased offline complexity (com­
pared to our estimates) because of its large internal state and subsequent truncation
in the final output transformation.

16

′ ′′) ′ ′′)these chaining values, i.e., to produce (m , m such that f(m , m = h1,j for
′some 1 ≤ j ≤ 2κ−1, then he has successfully produced a second preimage M .

′ Note, however that (m , m ′′) shall differ than the corresponding pair of message
blocks in the original target message M . Thus, a long-message second preimage
attack on message of length 2κ requires about 2n−κ+1 trial inversions for f(·).

′ ′ ′′)More precisely, the adversary just tries message pairs (m , m ′′), until f(m , m =
≤ 2κ−1h1,j	 for some 1 ≤ j . Then, the adversary replaces (m2j−1||m2j) with

′ m ′ ||m without affecting the computed hash value for M . Note that the number
of modified message blocks is only two. This result also applies to other par­
allel modes where the exact position has no effect on the way the blocks are
compressed.

Furthermore, it is also possible to model the inversion of f as a task for a time-
memory-data attack [4]. The h1,j values are the multiple targets, which compose
D = 2κ−1 data points. Using the time-memory-data curve of the attack from [4],
it is possible to have an inversion attack which satisfy the relation N2 = T M2D2 ,
where N is the size of the output space of f , T is the online computation,
and M is the number of memory blocks used to store the tables of the attack.
As N = 2n, we obtain that the curve for this attack is 22(n−κ+1) = T M2

(with preprocessing of 2n−κ+1). We note that the trade-off curve can be used
as long as M < N, T < N, and T ≥ D2 (see [3] for more details about the
last constraint). Thus, for κ < n/3, it is possible to choose T = M , and obtain
the curve T = M = 22(n−κ+1)/3. For n = 128 with κ = 30, one can apply the
time-memory-data tradeoff attack using 299 pre-processing time and 266 memory
blocks, and find a second preimage in 266 online computation.

The described long message second preimage attack on trees applies to not
only strengthened Merkle trees, but also to XOR-Trees [2] and optimized variants
of these hash functions [18].

9	 New Trojan Message Attacks on Merkle-Damg̊ard

Hash Functions

“Do not trust the horse, Trojans. Whatever it is, I fear the Greeks
even when they bring gifts ” (Virgil’s Aeneid, Book 2, 19 BC)

In this section, we introduce a new generic attack on many hash function
constructions, called the Trojan Message attack. A Trojan message is a string S
which is produced offline by an attacker, and is then provided to a victim. The
victim then selects some prefix P from a constrained set of choices, and produces
the message P || S. However, due to the way S was chosen, the attacker is now
able to find a second preimage for P || S.

Given a Merkle-Damg̊ard hash for which collisions may be found, Trojan
messages may be produced. In general, the Trojan message requires at least one
message input block, and one collision search, per possible value of P . If there
are 1024 possible values of P , an attacker may produce a 1024-block Trojan
message, requiring 1024 collision searches.

17

One can imagine a Trojan message attack being practical against applica­
tions which use MD5, and which permit an attacker to provide some victim
with ”boilerplate” text for the end of his document, while imposing a relatively
constrained set of choice for his part of the document.

Against Merkle-Damg̊ard hashes, Trojan message attacks take two forms:

1. If only straightforward collisions of the compression function are possible,
second preimages for the full message keep the victim’s choice of P , but

′introduce a limited change in S. That is, the attacker finds S � S such that =

H(P || S) = H(P || S ′).

2. If collisions of the compression function starting from different chaining val­
ues are possible, second preimages for the full message give the attacker a

′choice of P , and leave S mostly unchanged. That is, the attacker finds P
′ ′and S such that H(P || S) = H(P || S′).

Let P = {P1, . . . , PN} be a set of N known prefix messages and hi be the 0
intermediate chaining value resulting from the computation of f∗(Pi). Note,
that without loss of generality, we can assume that all the prefixes have the
same length (otherwise, we just consider padded versions). Therefore, we safely
disregard strengthening and padding issues.

9.1 The Collision Trojan Attack

The collision variant of the trojan message attack makes use of a collision finding
algorithm IndenticalPrefixCollision which takes a chaining value as param­
eter and produces a pair of messages colliding from this chaining value. The
attack proceeds as follows:

1. A computes N colliding message pairs (Si, Ti) using the algorithm of figure 9.
2. A sends B a suffix message S = S1 || . . . || SN .
3. B commits to h = Hf (Pi || S) where Pi is in P .
4. A finds out Pi through exhaustive search amongst the N possible choices

and outputs:
′ M = Pi || S1 || . . . || Ti || . . . || SN

′We have that Hf(M ′) = h. The hashing of Pi || S and Pi || S differs only
when Ti replaces Si, but because these two blocks collide, both hash processes
do not diverge.

