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a b s t r a c t

The aim of the present paper is to investigate the use of quantum chemistry calculations to obtain the
torsional dependence of various structural and vibrational-force-field-related quantities that could help
in estimating the vibration–torsion–rotation interaction terms needed to treat perturbations observed in
the spectra of methanol-like molecules. We begin by using the Gaussian suite of programs to determine
the steepest-descent path from a stationary point at the top of the internal rotation potential barrier in
methanol to the equilibrium structure at the bottom of the barrier. This procedure requires determining
the gradient $V of the potential (as calculated in mass-weighted Cartesian coordinates) along the internal
rotation path. In addition, we use the Gaussian suite to calculate the Hessian $$V along this path and to
generate from these second derivatives the 3N � 7 small-amplitude vibrational frequencies and the 3N
Cartesian vibrational displacements for each of these vibrations. We then symmetrize the internal coor-
dinates used in presenting the structures, gradients, Hessians and vibrational displacements along the
path to take into account the periodic variation of the behavior of the three methyl hydrogen atoms Hi

as they pass in turn through the Cs-plane of the HOC frame. The symmetrized linear combinations of
the CHi stretches, of the OCHi bends, and of the HOCHi dihedral angles of the methyl group depend on
the internal rotation angle c and they are determined by considering coordinate transformations from
the G6 permutation-inversion group appropriate for internally rotating methanol. This symmetrization
procedure permits us to explore the feasibility of expressing the structures, gradients, Hessians, and
vibrational displacement vectors along the internal rotation path as short Fourier series in c, which is
one of the main goals of this paper. In summary, we find that the symmetrized structures, gradients,
and Hessians, as well as nine of the 11 projected vibrational frequencies and the vibrational displacement
vectors for the three vibrations occurring primarily in the HOC frame can be expressed by short Fourier
series expansions to their precision in the Gaussian output, and that these series involve only sin3nc or
only cos3nc terms, as required by G6 symmetry considerations. A preliminary discussion is given of why
short Fourier expansions fail for the projected frequencies of the two methyl asymmetric stretches, and
for the vibrational displacement vectors of the methyl group vibrational modes. Looking more closely at
the symmetrized and projected 3N � 3N Hessian, we find algebraically that only elements in the
(3N � 7) � (3N � 7) small-amplitude-vibrational block of the Hessian are useful for spectroscopic prob-
lems. Non-zero elements in the rest of the 3N � 3N symmetrized and projected Hessian cannot be con-
verted into quantities needed for perturbation studies.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This is the fourth paper in a series investigating the possibility
of obtaining from ab initio studies vibration–torsion–rotation
parameters of sufficient accuracy to be directly useable in high-
ll rights reserved.
resolution spectroscopic studies of internal-rotor molecules. The
underlying premises of the present work are as follows. We
investigate specifically quantities appearing in the vibration–
torsion–rotation Hamiltonian for the methanol molecule in its
ground electronic state, as determined using quantum chemistry
computational techniques. Methanol, however, can be considered
as a prototype of the much broader class of molecules with 3N � 7
small-amplitude vibrations, one periodic large-amplitude motion,
and Cs point group symmetry in its equilibrium configuration.
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Because of the periodicity of the large-amplitude motion, Fourier
expansion techniques can be applied to almost all of the numeri-
cally computed structural and small-amplitude-vibrational results.
Deviations from perfect periodic behavior tell us something about
the accuracy of the calculations, and therefore something about
how useful they will be in helping to guide high-resolution spectro-
scopic analyses. The number of terms in the Fourier expansions
needed to fit the computational results tells us something about
the rate of convergence of the model Hamiltonian commonly used.
By concentrating on numerical variations of structural and
vibrational parameters along the internal rotation path, we are
implicitly hoping that such variations can be more accurately
calculated than the absolute values of the corresponding
parameters.

The first paper [1] in this series showed that quantum chemis-
try results for methanol at the top and bottom of the torsional
barrier could be used to determine the torsional barrier height to
better than 0.5%, and distortional contributions to differences of
the rotational constants (three diagonal and one off-diagonal) at
the top and bottom of the barrier (i.e., the first term in the Fourier
expansion of their torsional variation) to accuracies ranging from
7% to 40%. Results for acetaldehyde were about 10 times worse,
though these large discrepancies could be improved dramatically
by empirically increasing at the barrier minimum and decreasing
at the barrier maximum the angle between the q axis and the prin-
cipal a axis by less than a degree. The second paper [2] described
the torsional dependence of the CH3 stretching and bending modes
of methanol in terms of a local mode internal coordinate picture
[3]. The torsional variations of the small-amplitude vibrational fre-
quencies along the mass-weighted intrinsic reaction coordinate
from the top to the bottom of the torsional potential barrier were
calculated by means of ab initio frequency projection utilizing
GAUSSIAN 98 (G98) [4,5]. The resulting plots for the three C–H
stretch ab initio frequencies as functions of the torsional angle
were well-fitted when the 3 � 3 local mode model [3] was ex-
tended to include higher-order coupling terms [2]. For the CH-
bending modes, with internal coordinates chosen to give a high de-
gree of localization, bend–torsion and bend–bend coupling param-
eters were determined from the ab initio projected frequencies,
and were then used to predict torsional tunneling splittings. Just
as observed for the C–H stretch modes, the two higher-frequency
asymmetric methyl CH-bending modes were predicted to have in-
verted tunneling splittings with reduced amplitudes, while the
splitting pattern for the lower frequency symmetric-bend mode
was predicted to be normal. The third paper [6] showed that G98
delivered very smooth linear and quadratic force-constant plots
as a function of angle along the internal rotation coordinate c
and that when coordinates symmetrized in the permutation inver-
sion group G6 were used, each plot exhibited the sin3c or cos3c
behavior expected from the symmetry species of the vibrational
coordinate(s) that are multiplied by the given force constant. In
spite of this excellent force-field behavior, however, the projected
vibrational frequencies we obtained along the large-amplitude
internal-rotation coordinate did not always extrapolate well to
the vibrational frequencies obtained at the saddle and minimum
of the potential surface (see Fig. 4 of [6]).

The aim of the present paper is to investigate the use of quan-
tum chemistry calculations to obtain the torsional dependence of
a variety of structural and vibrational-force-field-related quantities
required for implementation of a vibration–torsion–rotation for-
malism proposed many years ago but not testable until the devel-
opment of modern ab initio techniques. In this formalism [7,8], the
large-amplitude internal rotation motion (LAM) is separated from
the small-amplitude vibrations (SAV) and grouped with the rota-
tional part of the Hamiltonian. The classical kinetic energy T can
then be expressed in the form
2T ¼ x � I � xþ ðdc=dtÞ2
X

i

miðdai=dcÞ � ðdai=dcÞ
"

�2
X

i

miðd2ai=dc2Þ � di

#

þ2ðdc=dtÞx �
X

i
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þ2x �
X

i

midi � ðddi=dtÞ þ
X

i

miðddi=dtÞ � ðddi=dtÞ; ð1Þ

where x is the four-dimensional angular velocity (containing the
three Eulerian angle velocities and the LAM velocity dc/dt), I is
the corresponding 4 � 4 moment of inertia, ai(c) are the atom posi-
tions along the LAM path, di are the infinitesimal SAV displacements
from the ai(c), mi is the mass of atom i, and d/dt indicates a time
derivative. The potential energy V takes one of two forms

Vðc; SÞ ¼ VoðcÞ þ
X

i
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ij
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where the form in Eq. (2a) is written in internal coordinates Si for
the 11 small-amplitude vibrations, and the form in Eq. (2b) is writ-
ten in normal mode coordinates Qi for these vibrations, so that
ðo2V=oQ2

i Þ is a diagonal form of the Hessian containing the squares
of the 11 projected vibrational frequencies.

To implement the treatment represented by Eqs. (1) and (2),
one clearly requires functions of the internal rotation angle that
describe atom positions, atom displacement vectors, and SAV
forces and force-constants along the internal rotation motion.
The present work explores the accuracy with which such functions
can be obtained in convenient Fourier expansion form from current
quantum chemistry capabilities.

In terms of Eq. (1), the present paper has the following parts. In
Section 2 we return briefly to the question of defining the large-
amplitude internal-rotation coordinate c, and opt again for the
steepest-descent definition of c. In Section 3 we describe the origin
of and solution to the numerical-discontinuity problems in our
previous projected-frequency calculations [6] with G98. In Sec-
tion 4 we consider the definition of a reference configuration
ai(c) in the molecule-fixed axis system along the large-amplitude
coordinate c, focusing in particular on the choice of orientation
for this reference configuration in the molecule-fixed axis system.
In Sections 5 and 6 we investigate whether useful information on
the various derivatives with respect to c in the Hamiltonian can
be extracted directly from elements of the Hessian matrix along
c (i.e., from various second partial derivatives of the potential func-
tion at points along c). In Section 7 we present numerical ab initio
results and Fourier expansion coefficients for the variation of the
structure ai(c), Hessian Hij(c), vibrational frequencies mi(c), vibra-
tional eigenvectors di(c), and gradient $V(c) along the LAM coordi-
nate c in CH3OH.

