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Realization of a programmable two-qubit

quantum processor

D. Hanneke*, J. P. Home, J. D. Jost, J. M. Amini, D. Leibfried and D. J. Wineland

The universal quantum computer' is a device capable of
simulating any physical system? and represents a major goal
for the field of quantum information science. In the context
of quantum information, ‘universal’ refers to the ability to
carry out arbitrary unitary transformations in the system's
computational space3. Combining arbitrary single-quantum-bit
(qubit) gates with an entangling two-qubit gate provides a set
of gates capable of achieving universal control of any number
of qubits?®, provided that these gates can be carried out
repeatedly and between arbitrary pairs of qubits. Although
gate sets have been demonstrated in several technologies?,
they have so far been tailored towards specific tasks, forming
a small subset of all unitary operators. Here we demonstrate a
quantum processor that can be programmed with 15 classical
inputs to realize arbitrary unitary transformations on two
qubits, which are stored in trapped atomic ions. Using quantum
state and process tomography®, we characterize the fidelity
of our implementation for 160 randomly chosen operations.
This universal control is equivalent to simulating any pairwise
interaction between spin-1/2 systems. A programmable mul-
tiqubit register could form a core component of a large-scale
quantum processor, and the methods used here are suitable for
such a device®.

Computers are useful because they are versatile. Changing
the problem to be solved amounts to reconfiguring inputs
to the processor, that is, to reprogramming it. In a classical
computer, a program is ultimately decomposed into sequences of
operations implemented with logic gates. The explosion of interest
in quantum information science coincided with the realization
that a similar decomposition exists for quantum processors®>;
arbitrary operations on a multiqubit system can be broken down
into sequences of discrete operators—‘quantum gates’. As with its
classical counterpart, a programmable quantum computer is more
versatile than one designed for a fixed task.

Ease of implementation can favour certain decompositions
of quantum operations, for example, those based on arbitrary
single-qubit gates and a single entangling two-qubit gate®®. As
realizing gates acting on two or more qubits tends to be more
experimentally challenging’, much attention has been focused on
using them optimally in the creation of entanglement'® and on
finding decompositions minimizing the number of times they are
applied®!'"', Some well-chosen operations can be carried out with
two or fewer applications of two-qubit gates, but these form an
infinitesimal subset in the space of two-qubit operations'?. For
a two-qubit system with a maximally entangling two-qubit gate,
three applications of this gate, when combined with applications
of arbitrary single-qubit gates, are sufficient for universality''.
Here we present and characterize a universal quantum processor
that can produce any desired two-qubit unitary transformation
when programmed with 15 classical inputs'®?. As opposed to

programming a fixed gate array with quantum inputs'®, these
classical inputs select particular single-qubit quantum gates and
allow deterministic—rather than probabilistic—computation.

The decomposition of a given operation depends on the available
gate set. Our choice of a universal gate library consists of single-
qubit gates and one maximally entangling two-qubit gate. The
single-qubit gates are rotations

R(0.,¢) = exp[—if (cos¢ 0, +sing 0,) /2]
Rz (¢z) = eXP(_i¢z0z/2)

in the computational basis |1) = (1,0), |0) = (0,1). Here, o,,0,
and o, are the Pauli matrices. The single-qubit gates have variables
0,¢ and ¢, that can take any value from 0 to 27. The entangling
two-qubit gate is

G= —in/4 (E )
=e exp 4(rz®az

and operates on the basis |11),]10),]01),]00). Here, ® indicates the
tensor product and |ij) = |i) ® |}).

With this gate library, the circuits shown in Fig. 1 can be used to
implement arbitrary unitary transformations on one qubit (Fig. 1a)
and two qubits (Fig. 1b). The single-qubit operation is characterized
by three degrees of freedom and may be decomposed into the matrix
product R,(¢,) - R(6,¢). Each two-qubit unitary transformation
is described by 15 degrees of freedom'®!?. The group of all such
transformations can be divided into subsets that are equivalent up
to single-qubit operations. Such subsets are called local equivalence
classes'® because local operations can map among all members of
the class. Each local equivalence class can be described by three
parameters'’. Given a unitary transformation U, we decompose
it into U =(C®D)-V -(A®B). Here, V is in the same local
equivalence class as U and is in a special form that requires fewer
gates on our processor. A and C are single-qubit operations on one
of the qubits, and Band D are single-qubit operations on the other.