The only non-trivial part of the attack for A is the first step where A pre­
computes N collisions for each prefix from the set P (in time N · 2n/2), and
evaluates the compression function N2 times. If finding a collision for the hash
function is easy, e.g., like the legacy hash function MD5 [16] the attack can be
even practical. It has recently been shown that finding a collision in MD5 takes
about 216 evaluations of the compression function [19]. For instance, one can
forge in a matter of seconds a suffix S of 46720 bytes permitting to find second
preimages for MD5 if the prefix set P is the set of the days of the year.

18

S1

S2 S3 S4
h1 h1

0 T1 1 h1
2 h1

3 h1
4

S2

S1 S3 S4
h2 h2h2

0 1 T2 2 h2
3 h2

4

S3

S1 S2 S4
h3

0 h3
1 h3

2 h3
3 h3

4T3
S4

S1 S2 S3
h4

0 h4
1 h4

2 h4
3 h4

4T4

for i = 1 to N do
` ´
hi(Si, Ti)← IndenticalPrefixCollision i−1

for j = 1 to N do
j

` ´

hi ← f hi

j
−1, Si

end for

end for

Fig. 9: Trojan Message Attack, Collision Variant

9.2 The Herding Trojan Attack

The herding variant of the trojan message attack is stronger, and allows for more
freedom for the attacker. In exchange, the preprocessing and the online running
times are larger.

Let K denote the length of all possible prefixes in P . We can extend K to be
as large as we wish. The herding variant of the trojan message attack makes use of
a different, more sophisticated ”chosen-prefix” collision finding algorithm Cho-

senPrefixCollision(h1, h2) that returns the messages m1 and m2, such that
f(h1, m1) = f(h2, m2). In some specific cases this collision is harder to find (for
instance in MD5, such collision takes 241 compression function evaluations [19]).

Another difference between this variant and the previous one, is that in this
′variant, the adversary is challenged by a second prefix P , not controlled by him,

which he has to herd to the same value as Hf (Pi || S). The attack proceeds as
follows:

1. A computes a diamond structure with 2ℓ entry points, denoted by D1 = {hi},
converging to the hash value hD

0 , with the constraint that ℓ < K − 2.
2. A generates N colliding message pairs using the algorithm of figure 10.
3. A sends B a suffix message S = S1 || . . . || SN .
4. B commits to h = Hf (Pi || S) where Pi ∈ P .

′5. A is challenged with an arbitrary prefix P of size at most K − ℓ− 1 blocks,
not necessarily in the known prefix set.

6. A finds (by random trials) a connecting message C of size K−ℓ− |P ′| blocks
′such that hi0 = f∗(P || C) ∈ D1.

′ D hD7. A forges a new prefix Q = P || C || mi0
, which is such that f∗(Q) = 0 .

19

m D
i0

S1 S2 S3 S4
h1 h1 h1 h1 h1

0 1 2 3 4

S1 S2 S3 S4
h2 h2 h2

0 h2
1 h2

2 3 4

S1 S2 S3 S4
h3 h3 h3

0 h3
1 h3

2 3 4
x1

S1 S2 S3 S4
h4 h4 h4

0 h4
1 h4

2 3 4

S1 S2 S3 S4
hD hD hD hD hDxi0 0 1 2 3 4

x2ℓ

for i = 1 to N do
` ´

(Si, Ti)← ChosenPrefixCollision hi
i
−1, h

D
i−1

for j = 1 to N do
` ´

hj
i
← f hj

i−1, Si

end for
` ´

hD hD
← f i−1, Sii

end for

Fig. 10: Trojan Message Attack, Herding Variant

′ ′ 8. As in the collision version, A outputs Q || S , where S = S1 || . . . || Ti || . . . || SN .

As in the collision variant, we have that Hf (Q || S′) = h. The reasoning to
establish this fact is essentially the same.

The workload of the attack is step one where A constructs a diamond struc­
ture with 2ℓ starting points and N collisions for each prefix from the set P . Thus,
the precomputation complexity is of order 2n/2+ℓ/2+2 +N · 2n/2. The online cost

′is the connection step for computing the prefix P and is of order 2n−ℓ .

9.3 Applications of the Trojan Attacks

The trojan attack can is highly useful in instances with a set of predictable
prefixes, and where the attacker is able to suggest a suffix to introduce to the
message. Such a case is the X.509 certificate, where the adversary may generate
a second certificate (with the same identification) but with different public keys.
Another possible application is a time stamping service, which signs MDH (ts, M)
where ts is a time stamp and M is the document.

Trojan Attacks on Tree Hashes. The processing of the prefix in tree hashes
is independent of the suffix processing. Thus, A computes independent collisions
for each message input node. In fact, it is only enough that A produces a single

20

colliding suffix block f(Si) = f(Ti) in the first level of the tree evaluation.
Then, for all Pi ∈ P , A can compute Tree (PiiS) = Tree (PiiS

′) where S =
′ S1i . . . iSii . . . iSL, S = S1i . . . iTii . . . iSL and L may be different than |P |.

The latter is true, because as opposed to Merkle-Damg̊ard, here the length of the
suffix is independent of the size of the prefix set P . This completes the collision
variant of the trojan message attack on tree hashes.