Section 8 contains a discussion and thoughts for future work. At
the end of that discussion we consider very briefly one of the ways
in which the present work is related to the much larger body of
work on vibrational motions along a chemical reaction coordinate.
In making such a comparison, the internal rotation motion must be
thought of as an extremely rudimentary ‘‘reaction”, (i) whose ini-
tial state and final state are chemically indistinguishable (with
identical energies, but with a different arrangement of previously
numbered identical atoms), and (ii) whose reaction path (the inter-
nal rotation motion) involves no breaking of chemical bonds.
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The extreme nature of these simplifications from chemical reactions
as commonly understood, suggests that comparisons between these
two related problems must be pursued with some care.
2. Definition of the large-amplitude coordinate

The choice of the large-amplitude coordinate and of the mole-
cule-fixed axis system are both key questions when setting up a
molecular Hamiltonian, since these choices influence the numeri-
cal values of any vibration–torsion–rotation interaction constants
in the Hamiltonian which depend on derivatives of molecule-fixed
components of force constants, atomic positions, and the like with
respect to the large amplitude coordinate. For example, Refs. [9,10]
discuss problems that arise in ab initio calculations when a large-
amplitude internal-rotation coordinate is chosen which does not
satisfy the usual threefold symmetry requirements. Ref. [6] dis-
cusses the sinusoidal relationship connecting any pair of inter-
nal-rotation coordinates that do satisfy the usual threefold
symmetry requirements. Ref. [11] discusses subtle problems in
the determination of the small-amplitude vibrational frequencies
and coordinates, once a definition for the large-amplitude inter-
nal-rotation coordinate has been chosen.

We use here, as the primary definition of the large-amplitude
internal rotation coordinate, the distance s along the path of steep-
est descent, in mass-weighted Cartesian coordinates, from the top
of the barrier (saddle) to the bottom (potential minimum). (This
distance can be converted to an angle with the desired threefold
symmetry properties by the linear transformation in Eq. (2) of
[6].) Distance along the path of steepest descent is often called
the intrinsic reaction coordinate or IRC [12] and the steepest des-
cent path from the saddle to the minimum is often called the min-
imum-energy path or MEP [13] in the chemical reaction-dynamics
literature. Choosing the large-amplitude coordinate so it describes
motion along the MEP has dynamical appeal, because a system
point moving at infinitesimal velocity follows the MEP from the
top of the potential barrier to the bottom. As mentioned in Ref.
[11], the MEP has a number of disadvantages, e.g., it is not invariant
to isotopic substitution and the distance s along the MEP is a non-
local coordinate that can only be determined by solving a differen-
tial equation. In particular, the final value of s (at the bottom of the
well) is often not well determined by the steepest-descent differ-
ential-equation algorithm and s is difficult to compare (both alge-
braically and numerically) between molecules.

We note in passing that non-mass-weighted Cartesian coordi-
nates are most useful when discussing static (i.e., potential-energy)
effects, since these depend only on interatomic distances. Mass-
weighted coordinates become useful when kinetic-energy effects
are considered, essentially because the kinetic energy (1/2)mv2

then becomes simply (1/2)v2, or in the present context, because
vibration frequencies squared are then directly proportional to
eigenvalues of a Hessian matrix (i.e., a second derivative matrix)
determined only from the potential energy function. In the equa-
tions and text of this paper we move back and forth between these
two types of coordinates, depending on which is more convenient
for the topic at hand.

Several papers (e.g., [9–11]) have advocated using the average
of the three dihedral angles A–B–C–Hi for the large-amplitude
internal rotation coordinate, where C–Hi with i = 4,5,6 represents
the methyl top and A and B are two atoms chosen from the frame.
While such a coordinate is simple, has good symmetry properties,
and is very close in value to the angular coordinate defined along
the path of steepest descent for methanol and acetaldehyde (see
Fig. 1 of [6] and Table 2 of [11]), the present authors prefer choos-
ing the IRC as the formal theoretical definition of the large-ampli-
tude coordinate because it avoids many of the complications
described in [11] for small-amplitude vibrational calculations
along an LAM defined differently. It seems probable for many
applications, however, that differences arising from these two
large-amplitude coordinate definitions may be smaller than errors
associated with the ab initio results. For this reason, and because of
the problem of determining the final value of s mentioned above,
we carry out Fourier expansions in later sections using an angle c
defined as the average of three dihedral angles A–B–C–Hi, such that
c = 120� at the top and c = 180� at the bottom of the barrier. This
angle can be determined easily from standard Gaussian output.
The distance s is retained as the large-amplitude coordinate in gen-
eral discussions, however.

3. Projected-frequency calculations for the 1 < i < 3N � 7
small-amplitude vibrations mi(s) from G03

It was pointed out in [6] that unexplained jumps of tens of cm�1

for acetaldehyde and a few cm�1 for methanol occurred at the first
(saddle) and last (minimum) points of the projected frequency
plots obtained directly from G98 [4]. Albu and Truhlar showed
[14] that this problem could be eliminated by using the potential
surface and first and second derivatives supplied by G98, but then
using the GAUSSRATE [15] and POLYRATE [16] program suites to
determine the MEP, molecular structures along the MEP, and pro-
jected frequencies for these structures. This led to the conclusion
that the problem did not lie in the potential surface or potential-
surface derivatives produced by Gaussian. As a further diagnostic,
we found that applying the G98 projected frequency routine to
the GAUSSRATE MEP structures gave results that agreed with Albu
and Truhlar, strongly suggesting that the problem lay in G98’s
implementation of the steepest-descent algorithm and/or struc-
tural determinations along the steepest-descent path. The problem
was first diagnosed precisely for us by Dr. Carlos Gonzalez at NIST,
who pointed out [17] that the PATH command, which we had used
in [6], determines the steepest descent path using redundant inter-
nal coordinates which are not mass-weighted [18]. A very thor-
ough and very illuminating discussion of this question has been
published recently by Allen et al. [11].

Briefly, the mathematical origins of our discontinuity problem
can be summarized as follows. Consider a Taylor series expansion
of an n-dimensional gradient vector about a stationary point
X0 ¼ xo

i

� �
,

oV=oxi ¼ ½oV=oxi�Xo þ ½o
2V=oxioxj�Xo dxj

þ ð1=2Þ½o3V=oxioxjoxk�Xo dxj dxk þ � � � ; ð3Þ

where the xi represent mass-weighted coordinates and where the
convention of summation over repeated indices is used. Confine
attention to a region about the stationary point that is small enough
to permit truncating the series for the gradient after the first non-
vanishing term,

oV=oxi � ½o2V=oxioxj�Xo dxj � Hij dxj; ð4Þ

where the simplified notation H is now used to represent the Hes-
sian at the point X0. Then ask the general question of whether the
gradient at an arbitrary point X1 near the stationary point X0 is par-
allel to the direction of the step from X0 to X1, i.e., compute the sca-
lar product p given by

p ¼ dxiðoV=oxiÞ=jdxjjoV=oxj ¼ dxiHij dxj=jdxj Hrs dxsHrt dxt½ �1=2

¼ dxiHij dxj=jdxj dxsðH2Þst dxt
� �1=2

; ð5Þ

where jdxj is the magnitude of the step vector, and compare the va-
lue of p to ±1. It is easy to show that if the step direction X1 � X0 is
parallel to an eigenvector of the Hessian matrix, i.e., if dxi = eui

where e is a smallness parameter and u is a normalized eigenvector



L.-H. Xu et al. / Journal of Molecular Spectroscopy 260 (2010) 88–104 91
satisfying Hu = ku, then p = k/jkj = +1 if the eigenvalue k is positive
(always the case at a local minimum), and p = �1 when the eigen-
value k is negative (as occurs for one eigenvalue at a first-order sad-
dle point). It is also possible (though with somewhat more algebra)
to show (if H has no degenerate eigenvalues) that jpj < 1 for all step
directions not parallel to an eigenvector direction.

The final statements in the clarification of the projected-fre-
quency discontinuity problem then become: (i) Calculating gradi-
ents away from the stationary points using non-mass-weighted
coordinates will in general lead to gradients that are not parallel
to the mass-weighted gradients. (ii) Projected-frequencies at
points away from the stationary points will therefore be deter-
mined after projecting out the wrong coordinate direction, i.e.,
after projecting out some direction other than the mass-weighted
steepest-descent direction. (iii) Projected vibrational frequencies
along an ‘‘MEP” determined in this way will in general not extrap-
olate back to vibrational frequencies determined at the stationary
points, since continuity at those points requires projecting out a
direction after the first step from the saddle (or before the last step
to the minimum) that is parallel to the eigenvector of the Hessian
matrix in mass-weighted coordinates having a negative (or the
smallest positive) eigenvalue.

As pointed out by Gonzalez [17], this problem can be fixed oper-
ationally in G03 by using the command IRC, because the default
coordinates for IRC are mass-weighted internal (Z-matrix) coordi-
nates. In fact, we used the IRC command in the G94 calculations re-
ported in [1]. However, this requires using three separate jobs to
map out the torsional potential, i.e., OPT for the local minimum,
QST3 for the first-order saddle point, and IRC for points in be-
tween, leading to a slight unsmoothness for structural and Hessian
quantities near the top and bottom of the potential. The PATH
command introduced in G98 gave much smoother structural and
Hessian variation, since it allows for optimization of the top, bot-
tom and points along the IRC in one job, but unfortunately, the
PATH calculation does not follow a mass-weighted MEP. The best
current option is thus to go back to the IRC command and three
separate jobs, and to treat any unsmooth behavior along the MEP
as the current level of ab initio noise. Ref. [11] explains how the
problem can be fixed for other definitions of the large-amplitude
internal-rotation coordinate.
4. Orientation choices for reference configurations in the
molecule-fixed axis system

Any attempt to define the reference configuration ai(s), i.e., the
set of molecular structures represented by the non-mass-weighted
three-dimensional vector positions a for each atom i at points
along the large-amplitude coordinate s, raises two separate ques-
tions. The first concerns the molecular geometries themselves,
and, as mentioned in Section 2, this is solved in a unique way by
choosing to follow the steepest-descent path in mass-weighted
Cartesian coordinates from the top of the barrier to the bottom.
The second question concerns the orientation of the reference
configuration in the molecule-fixed axis system at each point along
the internal rotation coordinate. Internal-rotation Hamiltonians
are often set up using one of three possible choices for the
molecular orientation, namely the internal-axis-method (IAM),
the principal-axis-method (PAM), or the rho-axis-method (RAM)
Hamiltonians.