Determination of the 15 single-qubit-gate parameters is facili-
tated by working in the so-called magic basis'’:

V2
i x
V2 V2

This basis amounts to the Bell states with specific global phases, and
we take advantage of two of its convenient mathematical properties.
First, single-qubit operations with unit determinant are given in
this basis by real matrices that are orthogonal'®. Second, two-qubit
operations u and v in SU(4) are in the same local equivalence class if
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Figure 1| Components for universal computation. a,b, Circuit diagrams for arbitrary unitary transformations on one (a) and two (b) qubits. The
operations for each circuit are implemented from left to right, with each line representing one qubit. a also indicates the decomposition used for R(6, ¢).
The dashed rectangle in b contains the three degrees of freedom «, 8 and § that determine the two-qubit operation’s local equivalence class. The brackets
highlight the decomposition of the two-qubit operation U as described in the text: U=(C®D)-V-(A®B).

and only if uu” and vv" have the same eigenvalues'® (" is the matrix
transpose of 4, and we use lower-case letters to represent matrices in
the magic basis). The decomposition of a given operation U follows
a two-step procedure analogous to that in ref. 14. (See the Methods
section for details and Supplementary Information for examples.)
Briefly, we first match matrix eigenvalues to find a special element
V in the same local equivalence class as U (that is, find o, 8 and
3, the three degrees of freedom in the dashed rectangle in Fig. 1b).
Second, we manipulate real, orthonormal matrix eigenvectors to
find the four remaining single-qubit operations required to map
between V and U. As the magic basis properties rely on unit matrix
determinants, we can implement operations only up to a global
phase. Global phases exactly vanish in any observable quantity, so
this restriction has no physical relevance.

We implement the quantum circuit with trapped ions using
techniques applicable for scaling to a larger system®. Each qubit is
stored in a pair of energy eigenstates in the *Be* 2525, , hyperfine
manifold. The qubit basis states can be transferred between different
pairs of the eight hyperfine levels®. The qubit spends most of its time
stored in the (|1),]0)) =(|F =1,mp =0),|F =2, mp = 1)) ‘magnetic-
field-independent’ manifold, for which the energy splitting has
zero first-order dependence on the magnetic field at our chosen
value of 0.011964 T, leading to long coherence times (15s has
been measured for a pair of states with a similar second-
order field dependence!”).

The two °Be? ions are stored simultaneously with two **Mg™*
ions in a six-zone linear Paul trap®'®; the ions form a linear chain
along the axis of weakest confinement. Coulomb repulsion couples
the motion of all four ions such that laser cooling the **Mg™*
ions sympathetically cools all of the ions without destroying the
quantum information®'® stored in the *Be™ ions. The collective
motion of the four ions can be described as the sum of 12 normal
modes, four along each of the principal axes. The two-qubit gate
uses two modes involving motion along the axis of the ion chain®'8.
We spectrally address the *Mg* ions to Doppler and resolved-
sideband cool these modes to near the quantum ground state of
motion’. As the ion spatial order affects the mode frequencies,
and because both resolved-sideband cooling and the two-qubit
gate require spectral addressing of the modes, we deterministically
initialize the ion order’® to °Be” -*Mg" —**Mg" —Be" at the
beginning of each experimental sequence.

State preparation and measurement are carried out using
resonant laser light that couples the Be™ 2525, states to the
2p2Py;, and 2p?P;;, states’®. Projective measurements in the
single-qubit computational basis |1}, |0) use a cycling transition®".
Measurements in other bases are made by first rotating their

eigenvectors into the computational basis. A single detection
apparatus sequentially measures the two qubits independently®.

The universal gate set above is implemented with laser-induced
stimulated Raman transitions'. The two-qubit gate G is a geometric
phase gate®?. The single-qubit gate R(6,¢) can be produced by
driving resonant Rabi oscillations between the qubit states, where
the angle 0 is controlled by the laser pulse intensity and duration.
The phase ¢ is set by the phase difference between the two
Raman light fields at the ion relative to the qubit phase'®. It is
controlled by means of the phase of a radiofrequency potential
applied to an acousto-optic modulator (AOM). The single-qubit
gate R,(¢,) advances the qubit phase by ¢, relative to that of the
Raman light fields. It is implemented by retarding the phase of an
AOM’s radiofrequency potential for subsequent laser pulses. To
individually apply R(6,¢) to each qubit, time-dependent electric
potentials?! divide the four-ion chain into two *Bet —**Mg" pairs
and transport them to zones separated by 240um. The four
applications of R(0,¢) per qubit in Fig. 1b require four such ion
separations and subsequent recombinations—a total information
transport of nearly 2 mm per qubit. An AOM placed before the trap
directs the laser beams to the relevant ion.