The herding trojan message attack on tree hashes could be applied as follows.
A executes first the herding attack on tree hashes. Instead of selecting arbitrary
chosen target set, here A fixes the target set T to consist of all intermediate
hash values of the known prefixes Pi ∈ P . Then, as in the collision tree variant

′ of the attack, A computes S by creating collision(s) on the top tree node(s)
′ ′(distinct from the target set). Now, challenged on P , A finds P , such that s

′ ′ ′f(P ′ iP) ∈ T where |P ′ iP | = |Pi| and |P | is at least log2(2
n/|P |). Then s s s

′ Tree (P ′ iP iS′) = Tree (PiiS), which concludes the herding variant of the attack. s

10 Summary and Conclusions

Our results enhance the understanding of the multi-pipe and multi-pass modes
of iteration, such as concatenated hashes, zipper hash, hash-twice, and tree hash
functions. The presented attacks reconfirm the knowledge that there is only a
limited gain by concatenating the output of hash functions when it comes to
security, and that the hash twice construction is not secure.

Moreover, we show that all of the investigated constructions suffer the herd­
ing attack. An interesting result is that domain separation (equivalent to distinct
internal compression function evaluation, e.g., by means of a counter separation)
does not protect any of the existing hash functions against herding attacks. And
while domain separation often does offer protection against second preimage at­
tacks, it appears to be unable to also mitigate herding attacks. An open question
remains to exhibit either a generic herding protective mechanism or a mode of
operation optimally secure against standard and herding attacks.

Acknowledgments

We would like to thank Lily Chen, Barbara Guttman and the anonymous referees
for their useful feedback. This work was supported in part by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by
the European Commission through the ICT programme under contract ICT­
2007-216676 ECRYPT II. The first author is supported by a Ph.D. Fellowship
from the Flemish Research Foundation (FWO–Vlaanderen). The third author
was supported by the France Telecom Chaire.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second Preimage Attacks on Dithered Hash Functions. In Smart,

21

N.P., ed.: EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science,
Springer (2008) 270–288

2. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In Kaliski, B.S.J., ed.: CRYPTO. Volume 1294 of Lecture Notes in
Computer Science, Springer (1997) 470–484

3. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In Preneel, B., Tavares, S.E., eds.: Selected Areas in Cryp­
tography. Volume 3897 of Lecture Notes in Computer Science, Springer (2005)
110–127

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In Okamoto, T., ed.: ASIACRYPT. Volume 1976 of Lecture Notes in
Computer Science, Springer (2000) 1–13

5. Brassard, G., ed.: CRYPTO ’89, Santa Barbara, California, USA, August 20-24,
1989, Proceedings. In Brassard, G., ed.: CRYPTO. Volume 435 of Lecture Notes
in Computer Science, Springer (1990)

6. Coppersmith, D.: Another birthday attack. In Williams, H.C., ed.: CRYPTO.
Volume 218 of Lecture Notes in Computer Science, Springer (1985) 14–17

7. Damg̊ard, I.: A Design Principle for Hash Functions. [5] 416–427
8. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton

University (January 1999)
9. Hoch, J.J., Shamir, A.: Breaking the ice - finding multicollisions in iterated concate­

nated and expanded (ice) hash functions. In Robshaw, M.J.B., ed.: FSE. Volume
4047 of Lecture Notes in Computer Science, Springer (2006) 179–194

10. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Franklin, M.K., ed.: CRYPTO’04. Volume 3152 of Lecture Notes
in Computer Science, Springer (2004) 306–316

11. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In
Vaudenay, S., ed.: EUROCRYPT’06. Volume 4004 of Lecture Notes in Computer
Science, Springer (2006) 183–200

12. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In Cramer, R., ed.: EUROCRYPT’05. Volume 3494 of Lecture
Notes in Computer Science, Springer (2005) 474–490

13. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In Biham, E., Youssef, A.M., eds.: Selected Areas in Cryptography.
Volume 4356 of Lecture Notes in Computer Science, Springer (2006) 358–375

14. Merkle, R.C.: One Way Hash Functions and DES. [5] 428–446
15. Nandi, M., Stinson, D.R.: Multicollision attacks on some generalized sequential

hash functions. IEEE Transactions on Information Theory 53(2) (2007) 759–767
16. Rivest, R.L.: The MD5 message-digest algorithm. RFC1321 (April 1992)
17. Rivest, R.L., Agre, B., Bailey, D.V., Crutchfield, C., Dodis, Y., Fleming, K.E.,

Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., Shen, E., Sukha, J., Sutherland,
D., Tromer, E., Yin, Y.L.: The md6 hash function, a proposal to nist for sha-3
(2008)

18. Sarkar, P.: Construction of universal one-way hash functions: Tree hashing revis­
ited. Discrete Applied Mathematics 155(16) (2007) 2174–2180

19. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for md5 and the creation of a rogue ca
certificate. Cryptology ePrint Archive, Report 2009/111 (2009) http://eprint.
iacr.org/.

22

http:iacr.org
http://eprint