It turns out that structures obtained by solving the usual MEP
differential equation [12] are automatically in an internal axis
method (IAM) coordinate system [19], as shown by the following
argument. The change in potential energy for an infinitesimal rota-
tion of the molecule about any axis k is zero, so that for any set r of
the N non-mass-weighted atomic Cartesian position vectors ri,
0 ¼
X

i

$iVðrÞ � ðk� riÞ ¼ k �
X

i

ri � $iVðrÞ; ð6Þ

where $i is the gradient operator with respect to the non-mass-
weighted Cartesian coordinates of atom i, and the second equality
is a vector identity. Since k could be chosen to be any of the unit
vectors i, j, k along the three Cartesian axes, Eq. (6) is equivalent
to the vector equation

0 ¼
X

i

ri � $iVðrÞ: ð7Þ

The differential equation defining molecular structures ri(s) along
the MEP [12], can be written in non-mass-weighted coordinates as

mi dri=ds ¼ �$iV=j$mV j; ð8Þ

where $mV represents the 3N-dimensional potential gradient vector
in mass-weighted Cartesian coordinates, i.e., a vector containing the
quantities (mi)�1/2$iV for all N atoms, and j$mVj represents its mag-
nitude. (N.B. Because non-mass-weighted coordinates are conve-
nient for molecular structures and mass-weighted coordinates are
convenient for the steepest descent gradient, there will be some
alternation of usage in this paper. When both types of coordinates
are used in the same numbered section, a difference in notation,
e.g., $iV and $mV, will be introduced.) At points ri(s) lying on the
MEP one can now replace the gradient in Eq. (7) by an expression
obtained from Eq. (8) to yield

0 ¼ �j$mV j
X

i

riðsÞ � ðmidri=dsÞ: ð9Þ

The non-mass-weighted reference-configuration coordinates ai(s)
along the MEP will be in an IAM coordinate system [8,20] if no
angular momentum is generated to first order by a change in the
large-amplitude coordinate s, i.e., if

0 ¼
X

i

miaiðsÞ � ðdai=dsÞ: ð10Þ

It is clear from Eq. (9) that the molecular structures ai(s) � ri(s) sat-
isfy Eq. (10), i.e., the ri(s) obtained from Eq. (8) are all oriented in an
IAM axis system.

At the top and bottom of the barrier $iV = $mV = 0, so that Eq.
(8) is undefined. The direction of dri/ds at the top of the barrier,
where the steepest descent algorithm begins, is then defined to
be the direction of the Hessian eigenvector with negative eigen-
value. At the bottom of the barrier one can show by mathematical
arguments [21] that the MEP will ultimately enter the minimum of
the well along the eigenvector direction with smallest eigenvalue.
It can be shown, starting from Eq. (6), that Eq. (10) is satisfied at
any point where $iV = 0 and (dai/ds) lies along the direction of an
eigenvector of the Hessian belonging to a nonzero eigenvalue.

Unfortunately, G03 outputs structures along the steepest-des-
cent path only after subjecting them to a subsequent rotation
whose definition could not be located by the present authors, so
that orientation information from the differential equation solu-
tion was not accessible. We have therefore chosen for most pur-
poses to orient the structure given by G03 at each point along
the MEP in its principal axis system, since this is simple to accom-
plish and easy to understand.

It is in principle possible to regenerate the IAM orientations cor-
responding to exact solutions of the steepest-descent differential
equation in Eq. (8) using a procedure from the literature [22,23].
The steps would be the following (using notation and equation
numbers from [23]). (i) Call the G03 structure at the saddle point
in non-mass-weighted coordinates (ai)n=0, and orient it in its prin-
cipal axis system. (ii) Call the G03 structure at the first point along
s (ai)n=1. (iii) In Eq. (4) of [23], identify (ai)n=0 with ai and (ai)n=1

with ri. (iv) Determine the rotational matrix Q from Eq. (6) of
[23]. (v) Perform the rotation Q (ai)n=1. The structures (ai)n=0 and
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Q (ai)n=1 are now in orientations which satisfy Eqs. (8) and (10). (vi)
Call the G03 structure at the second point after the saddle (ai)n=2

and use Q (ai)n=1 as the properly oriented structure for n = 1. Repeat
steps (iii)–(v) with n ? n + 1. (vii) Continue iterating until the last
G03 structure along c has been processed. After that, all structures
are in their correct orientation to satisfy Eqs. (8) and (10).

We note in passing, that a set of IAM orientations along an MEP
is characterized only by the relative orientation between each
member of the set. It is thus always possible to subject all members
of an IAM set to the same arbitrary rotation without destroying
their IAM character. Such an arbitrary rotation could be used, for
example, to rotate any one member of the set into its principal axis
system.
B5=0 

B8=0 B9=0 0=01B0=7B

B1 

B2 

B4 

B3 

B6 

      Q           γ χθφ R

Q 

γ

χθφ

R

Fig. 1. Schematic diagram of the similarity-transformed 3N � 3N Hessian matrix on
the left of Eq. (11) after partitioning into blocks labeled by the different types of
molecule-fixed coordinates, namely: Q (the 3N � 7 small-amplitude vibrational
coordinates); c (the large-amplitude torsional coordinate); v, h, / (the three
rotational coordinates (Eulerian angles)); and R (the three laboratory-fixed Carte-
sian coordinates of the center of mass). The 10 different kinds of blocks in this
symmetric matrix are referred to by their numbers in the text.
5. Linearly transformed versions of the Hessian matrix in the
IAM coordinate system

The two lowest orders of force-field information are contained
in the gradient $mV and Hessian $m$mV of the potential function
V. At points on the MEP the first derivative of V with respect to
mass-weighted coordinates ($mV) is tangent to the MEP, so the
lowest-order force-field information for directions perpendicular
to the MEP is contained in the second-derivative matrix, i.e., in
the analog of the force-constant matrix at the potential minimum.
During the course of this work, we derived algebraic expressions in
terms of various derivatives of the potential energy function V for
the information present at various locations in the 3N � 3N Hes-
sian matrix, and found, contrary to our intuitive expectations, that
terms in the off-diagonal blocks do not correspond directly to
vibration–torsion–rotation coupling terms in the vibration–tor-
sion–rotation Hamiltonian [7,8] shown in Eqs. (1) and (2). For this
reason, we do not give these expressions here, but instead make
only some general remarks.

One of the outputs of G03 at each point along the MEP is an
accurate 3N � 3N Hessian matrix in non-mass-weighted Cartesian
coordinates xp (with p = 1,2, . . .,3N) in the Z-matrix orientation,
which contains second derivatives o2V/oxpoxr of the potential sur-
face with respect to these non-mass-weighted coordinates. To gain
physical insight into the molecular significance of the elements of
this Hessian, it is convenient to linearly transform the Cartesian
Hessian (i.e., to subject it to a similarity transformation at each
point along the MEP) to a new set of coordinates qj consisting of:
(i) 3N � 6 coordinates specifying the instantaneous shape of the
(nonlinear) molecule (where one of these can be the large-ampli-
tude coordinate if desired); (ii) three rotational angles specifying
the orientation of this molecular shape in space; and (iii) three
translational coordinates specifying the position of the center of
mass of this molecular shape in space. As recalled in Ref. [6], how-
ever, after linearly transforming to a set of 3N � 6 shape parame-
ters consisting of both rectilinear and curvilinear coordinates (as
will often be convenient when treating large-amplitude vibrational
motions), many of the elements of the transformed Hessian matrix
(oxp/oqj)(o2V/oxpoxr)(oxr/oqk) do not correspond to the true second
derivatives o2V/oqjoqk of V with respect to qj and qk. Rearranging
Eq. (14) of Ref. [6] yieldsX
p;r

ðoxp=oqjÞðo2V=oxpoxrÞðoxr=oqkÞ

¼ o2V=oqjoqk �
X

p

ðo2xp=oqjoqkÞðoV=oxpÞ: ð11Þ

At the top (saddle) and bottom (minimum) of the MEP the gra-
dient $V = 0, so that the right-hand side of Eq. (11) reduces to a
true second derivative of V. Algebraic expressions for the second
term on the right of Eq. (11) can be obtained by differentiating
twice an equation relating the laboratory-fixed non-mass-
weighted Cartesian coordinates Ri of atom i (where i = 1,2, . . .,N)
to the three laboratory-fixed Cartesian coordinates R of the center
of mass, the three rotational angles (Eulerian angles) v,h,/, the
large-amplitude coordinate s, and the non-mass-weighted small-
amplitude vibrational displacement vectors di (depending linearly
on 3N � 7 small amplitude vibrational coordinates Qj, where
j = 1,2, . . .,3N � 7), i.e., by differentiating

Ri ¼ Rþ S�1ðvh/Þ½aiðsÞ þ diðs;QÞ�; ð12Þ

Note that the xp in Eq. (11) denote the non-mass-weighted labora-
tory-fixed Cartesian coordinates Ri on the left of Eq. (12), and the qj

(i = 1,2, . . .,3N) in Eq. (11) denote the set of 3N ‘‘molecule-fixed”
coordinates on the right of Eq. (12). For conceptual simplicity in
the discussion below, we assume the 3N q’s have been ordered as
follows: qj (j = 1,2, . . .,3N � 7) = Qj = the small-amplitude vibrations,
q3N�6 = s = the large-amplitude motion, qj (j = 3N � 5,3N � 4,
3N � 3) = v,h,/ = the rotational angles, and qj (j = 3N � 2,3N � 1,
3N) = RX,RY,RZ = the center-of-mass coordinates. Fig. 1 shows sche-
matically a similarity-transformed Cartesian Hessian partitioned
in this way. The results of rather lengthy algebraic operations
(based on the ideas above) applied to elements lying in the 10 dif-
ferent blocks of the transformed Cartesian Hessian matrix parti-
tioned as depicted in Fig. 1 can be summarized as follows. (We
note in passing that the transformation matrix (oxp/oqj) in Eq. (11)
is completely specified by taking: Cartesian displacements Dxi,Dyi,
Dzi, of the three translations of each atom i along the molecule-fixed
i, j, k axes, as usual; Cartesian displacements of the three rotations
along i � ai, j � ai, k � ai, as usual; Cartesian displacements of the
large-amplitude motion along the direction of steepest descent
�$mV; and Cartesian displacements of the 3N � 7 small-amplitude
vibrations along vibrational displacement vectors satisfying the
center-of-mass, Eckart, and Sayvetz conditions.)