The requirement that single-qubit-gate inputs take any value
from 0 to 2 prompts a further decomposition of R(0,¢). The
radiofrequency potentials that control ¢ and ¢, are generated by
a stable oscillator with easily controllable phase. The variable 6,
however, depends on the laser pulse’s intensity, which for technical
reasons is not constant for the duration of the pulse. Rather than
calibrate this for arbitrary 0, we calibrate a single value, 6 = 7/2,
and decompose R(6, ¢) into

R(9,¢)=R(g,¢+g) 'RZ(G)-R(g,qs_g)

In this way, all 15 inputs to our universal circuit are controlled
by shifting the phase of a control oscillator relative to the
qubit. The number, duration and spacing of the laser pulses are
identical for every U.

To demonstrate the ability of the processor to generate
arbitrary unitary transformations, we program it with 160 different
randomly chosen operations distributed in SU(4) according
to the Haar measure’>. (The probability distribution given by
the Haar measure is a uniform distribution in the space of
unitary matrices.) To characterize our implementation of the
160 operations, we apply each to one of 16 input states formed
by the tensor products of |0), 1), |+) = (]1) + 10))/+/2 and
| —i) = (|]1) — i]0))/+/2. The assignment of an operation to an
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Figure 2 | Diversity of states. a-d, Examples of the density matrices created by applying four of the randomly chosen unitary transformations to simple
product states. The bar heights and colours show the absolute value of the output density matrices, with the experimental data shown solid and the theory
shown semi-transparent. States a-d have fidelities f = 81%, 80%, 75% and 80%, relative to the ideal states. The Supplementary Information gives the

input states and operations used in these examples.

input state is random with the constraint that all input states are
used an equal number of times. The application of an operation
to its input state produces an output density matrix, which we
reconstruct using quantum state tomography®?. This procedure
involves nine analysis settings. For each setting, we run the
experimental sequence 100 times for a total of 900 runs per
unitary transformation. A single run takes approximately 37 ms.
We compare the measured output state to the ideal result using the
fidelity*, f (0ideal Pexp) = [Tr(+/ o/ Pideal Pexpn/Pideat) 1*- Figure 2 shows
four examples of the output states, and Fig. 3a shows a histogram of
the 160 state fidelities. The 160 operations have a mean state fidelity
of (f) =79.1(4.5)%, where the error bar is the standard deviation
of the measurements. Numerical estimates® indicate that 3.4% of
this distribution arises from statistical fluctuations in photon counts
used in state measurement. We attribute the remaining distribution
to variability in each operation’s susceptibility to experimental
noise. We observe no correlation between output-state fidelity and
input state, as demonstrated in Fig. 3b,c. The mean output-state
fidelities from operating on the 16 input states are distributed
with a standard deviation of 1.5%, as we would expect for the
means of ten measurements, which themselves have a standard
deviation of 4.5%. The primary fidelity loss mechanisms are per-
cent-level intensity fluctuations in the Raman light fields® and
spontaneous emission®; the fidelities observed here are consistent
with those demonstrated previously’ after accounting for the
increased number of gates.

As a further check on input-state independence, we conduct
quantum process tomography®’ on 11 of the operations. Process
tomography reconstructs the completely positive linear map £ that
describes the qubit evolution from initial to final density matrices,
Ptinal = E(Pinitial)- The map includes the possibility of experimental
imperfections such as coupling to the environment, which leads
to non-unitary evolution. We represent the map by a 16 x 16
matrix® E = 2210 (1 ® E(1i){jI). For each of the 11 operations,
we determine an experimental process matrix E.q and compare
it to the ideal case by calculating both the entanglement fidelity*
F = Tr(EigesiEexp)/16 and the mean-state fidelity f obtained by
averaging the output-state fidelities from numerically applying Ee,
and Ej, to an unbiased set of 36 input states (formed from the
eigenstates of tensor products of the Pauli matrices). These fidelities
are related by f = (Fd +1)/(d + 1), where d is the Hilbert-space
dimension® (here d =4). The 11 processes have mean fidelities of
(F)=73(3)% and {f) = 79(2)%.

We have demonstrated a programmable quantum processor
capable of implementing all possible unitary operations on two
qubits. To address large-scale problems, many more qubits and
gates will be required. In anticipation of such applications, this
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Figure 3 | Characterization of arbitrary control. a, Histogram of the
output-state fidelities f for 160 arbitrary unitary operations applied to one
of 16 input product states. b,c, The mean output-state fidelities (f) for each
input state, plotted showing the standard error of the mean (b) and binned
into a histogram (c). d, The mean-state fidelities f for the 11 operations
reconstructed using quantum process tomography. The curves are normal
distributions with the same respective mean and standard deviation as the
data. The narrower distributions in histograms ¢,d are expected because
they are distributions of means.

implementation used only scalable techniques’ such as long-lived
qubit storage, quantum information transport and sympathetic
cooling. When implementing a larger system, the compound
errors from successive operations will need to be reduced by
means of error correction”. This will require much higher gate
fidelities than shown here, both to achieve fault tolerance and to
reduce error correction’s computational overhead?®. Nevertheless,
the type of device described here could form a processing unit
in a larger system’ with programmable registers connected by
multidimensional trap arrays'** or photonic networks™.

© 2009 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/doifinder/10.1038/nphys1453
http://www.nature.com/naturephysics

LETTERS NATURE PHYSICS po1:10.1038/NPHYS1453

Methods

Algorithmic details. For a given two-qubit operation U, calculating the 15
single-qubit-gate parameters used in the circuit of Fig. 1b is facilitated by working
in the so-called magic basis'®" given in the main text. Transforming to the magic
basis from the two-qubit computational basis |11),[10), |01),]00) is accomplished
by use of the unitary matrix

1 i 0 0

L lo o i 1
A_ﬁ 0 0 i —1
1 —i 0 0

The properties of the magic basis rely on unit matrix determinants; thus, we first
strip U of any global phase by dividing it by a fourth-root of its determinant,
making it a member of SU(4). Global phases exactly vanish in any observable
quantity, allowing this modification. In what follows, matrices in the computational
basis are denoted with capital letters, and those in the magic basis by lower-case
letters; for example, m = ATM A.

We first find the three degrees of freedom o, 8 and § that produce the correct
local equivalence class. We decompose the circuit in Fig. 1b as

U=(C®D)-V-(A®B) (1)

where V determines the local equivalence class and can be generated using the
gate operations shown in Fig. 1b within the dashed rectangle. To construct V/,
we transform both V and U into the magic basis as v and u and choose o, 8
and § such that the eigenvalues of vvT match those of uu”. (We include a global
phase e in V to make it an element of SU(4).) This is done by comparing
the analytical form of the eigenvalues of wT to those of uu". As uu" is unitary, it
has complex eigenvalues of modulus one: A; = e (j€{1,2,3,4}). We find that
«, B and § are given by the means of pairs of eigenvalue phases. One possibility
is & = (¢y +$2)/2, B = (¢ +¢3)/2 and § = (¢, + ¢3)/2. As no ordering of

the eigenvalues is required, there are many such combinations that produce
members of U’s local equivalence class. The proof of this assignment is by explicit
calculation of the eigenvalues of v and is analogous to that given in ref. 14 for the
controlled-NOT gate rather than our phase gate.

Second, we find the four single-qubit rotations A, B, C and D that comprise
the remaining 12 degrees of freedom. Note that vv" and uu" are unitary symmetric
matrices and therefore have real, orthonormal eigenvectors'®'®. As they share
eigenvalues, it is possible to simultaneously diagonalize them with matrices
k and [ such that

kv kT = luu"IT 2)

Here, k and I are eigenvector matrices in which the columns have been permuted
such that equation (2) is valid. They are both members of SO(4) (if necessary, one
of the eigenvectors can be negated to change the matrix determinant from —1 to 1).
By rearranging equation (2), we obtain

I =v " I kv = v K Tu(v KT Tu) ™

(I is the identity matrix), from which we define m = vk"lu, also in SO(4).
We thus have that

u=1"kvm (3)

where Ik and m are both real and in SO(4). As they are real orthogonal matrices in
the magic basis, they represent single-qubit rotations. We transform equation (3)
into the computational basis and compare it to equation (1) to find

C®D=A(I"k) AT
A®B=AmAT

To finish, we split A® B and C® D into A,B,C,D € SU(2) and solve for
0,¢ and ¢, for each.
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