5.1. Block B1

This block is obtained from Eq. (11) when both qj and qk are
equal to small-amplitude vibrations, i.e., when qj = Qj and qk = Qk,
for j,k = 1,2, . . .,3N � 7. Because the Qj are defined to occur linearly
in Eq. (12), all o2xp/oQjoQk = 0, and elements in block B1 of the
transformed Cartesian Hessian in Fig. 1 are thus all equal to true
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second derivatives o2V/oQjoQk of the potential with respect to these
rectilinear small-amplitude vibrational coordinates, i.e., elements
in this block represent quadratic (harmonic) force constants, as
they are commonly understood.

5.2. Blocks B7, B8, B9, and B10

These blocks are obtained from Eq. (11) when qj and/or
qk � {R = RX,RY,RZ}. They can be shown to contain only zero ele-
ments to machine round-off precision, as might have been antici-
pated on physical grounds, since R represents the three
translations of the molecule.

5.3. Blocks B4, B5, and B6

These blocks are obtained when qj and/or qk � {v,h,/}. It turns
out that only block B5 contains zeros to machine round-off preci-
sion (at points along the MEP and if v = h = / = 0); blocks B4 and
B6 contain non-zero combinations of products of quantities like
daIAM

i

� �
ds
�

and odIAM
i

	 .
oQ k



. Close examination of these non-zero

quantities shows, however, that they do not have the forms needed
for Eq. (1).

5.4. Blocks B2 and B3

These blocks are obtained from Eq. (11) when qj and/or qk = s.
They involve non-zero combinations of products of quantities like
(dai/ds), (o2di/os2), and (o2di/osoQk), but again do not provide the
expressions needed for Eq. (1).

Since none of the terms needed for the Hamiltonian appear in
the off-diagonal blocks of the transformed Hessian shown in
Fig. 1, it will be necessary to evaluate these Hamiltonian coeffi-
cients in a separate calculation involving various quantities and
their first and second derivatives with respect to s. The Fourier
expansions obtained in Section 7 should make such computations
easier.

6. Transformed Hessian matrix in the PAM and RAM coordinate
systems

The IAM results in Section 5 were all derived assuming that the
vectors ai(s) + di(s,Q) in Eq. (12) were expressed in an IAM coordi-
nate system. However, this coordinate system is not often used in
modern computations, so we reconsidered the results above for the
PAM and RAM coordinate systems [19,20], which provide much
simpler group theoretical considerations than the IAM system
[20]. Conversion from the IAM system to the RAM or PAM systems
can be represented formally by the equations

½aiðsÞ þ diðs;QÞ�RAM ¼ M�1
RAMðsÞ½aiðsÞ þ diðs;QÞ�IAM; ð13aÞ

½aiðsÞ þ diðs;QÞ�PAM ¼ M�1
PAMðsÞ½aiðsÞ þ diðs;QÞ�IAM: ð13bÞ

Conversion from the IAM system to the RAM system requires only a
rotation M�1

RAMðsÞ about the z axis, since the z axis is identical for
those two systems. Conversion from IAM to PAM requires a full
three-dimensional rotation matrix M�1

PAMðsÞ since all three axes are
changed.

It can be shown that some of the IAM results are unchanged by
the use of RAM or PAM values for ai(s) + di(s,Q). In particular, the
results for blocks B1 and B7–B10 above are unchanged, i.e., block
B1 still contains the true second derivatives of the potential energy
with respect to the small-amplitude vibrational coordinates and
blocks B7–B10 still contain only zeros. However, the IAM results
for blocks B2–B6 must be reexamined, since they all involve deriv-
atives with respect to s, which will also act on the M�1(s) matrices
in Eq. (13), and/or involve the use of Eq. (8) to replace oV/oxm by a
scalar times daIAM
i =ds, which will not be possible for

daRAM
i =ds or daPAM

i =ds since Eq. (8) is not valid for these quantities.
RAM and PAM results for blocks B2–B6 in Fig. 1 can be summa-

rized by stating that all of these blocks are expected to contain
non-zero elements, but none of these elements appears directly
in the Hamiltonians of [7,8].
7. Symmetry properties and Fourier analysis of the ab initio
results for methanol

In this section, we present our ab initio results for atom posi-
tions, Hessians, projected frequencies, vibrational eigenmode
atomic displacement vectors, and the force vector along the steep-
est-descent gradient for methanol along the MEP. Since these five
quantities represent the numerical results of ever increasing levels
of mathematical manipulation of the potential surface (and there-
fore ever increasing levels of possible round-off errors), the ques-
tion of numerical accuracy degradation of the ab initio results is
of importance. We are particularly interested in whether or not
these five quantities can be well represented by short Fourier
expansions in the large-amplitude torsional coordinate c, since
the corresponding Fourier coefficients allow a compact representa-
tion of quantities computed at points along the MEP. This repre-
sentation is convenient, because the various Fourier series can
easily be differentiated algebraically to provide the derivatives
with respect to c required for setting up the final vibration–tor-
sion–rotation Hamiltonian [8]. This representation is also informa-
tive, since the symmetry properties expected for the Fourier
expansion of each quantity can serve as a check on the internal
consistency of the numerical ab initio results.

The atom positions, Hessian matrix, projected frequencies,
vibrational eigenvectors, and steepest-descent gradient presented
here were all obtained from a two-step procedure with Gaussian
03 on the University of New Brunswick Chorus cluster, using
the following commands. For the top of the barrier: (i) MP2 =
Full/6-311+G(3df,2p) OPT = (Z-Mat,TS,NRSCALE,NOEIGEN,Vtight)
NOSYMM, and (ii) MP2 = Full/6-311+G(3df,2p) NOSYMM FREQ =
HPModes GEOM = Check. For the middle: (i) MP2 = Full/6-311+
G(3df,2p) Geom = Check NOSYMM IRC = (Stepsize = 8,MaxPoints =
25,Forward,RCFC,VeryTight), and (ii) MP2 = Full/6-311+G(3df,2p)
Freq = (Projected,HPModes), where the latter input structures
along the MEP are from the IRC calculation outputs. For the
bottom: (i) MP2 = Full/6-311+G(3df,2p) OPT = (Z-matrix,Vtight)
NOSYMM, and (ii) MP2 = Full/6-311+G(3df,2p) NOSYMM FREQ =
HPModes GEOM = Check. Even though points along the MEP were
determined by following the path of steepest descent in mass-
weighted coordinates, as explained in Section 2, we have used as
our Fourier expansion variable the angle c, i.e., the average of the
three dihedral angles H-O–C–Hi, where Hi represents one of the
three methyl hydrogens.

Computationally, we asked G03 to calculate 25 points with a
stepsize of eight along the MEP, which translates to a total of 25
steps at 0.08 amu1/2 Bohr per step [24]. This IRC stepsize led to
an angular step size of approximately 3�, when internal rotation
is measured by the average of the three dihedral angles, as shown
in Table 1. In retrospect, our estimate of the IRC path length from
top to bottom of the potential in amu1/2 Bohr was too long. This, to-
gether with the fact that the IRC calculation tends to wander aim-
lessly at points very near the minimum, led us to exclude the last
six data points from the IRC calculation. The remaining 19 IRC
points were placed between the top (#1) and bottom (#21) points
to form a nearly equally spaced IRC grid.

Most of the quantities desired here are given in the Gaussian
output in more than one coordinate system and not necessarily
in the same system from one quantity to another. This, and



Table 1
Values of the average dihedral angle ca along the steepest-descent path in mass-
weighted coordinates for the 21 pointsb determined by G03.

Pointb Anglea

1 119.999494
2 122.87845
3 125.99511
4 129.11118
5 132.22655
6 135.34148
7 138.45549
8 141.56845
9 144.68024

10 147.79077
11 150.90000
12 154.00788
13 157.11441
14 160.21963
15 163.32361
16 166.42644
17 169.52827
18 172.62928
19 175.72968
20 178.82974
21 180.002052

a Average dihedral angle in degrees, keeping significant figures as given in the
G03 output.

b Point number 1 is the saddle and point number 21 is the potential minimum.
The extra digit emphasizes that these points were determined separately from the
other 19 (see text).
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symmetry requirements, necessitated numerous coordinate trans-
formations which we now summarize. Gaussian uses three differ-
ent Cartesian axis systems, called Z-matrix orientation, input
orientation, and standard orientation. Molecular structures are
provided as a set of three Cartesian coordinates in Å for each of
the atoms, i.e., 18 numbers with six digits after the decimal, in each
of these three systems. Molecular structures are also provided as a
set of internal and redundant coordinates, with eight digits after
the decimal. The precise form of these internal coordinates (bond
lengths, bond angles, dihedral angles) is defined in the user-speci-
fied Z-matrix input file (not to be confused with the Cartesian
Z-matrix orientation). We chose to use Cartesian-coordinate in-
stead of internal-coordinate structures because the Hessian, of
great interest for the present work, is outputted with more digits
in its Cartesian-coordinate representation. In the present work,
we first rotate the Cartesian coordinates of atoms in molecular
structures along the MEP to bring each structure to a principal axis
system that follows the usual spectroscopic convention for rota-
tional constants, i.e., A > B > C, as well as the commonly used Ir rep-
resentation relating a, b, c axis labels to x, y, z axis labels, i.e., a = z,
b = x, c = y. To permit symmetry analyses, we then define symme-
try-adapted linear combinations of these principal-axis Cartesian
atom coordinates, as discussed in connection with Eq. (15).

The 3N � 3N Hessian matrix, containing second derivatives of
the potential function, can take a number of different forms,
depending on whether derivatives are calculated with respect to
mass-weighted or non-mass-weighted Cartesian coordinates or
with respect to rectilinear or curvilinear internal coordinates. The
Gaussian program provides Hessians in non-mass-weighted Carte-
sians (Z-matrix orientation, eight digits after the decimal) and rec-
tilinear internal coordinates (bond lengths, bond angles, dihedral
angles, five digits after the decimal). Since Cartesian Hessians are
of better precision, we transformed each Cartesian Hessian along
the MEP to its principal axis system, using the same 3 � 3 rotation
matrices as for the Cartesian structure principal-axis transforma-
tions. Since it is often useful to refer Hessian elements to internal
coordinates resembling normal mode vibrations, we also per-
formed a Cartesian to internal coordinate transformation using
Schachtschneider’s GMAT program in its PC version [25], followed
by a further internal coordinate symmetrization using Eqs. (16)
and (17), with three translations and three rotations in the princi-
pal axis system [26] included and with proper mass weighting
throughout. The 3N � 3N mass-weighted Hessian in the symme-
trized internal coordinate system can then be considered to be par-
titioned into a (3N � 7) � (3N � 7) block (B1 in Fig. 1), one LAM
(12th row or column in Fig. 1), and three rotations and three trans-
lations (13th–18th rows or columns in Fig. 1).

The separation of the LAM from the rest was achieved via a
Gram–Schmidt orthogonalization (Mathematica version), using as
the unchanged (first) vector the normalized steepest descent vector
(in symmetrized and mass-weighted internal coordinates) along
the MEP. This vector can be obtained at all points along the MEP ex-
cept the first and last (top and bottom of the potential curve) from
the force vector provided by Gaussian (again, starting from the
Cartesian representation because of its greater precision and then
transforming to internal, and symmetrized internal coordinates
with proper mass weighting). At the top and bottom of the potential
curve the force is zero, so the MEP direction must be determined
from the eigenvector with imaginary frequency at the top and with
the smallest (torsional) frequency at the bottom. The ordering used
in our Gram–Schmidt orthogonalization procedure was arbitrarily
chosen as rOH(A1), rCO(A1), rCH(S1,A1), rCH(S2,A1), bHOC(A1), bOCH(S1,
A1), bOCH(S2,A1), sHOCH(S3,A1), rCH(S3,A2), bOCH(S3,A2), sHOCH(S2,A2),
3Ts, 3Rs, where some of the 11 symmetrized internal coordinates
are defined in terms of the linear combinations Si in Eqs. (16) and
(17). Note that the internal coordinate corresponding to the sym-
metrized ‘‘torsional” displacement vector sHOCH(S1,A2), which is in
fact the average of the three HOCH dihedral angles, is not present
in the list above. It will be replaced by the steepest descent vector
(MEP direction), to which it is approximately equal, and any contri-
bution of this steepest descent vector to the 11 internal coordinates
in the list will then be removed by the Gram–Schmidt orthogonal-
ization procedure.

Gaussian gives the projected vibrational eigenvectors at each
MEP point in Cartesian displacements (standard orientation, five
figures after the decimal). Unfortunately, the standard-orientation
axis systems from point to point along the MEP can differ by two-
fold rotations about any of the three Cartesian axes. Furthermore,
the overall phase of the eigenvectors at each point can differ by
�1. Thus, to smoothly connect the numerical entries given by
Gaussian in an 18-dimensional Cartesian eigenvector at one point
p along the MEP with its partner eigenvector at the next point p + 1,
some appropriate combination of the rotations C2x, C2y, C2z and the
inversion i must be applied to the axis system at p + 1. Note that
the appropriate combination of C2x, C2y, C2z and i rotations for
the (p,p + 1) pair can be different for different values of p along
the MEP for eigenvectors corresponding to the same projected fre-
quency, and can also be different for the same pair of MEP points
(i.e., same p value) for eigenvectors corresponding to different pro-
jected frequencies, so that a total of 11 � 20 = 220 (where 20 cor-
responds to the 20 IRC grid points after the first point at the top
of the barrier) pairwise eigenvector ‘‘interfaces” must be carefully
examined manually and corrected when necessary, before a math-
ematically meaningful variation of the vibrational eigenvector dis-
placements with c can be determined. The smoothly connected
eigenvectors are then transformed to a principal axis system from
their standard orientation.

To determine symmetry properties of various quantities taken
from the G03 outputs, we use the procedures described in Ref.
[20]. However, to make the atom numbering and internal rotation
angle there agree with our present definitions and G03 outputs, it
is necessary to make the following substitutions. In Fig. 1 and Ta-
ble 8 of Ref. [20], remove the O atom in the aldehyde group, change
Ca to O2, and relabel Ha as H1; then relabel H1, H2, H3 in the methyl
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group as H4, H6, H5. In Eq. (7) and Table 8 of Ref. [20], replace a by
p � c. These changes lead, for example, to symmetry transforma-
tions for the rotational (v,h,/) and internal-rotational (c) variables
in the present paper of the form:

ð456Þf ðv; h;/; cÞ ¼ f ðv; h;/; cþ 2p=3Þ;
ð56Þ	f ðv; h;/; cÞ ¼ f ðp� v;p� h;pþ /;�cÞ:

ð14Þ

With this background, we now discuss Fourier series expan-
sions of the numerical results and their related plots.
7.1. Molecular structure [3N = 18 functions = 6 vector functions ai(c)]

Molecular structures are the first piece of information obtained
from the ab initio calculations, in the sense that the relative posi-
tions of the N = 6 atoms of methanol are used to specify the steep-
est descent path. These molecular structures are often given in
terms of 3N � 6 bond lengths and bond angles, but for the purpose
of constructing a vibration–torsion–rotation Hamiltonian [7,8],
where Coriolis interactions take place along specific directions in
the moment-of-inertia tensor, it is more useful to give atomic posi-
tions in a Cartesian axis system. In this work we have chosen to use
the principal axis system for these atomic positions, because their
variation with c will then exhibit 2p/3 or 2p periodicity, i.e., their
Fourier coefficients must belong to definite symmetry species in
G6. (Fourier coefficients for atomic positions in the internal axis
system belong to definite symmetry species only in the extended
group GðmÞ6 [20].)

Table 2 indicates that the variation with c of atomic coordinates
for the three frame atoms C–O–H in the principal axis system is
well described by short Fourier expansions in cos3nc (x and z com-
ponents) or sin3nc (y component). These forms for the expansions
can be derived from symmetry considerations, as outlined above.
Their simplicity arises essentially because frame atoms are not ex-
changed by any of the G6 PI operations. In Table 2 two sets of Fou-
rier coefficients are given, one for expansions terminating at n = 2,
the other for expansions terminating at n = 3. Since atom positions
in Å are printed out by G03 to six decimal places, a perfect fit
would lead to a root-mean-square deviation of 2.9 � 10�7, a value
obtained by assuming 10 equally probable errors of 0, ±1, ±2, ±3,
±4, 5 � 10�7 for a large set of numbers rounded to six decimal
Table 2
PAM positions in Å of the three frame atoms H, O, C for CH3OH at the top (c = 120�) and bo
atom positions along the MEP.

x(H) y(H) z(H) x(O) y(O)

PAM positions of the H, O and C frame atoms in Å at the top and bottom of the barri
Top �0.819466 0.000000 1.049603 0.065268 0.0
Bottom �0.825629 0.000001 1.041489 0.063938 0.0

Fourier expansion coefficients for n 6 2 in Å for frame-atom positions along the MEP
a0 �0.822529(1) 0 (fixed) 1.045559(2) 0.0646250(1) 0 (fix
a3 0.003086(1) �0.006102(1) 0.004066(3) 0.0006640(2) �0.0
a6 �0.000019(1) 0.000022(1) �0.000013(3) �0.0000221(2) 0.0
r � 106c 3.8 3.4 8.7 0.7 0.9

Fourier expansion coefficients for n 6 3 in Å for frame-atom positions along the MEP
a0 �0.8225293(2) 0 (fixed) 1.0455587(3) 0.0646250(1) 0 (fix
a3 0.0030863(2) �0.0061021(9) 0.0040680(5) 0.0006639(1) �0.0
a6 �0.0000187(2) 0.0000223(9) �0.0000135(5) �0.0000220(1) 0.0
a9 �0.0000047(2) 0.0000024(9) �0.0000109(5) 0.0000008(1) �0.0
r � 106c 0.8 3.0 1.6 0.3 0.2

a Cartesian structures in Z-matrix orientation at all points along the IRC, which are pri
systems. Only structures at the top and bottom of the barrier are shown in this table. Sinc
y-coordinates of all frame atoms are zero at these two points, but not at other points al

b Fourier expansions for the x- and z-coordinates have the form
P

na3ncos3nc, where t
coordinates have the form

P
na3nsin3nc, where n = 0 is not used in the sum. Numbers in p

as given by the least-squares fits.
c The standard deviation r in Å of each fit is given as r � 106.
places. This deviation of 3 � 10�7 is achieved for the n 6 3 fits
and almost achieved for the n 6 2 fits of the O and C atom posi-
tions. The hydroxyl H atom positions, on the other hand, are fit five
or 10 times worse. The question of optimal truncation (i.e., maxi-
mum n) for the Fourier expansions is important when taking deriv-
atives. It is well known that differentiating an infinite series
reduces its convergence, an effect that is immediately obvious
from the fact that d2sin3c/dc2 = �9sin3c, while d2 sin12c/
dc2 = �144sin12c. In any case, the full set of G03 frame-atom posi-
tions along the MEP, transformed to their principal axis systems,
can be replaced with no loss in precision by the appropriate set
of Fourier coefficients from Table 2.

Fourier expansions for the methyl hydrogen positions are more
complicated. From a group theoretical point of view, this arises be-
cause these atoms are exchanged by operations of the PI group.
From a physical point of view, this arises because these atoms pass
in and out of the symmetry plane of the C–O–H frame during the
internal rotation. It can be shown by using the symmetry proce-
dures in [20], modified as described above, that the x- and z-coor-
dinates of H4 and (1/2)(H5 + H6) and the y-coordinate of (1/
2)(H5 � H6) can be fit to Fourier series in cosnc, while the y-coor-
dinates of H4 and (1/2)(H5 + H6) and the x- and z-coordinates of (1/
2)(H5 � H6) can be fit to Fourier series in sinnc. We have verified
that Fourier expansions terminating at n = 6 for these quantities
in the PAM axis system along the 21 points of the MEP shown in
Table 1 lead to standard deviations of 3.5 � 10�6 Å or less, but
these fits are not presented in this work. Instead, we further sym-
metrize the methyl hydrogen coordinates to permit Fourier expan-
sions in cos3nc or sin3nc. These symmetrized linear combinations
have the form

S1 ¼ ½a4ðcÞ þ a5ðcÞ þ a6ðcÞ�=3;
S2 ¼ ½cos ca4ðcÞ þ cosðcþ 2p=3Þa5ðcÞ þ cosðcþ 4p=3Þa6ðcÞ�=3;
S3 ¼ ½sin ca4ðcÞ þ sinðcþ 2p=3Þa5ðcÞ þ sinðcþ 4p=3Þa6ðcÞ�=3;

ð15Þ

where C(S1x) = C(S1z) = C(S2x) = C(S2z) = C(S3y) = A1 in G6 and C for
all other components is A2. Table 3 indicates that the variation with
c of these more complicated linear combinations of atomic posi-
tions for the three methyl hydrogens in the principal axis system
can be described to computational precision by short Fourier
ttom (c = 180�) of the barrier, and Fourier expansion coefficients in Å for these frame-

z(O) x(C) y(C) z(C)

era

00000 0.688759 �0.012450 0.000000 �0.727358
00000 0.687117 �0.013431 0.000000 �0.725461
b

ed) 0.6879669(4) �0.0129330(2) 0 (fixed) �0.7264409(3)
004022(3) 0.0008193(5) 0.0004896(2) �0.0006974(1) �0.0009469(4)
000262(3) �0.0000292(5) �0.0000073(2) 0.0000083(1) 0.0000312(5)

1.7 0.8 0.5 1.5
b

ed) 0.6879669(1) �0.0129330(1) 0 (fixed) �0.7264409(1)
004022(1) 0.0008190(1) 0.0004895(1) �0.0006974(1) �0.0009466(1)
000262(1) �0.0000291(1) �0.0000072(1) 0.0000083(1) 0.0000311(1)
000013(1) 0.0000021(1) 0.0000010(1) �0.0000005(1) �0.0000019(1)

0.3 0.3 0.3 0.3

nted out with six decimal places by G03, have been rotated into their principal axis
e the molecule has an xz-plane of symmetry at the top and bottom of the barrier, the
ong the MEP.
he maximum n is limited to either 2 or 3 in this table. Fourier expansions for the y-
arentheses indicate one standard uncertainty for the coefficients (k = 1, type A) [27],



Table 3
Values in Å of symmetrized linear combinationsa of PAM positions for the three methyl hydrogens in CH3OH at the top and bottom of the barrier, and Fourier expansion
coefficients in Å for these linear combinations along the MEP.

x(S1) y(S1) z(S1) x(S2) y(S2) z(S2) x(S3) y(S3) z(S3)

Values in Å of symmetrized linear combinations of PAM positions of the three methyl H atoms at the top and bottom of the barriera

Top �0.0227130 0.0000000 �1.1067257 �0.5087285 0.0000000 0.0119803 0.0000002 0.5100511 �0.0000001
Bottom �0.0097337 �0.0000003 �1.1028610 �0.5080093 0.0000005 �0.0047300 0.0000009 0.5121700 �0.0000007

Fourier expansion coefficients in Å for n 6 3 for the symmetrized linear combinations along the MEPb

a0 �0.0163748(1) 0 (fixed) �1.1048279(1) �0.5083694(1) 0 (fixed) 0.0038239(1) 0 (fixed) 0.5110913(1) 0 (fixed)
a3 �0.0064832(1) 0.0069307(2) �0.0019322(1) �0.0003594(1) �0.0023141(3) 0.0083465(2) �0.0037281(3) �0.0010594(1) 0.0090545(2)
a6 0.0001507(1) �0.0001784(2) 0.0000346(1) �0.0000232(3) �0.0001981(2) �0.0000065(3) 0.0000191(1) �0.0002320(2)
a9 �0.0000064(1) 0.0000077(2) 0.0000031(3) 0.0000087(2) 0.0000032(3) 0.0000099(2)
r � 106c 0.5 0.5 0.3 0.3 0.8 0.6 1.1 0.3 0.5
Not fitd – – – – pt. 20 – pt. 20 – pt. 20

a The linear combinations S1, S2 and S3 of the PAM methyl hydrogen positions used in this table are defined in Eq. (15). Only values at the top and bottom of the barrier are
shown in this table.

b Fourier expansions for the x and z components of S1 and S2 and for the y component of S3 have the form
P

na3ncos3nc. Fourier expansions for the y component of S1 and S2

and for the x and z components of S3 have the form
P

na3nsin3nc, where n = 0 is not used. Numbers in parentheses indicate one standard uncertainty (k = 1, type A) [27] for the
Fourier coefficients, as given by the least-squares fits. Note that the maximum value of n used is different for different fits in this table, as indicated by various missing higher-
order coefficients.

c The standard deviations r of the fits are given as r � 106.
d When point number 20 is indicated in a given column, it was weighted zero in the fit because of its large obs. � calc. value.
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expansions in either cos3nc or sin3nc which terminate at n = 3 or
less, i.e., Fourier expansions for these symmetrized combinations
of methyl-hydrogen atom positions converge very much like the
expansions for frame-atom positions.

7.2. Hessian matrix [3N(3N + 1)/2 = 171 functions Hij(c)]

In this section, we discuss elements Hij(c) = Hji(c) of the
(3N � 7) � (3N � 7) diagonal block of the Hessian obtained (start-
ing from functions in the Cartesian system) when the three trans-
lations, three rotations, and large-amplitude motion are removed,
and when derivatives are taken with respect to symmetry-adapted
internal coordinates with proper mass weighting. We also discuss
Fourier expansions of these elements in sin3nc or cos3nc, as re-
quired by symmetry considerations.

Symmetrized internal coordinates for the three vibrational mo-
tions not involving the methyl hydrogens are identical with the or-
dinary stretching coordinates rOH, rCO and bending coordinate bHOC

in the frame, and are of species A1 in G6. Symmetrized internal
coordinates for the nine vibrational motions involving the methyl
hydrogens can be obtained from equations analogous to Eq. (15),
when the vectors ai are replaced by suitably defined scalars repre-
senting vibrational displacements di in the internal coordinates:

S1 ¼ ½d4ðcÞ þ d5ðcÞ þ d6ðcÞ�=3;
S2 ¼ ½cos cd4ðcÞ þ cosðcþ 2p=3Þd5ðcÞ þ cosðcþ 4p=3Þd6ðcÞ�=3;
S3 ¼ ½sin cd4ðcÞ þ sinðcþ 2p=3Þd5ðcÞ þ sinðcþ 4p=3Þd6ðcÞ�=3:

ð16Þ

Three di (i = 4,5,6) are defined for the C–Hi stretches dri, three for
the O–C–Hi bends dbi, and three for the H-O–C–Hi dihedral angles
dsi, by the equations

di ¼ dri ¼ drðC—HiÞ;
di ¼ dbi ¼ dbðO—C—HiÞ;
di ¼ dsi ¼ dsðH—O—C—HiÞ:

ð17Þ

With these definitions, S1(dri), S1(dbi), S2(dri), S2(dbi), and S3(dsi) are
of species C = A1 in G6 (the same symmetry species as found for rOH,
rCO and bHOC in the frame), the other four Si are of species A2. Since
the potential energy function is A1, and since the Hessian is the
second derivative of the potential energy with respect to the various
coordinates qi above, C(Hij) = C(qi) � C(qj). As mentioned earlier, to
obtain a (3N � 7) � (3N � 7) SAV diagonal block in the Hessian
matrix (block B1 in the 3N � 3N Hessian of Fig. 1) which
corresponds to the force-constant matrix necessary for obtaining
projected vibrational frequencies, the LAM (i.e., the MEP � S1(dsi)
in Eq. (16)) is projected out using a Gram–Schmidt orthogo-
nalization.

Fig. 2 of Ref. [6] illustrates the variation along the MEP of three
elements of the ‘‘unprojected” Hessian matrix of methanol in sym-
metrized internal coordinates as given by Eqs. (16) and (17). The
units of such matrix elements [4] are hartree/Bohr2�kradk, where
k = 0, 1, or 2 for stretch–stretch, stretch-angle, and angle-angle
derivatives of the potential energy, respectively. (Note that the ma-
trix product in the second line of the caption to Fig. 2 of Ref. [6]
should be corrected to read StrAtrFij(c)B�1S, to bring it into agree-
ment with Eqs. (16) and (17) there.)

Fig. 2 here shows plots of a selection of 12 elements of the ‘‘pro-
jected” Hessian matrix. The label ‘‘projected Hessian matrix” is
shorthand for the results of a multi-step procedure, involving sev-
eral subtle details which can be explained (somewhat symboli-
cally) as follows. (i) It is well known that eigenvalues kj of the GF
matrix [28] in SI units are related to the vibrational frequencies
in units of s�1 by kj ¼ 4p2m2

j . (ii) Consider two versions of the
3N � 3N matrices F and G along the MEP: a Cartesian version FC

and GC, and an internal-coordinate version FI = AtrFCA and
GI = BGCBtr, where the 3N � 3N matrices A and B have their usual
meaning [26], as in Eq. (16) of Ref. [6]. (Since our GCFC matrix does
not have SI units, but instead is in hartree/Bohr2 u, where u is the
12C atomic mass unit, some attention must be paid to conversion
factors in the rest of this paragraph.) The B matrix used here was
obtained from a program supplied by John Bertie [25]; rows corre-
sponding to stretches were used as provided, but rows correspond-
ing to angles were multiplied by the factor (1 Å)/(1.889 276 Bohr).
(iii) GCFC is not Hermitian (not real symmetric in the present work),

but G1=2
C FCG1=2

C is, and G1=2
C FCG1=2

C � Ek
��� ��� ¼ 0 gives the same secular

equation as jGCFC � Ekj = 0 [28]. We want to consider also the anal-
ogous product G1=2

I FIG
1=2
I , but a problem arises because GI is not

diagonal and its square root is not easily defined. This problem is
overcome by first diagonalizing the real symmetric matrix GI by
a unitary (here real orthonormal) transformation U, then taking
the square root, then transforming back to the ‘‘original” row and
column labels with U�1, i.e., by defining G1=2

I ¼ ðBGCBtrÞ1=2 to be
U�1[U(BGCBtr)U�1]1/2U, where all matrices are 3N � 3N. (iv) We
chose at this point to work with a GF matrix of the form
SG1=2

I FIG
1=2
I Str, where the 3N � 3N orthonormal matrix S forms
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Fig. 2. Plots of 12 projected Hessian matrix elements as a function of the average dihedral angle c, illustrating their cosine and sine variation. The abscissa for all panels is c,
and runs from 120� on the left (the top of the barrier) to 180� on the right (the potential minimum). The points are elements of the projected Hessian matrix
PSG1=2

I ½A
trFijðcÞA�G1=2

I StrPtr (see text), which was calculated starting from the 3N � 3N Cartesian force-constant matrix Fij(c) in our G03 output. Ordinate units are all hartree/
Bohr2 u. The bad points visible at position 20 in panels (a), (e), and (i) and elsewhere illustrate the limit of precision of these calculations. The four panels in the left column are
all cosine curves, corresponding to diagonal elements of the projected Hessian for: (a) the OH stretch rOH of species A1, (b) a methyl CH stretch rCH of species A2, symmetrized
as in S3 of Eq. (16), (c) a methyl OCH bend bOCH of species A1, symmetrized as in S1, and (d) a vibration of species A2 involving the dihedral angles, symmetrized as in S2. The
four panels in the middle column are all sine curves, corresponding to off-diagonal elements of the projected Hessian involving one A1 vibration and one A2 vibration, i.e.,
panel (e) involves rOH(A1) and rCH(S3,A2), (f) involves rCH(S2,A1) and rCH(S3,A2), (g) involves rCH(S3,A2) and bOCH(S1,A1), and (h) involves bOCH(S1,A1) and s(S2,A2), where the
shorthand notation for linear combinations and symmetry species associated with Eqs. (16) and (17) has been used. The four panels in the right column are again all cosine
curves, corresponding to off-diagonal elements of the projected Hessian involving two A1 vibrations or two A2 vibrations, i.e., (i) involves rCO(A1) and rCH(S1,A1), (j) involves
bHOC (A1) and bOCH(S2,A1), (k) involves rCH(S3,A2) and bOCH(S3,A2), and (l) involves bOCH(S3,A2) and s(S2,A2). Fourier expansion coefficients for the cosine curves in the left
column and for the sine curves in the middle column are given in the first and second rows of Table 4, respectively. Fourier expansion coefficients for the four cosine curves in
the right column are not shown.
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symmetrized linear combinations of the internal coordinates, as in
Eqs. (16) and (17) here. We also work with a unit force vector ob-
tained by normalizing SG1=2

I fI ¼ SG1=2
I AtrfC, where fC is the 3N � 1

vector containing the forces for Cartesian displacements of the
atoms [4] along the MEP. (v) The next step is to project out the
force direction from our internal coordinates by a Gram–Schmidt
orthogonalization of a set of 3N vectors. The first (unchanged)
row contains the normalized SG1=2

I AtrfC vector. Since the force along
the MEP always points nearly along the internal rotation coordi-
nate, this vector has a component of value near unity at the posi-
tion of S1(s,A2) from Eq. (16), and components near zero
elsewhere. The other row vectors in the pre-Gram–Schmidt proce-
dure have exactly unity at one of the symmetrized internal coordi-
nate positions and exact zeros elsewhere. (vi) The real orthonormal
transformation matrix P obtained from the Gram–Schmidt proce-
dure is then used to generate the ‘‘projected” Hessian matrix
PSG1=2

I FIG
1=2
I StrPtr. It is selected elements of this matrix that are

illustrated in Fig. 2. Although a careful analysis of units is not pre-
sented here, all elements of the projected Hessian matrix are in
hartree/Bohr2 u, where u is the 12C unit of mass.

Fig. 2(a)–(d) illustrates the cosine behavior of diagonal matrix
elements of PSG1=2

I F IG
1=2
I StrPtr for an A1 frame stretch (rOH), an A2

methyl-top stretch, an A1 methyl-top bend, and an A2 dihedral-an-
gle linear combination. Fig. 2(e)–(h) illustrates the sine behavior of
A1/A2 cross terms for two stretch–stretch interactions, one stretch–
bend interaction, and one bend–dihedral-angle interaction.
Fig. 2(i)–(l) illustrates the cosine behavior of A1/A1 or A2/A2 cross
terms for one stretch–stretch interaction, one bend–bend interac-
tion, one stretch–bend interaction, and one bend–dihedral-angle
interaction.

Table 4 represents eight of the curves in Fig. 2 by short Fourier
cosine or sine expansions in the average torsional angle. Table 4
illustrates the fact that elements of the projected Hessian can be
represented to about 1 � 10�5 hartree/Bohr2 u by Fourier expan-
sions in two or three-term cos3nc or sin3nc series.

A numerical consistency check on the procedures above is given
by the fact that, as required by the algebraic considerations of Sec-
tions 5 and 6, the three rows and columns corresponding to trans-
lations in our projected Hessian matrix contain only entries
smaller than 10�9. This, however, is five orders of magnitude larger
than the double precision round-off error of 10�14 or so expected
Table 4
Fourier expansion coefficients for a few projected Hessian matrix elementsa.

rOH(A1), rOH(A1) rCH(S3,A2), rCH(S3,A2)
Cosine seriesb Cosine seriesb

a0 0.581967(2) 0.375478(2)
a3 0.004839(3) 0.003223(3)
a6 �0.000083(3)
r � 105c 1.0 0.9
Not fitd Pts. 2, 20 –

rCH(S3,A2), rOH(A1) rCH(S2,A1), rCH(S3,A2)
Sine seriese Sine seriese

a0 0 (fixed) 0 (fixed)
a3 0.0003835(6) �0.002749(1)
a6 0.0000165(6) 0.000071(1)
r � 105c 0.2 0.4
not fitd pts. 2, 20 pts. 2, 20

a The eight projected Hessian elements in this table correspond to those shown in pan
Hessian have been symmetrized as in Eqs. (16) and (17) and orthogonalized by the Gr
projected Hessian element; the a3 and a6 coefficients describe the trigonometric variatio

b Examples of cosine series expansions for diagonal projected Hessian matrix elemen
c The standard deviation of the fit multiplied by 105.
d Numbers shown in a given column of this row indicate points along the MEP that wer

the plots of these projected Hessian elements shown in Fig. 2.
e Examples of sine series expansions for off-diagonal projected Hessian matrix elemen

inversion group G6.
for a simple read-in/print-out cycle, but most of the additional er-
ror can be attributed to the precision of the structures (see Tables 2
and 3). These structures are required to carry out rotations to the
principal axis system and to transform from Cartesian to internal
coordinates, but they are given to only six decimal places in the
G03 output.

7.3. Projected vibrational frequencies [3N � 7 = 11 functions mj(c)]

As a check on our procedures and understanding up to this
point we verified that the projected vibrational frequencies given
in the G03 output could also be obtained by diagonalizing the
(3N � 1) � (3N � 1) block of the projected Hessian matrix obtained
by discarding the first row and column. Six of the eigenvalues kj are
nearly zero (corresponding to the three translations and three rota-
tions deliberately kept in our diagonalization procedure as a check
on the correctness and/or precision of our manipulations). The
remaining 3N � 7 eigenvalues of the projected Hessian matrix
were conveniently converted to vibrational frequencies mj in
cm�1 by using the expression mj = cnvt 	 (kj)1/2, where the factor
cnvt = 5140.487. We have verified that projected frequencies ob-
tained in this way agree with those given directly in the G03
output.

Physically, the 11 small-amplitude vibrational frequencies mj(c)
in methanol must be invariant to the transformation c ? c + 2p/3,
since this represents an exchange of identical particles, and to
c ? 2p � c, since this represents reflection in the plane of symme-
try at the c = p equilibrium conformation. (Invariance under these
two transformations can be used to derive invariance under
c ? c + 2p, which represents the 2p periodicity of the coordinate
system, and c ? 4p/3 � c, which represents reflection in the plane
of symmetry at the c = 2p/3 maximum of the barrier, so that the
latter two transformations contain no new information.) These
transformations (which follow the c conventions of Table 1, corre-
sponding to all our G03 outputs) can be used to show that the Fou-
rier expansion of a projected frequency mj(c) should contain only
terms of the form cos3nc, where n is an integer.

Fig. 1 of Ref. [2] shows a plot of all 11 projected frequencies
from an earlier calculation, exhibiting a maximum discontinuity
of 3 cm�1 in the m11(A2) methyl out-of-plane rocking mode (see
Section 3). Results from the present calculation would look similar
bOCH(S1,A1), bOCH(S1,A1) (sS2,A2), s(S2,A2)
Cosine seriesb Cosine seriesb

0.0859681(7) 0.0821540(5)
0.0001760(9) �0.0012685(7)

�0.0000157(7)
0.3 0.2

– –

rCH(S3,A2),bOCH(S1,A1) bOCH(S1,A1), s(S2,A2)
Sine seriese Sine seriese

0 (fixed) 0 (fixed)
0.000826(1) 0.0004165(3)
�0.000016(1)

0.3 0.1
– –

els (a)–(h) of Fig. 2. The internal coordinates labeling the rows and columns of this
am–Schmidt procedure. The a0 coefficient corresponds approximately to a normal
n of this element with internal rotation angle. All coefficients are in hartree/Bohr2 u.
ts involving various stretching (r), bending (b), and dihedral (s) coordinates.

e removed from the fit of that column. Most of these bad points are clearly visible in

ts involving one coordinate of species A1 and one of species A2 in the permutation-



Table 5
Vibrational frequencies from G03 for CH3OH at the top and bottom of the barrier, Fourier expansion coefficients for the projected frequencies from G03 along the MEP, and G03-
minus-Fourier-series values at the 21 points along the MEP.

m1 m2 m9 m3 m4 m10

Vibrational frequencies m in cm�1 at the top (point 1) and bottom (point 21) of the barriera

mtop 3939.6368 3173.0735 3167.1614 3084.1029 1550.9880 1521.7472
mbottom 3906.6430 3200.7185 3140.5033 3070.8489 1542.4691 1532.4390

Fourier expansion coefficients a3n in cm�1 for the projected frequencies m(c)b

a0 3923.127(8) 3188.82(7) 3152.23(6) 3077.229(3) 1546.8451(6) 1527.276(2)
a3 16.488(11) �13.03(9) 12.54(9) 6.612(5) 4.2687(8) �5.338(2)
a6 �0.012(11) �1.58(9) 1.21(9) 0.240(5) �0.1188(8) �0.174(2)
a9 �0.60(9) 0.59(9) 0.017(5) �0.0084(8) �0.007(2)
r 0.034 0.293 0.280 0.015 0.003 0.008

G03-minus-Fourier-series values in cm�1 for projected frequencies at 21 points along the MEP
1 0.03 �0.54 0.59 0.006 0.001 �0.009
2 �0.18c �0.36 0.23 �0.086c 0.003 �0.006
3 0.03 0.15 �0.11 0.006 0.000 �0.003
4 �0.05 0.41 �0.41 �0.008 �0.001 0.007
5 �0.04 0.48 �0.44 0.003 �0.002 0.008
6 �0.01 0.31 �0.31 �0.009 �0.003 0.012
7 0.00 0.10 �0.09 �0.005 �0.003 0.008
8 0.05 �0.11 0.12 0.001 �0.000 �0.001
9 0.03 �0.27 0.26 0.005 0.001 �0.006

10 �0.02 �0.30 0.26 �0.013 0.004 �0.009
11 �0.06 �0.22 0.21 0.012 0.001 �0.008
12 0.02 �0.04 0.08 0.012 0.000 �0.007
13 0.03 0.03 �0.06 0.006 0.001 �0.000
14 0.03 0.20 �0.19 �0.003 �0.000 0.004
15 �0.01 0.23 �0.19 0.014 �0.004 0.007
16 �0.04 0.16 �0.22 �0.050 0.001 0.013
17 �0.00 0.13 �0.07 0.007 �0.004 0.006
18 0.00 �0.01 0.02 0.002 0.000 0.002
19 �0.01 �0.20 0.12 �0.006 �0.001 �0.004
20 �1.47c �0.62c 0.12c 0.011 0.002 �0.006
21 0.02 �0.15 0.19 0.009 0.003 �0.008

Vibrational frequencies m in cm�1 at the top (point 1) and bottom (point 21) of the barriera

m5 m6 m11 m7 m8 (m2+m9)/2
mtop 1508.6810 1360.2481 1208.5064 1105.4699 1075.2683 3170.1175

mbottom 1504.8854 1377.8753 1197.5911 1102.4868 1073.2326 3170.6109

Fourier expansion coefficients a3n in cm�1 for the projected frequencies m(c)b

a0 1506.491(1) 1369.672(2) 1202.206(1) 1103.376(2) 1074.813(2) 3170.532(4)
a3 1.883(2) �8.790(2) 5.472(1) 1.519(2) 1.002(3) �0.238(6)
a6 0.288(2) �0.609(2) 0.844(1) 0.605(2) �0.566(3) �0.180(6)
a9 0.014(2) �0.021(2) �0.013(1) �0.026(2) 0.019(3)
r 0.006 0.008 0.005 0.008 0.009 0.019

G03-minus-Fourier-series values in cm�1 for projected frequencies at 21 points along the MEP
1 0.006 �0.004 �0.002 �0.005 0.001 0.003
2 0.007 �0.008 0.002 �0.005 �0.003 �0.085c

3 �0.000 �0.004 �0.002 �0.003 �0.000 0.001
4 �0.002 0.010 0.002 0.010 0.009 �0.015
5 �0.011 0.006 �0.002 0.000 �0.007 0.010
6 �0.005 0.010 0.003 0.012 0.007 �0.003
7 �0.005 0.004 0.000 0.003 �0.002 0.006
8 �0.002 �0.014 �0.000 �0.011 �0.016 0.007
9 0.005 �0.007 0.001 �0.001 �0.001 0.002

10 0.008 0.001 0.003 �0.003 0.003 �0.019
11 0.008 0.009 �0.003 0.006 0.018 �0.002
12 0.002 �0.004 �0.004 �0.003 0.005 0.017
13 0.000 �0.008 �0.002 �0.009 �0.009 �0.017
14 �0.004 �0.001 0.003 0.001 �0.004 0.005
15 �0.010 0.003 �0.006 �0.002 �0.007 0.019
16 0.001 0.014 0.013 0.013 0.007 �0.030
17 �0.006 �0.006 �0.002 0.004 �0.012 0.029
18 0.002 0.008 0.006 0.013 0.009 0.005
19 �0.001 �0.003 �0.007 �0.011 �0.003 �0.039
20 0.004 �0.008 �0.002 �0.009 �0.003 �0.248c

21 0.004 0.001 �0.000 �0.001 0.007 0.021

a Points along the MEP are numbered from 1 (potential maximum) to 21 (potential minimum), and correspond to the c values shown in Table 1. Vibrational numbering
follows standard notation [29].

b Fourier expansions have the form
P

na3ncos3nc, where the maximum n is limited to either 2 or 3 in this table. Numbers in parentheses indicate one standard uncertainty
(k = 1, type A) [27] from the least-squares fits.

c These points were weighted zero in the fits (see text).
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Table 7
Values for W in cm�1 from Eq. (21)a and G03-minus-Fourier-series valuesb,c in cm�1

from its Fourier expansion at 21 pointsd along the MEP.

Ptd Wa O–Cb

1 0.00 0.00
2 1.59c 0.05
3 3.13 �0.03
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on that scale, but with a maximum discontinuity of 1.5 cm�1 in the
m1(A1) O–H stretching mode (see below), and are not re-plotted
here. Table 5 shows the 11 small-amplitude vibrational frequen-
cies from the present calculations at the maximum and minimum
of the barrier, least-squares fitted coefficients of cos3nc with n 6 2
or 3 for their Fourier expansions along the MEP, and G03 frequen-
cies minus Fourier-series frequencies (i.e., obs. � calc. values) at
the 21 points we calculated along the MEP.

All projected vibrational frequencies between 1000 cm�1 and
1600 cm�1 (i.e., all frequencies except the C–H and O–H stretches)
can be fit to a four-term Fourier expansion to 0.01 cm�1 or better.
Thus, this set of numerical projected frequencies from G03 can be
replaced by their Fourier expansion coefficients with no loss in pre-
cision. Furthermore, these Fourier series are nicely convergent,
with all a9/a6 ratios smaller than 10.

The situation for the C–H and O–H stretches is different. After
some preliminary fits, and as implied also by the bad points in a
number of panels in Fig. 2, it became clear that frequencies at
the first point after the maximum and at the last point before the
minimum were often less well calculated than the rest. This is
not surprising in retrospect, because the steepest-descent integra-
tion procedure makes use of the direction of the potential gradient
at these points, and the very small absolute value of the gradient
near the two stationary points may cause the numerical evaluation
of its direction to suffer from round-off errors. In any case, one or
both of these two points were weighted zero when calculating
coefficients for the Fourier expansions for the hydrogen stretching
vibrations. Once that is done, m1 (the O–H stretch) and m3 (the ana-
log of the symmetric C–H stretch in CH3F) are relatively well be-
haved, though their standard deviations are from 5 to 10 times
larger than for the lower frequency modes.

The Fourier expansions for m2 and m9 (corresponding to the two
components of the degenerate C–H stretch in CH3F) are even less
satisfactory, as shown in Table 5. A possible clue for this behavior
is provided by recalling that diagonalization of a 2 � 2 matrix puts
square roots into the eigenvalue expressions, leading to a situation
where convergence of the Fourier series for the resulting projected
frequencies may be much slower than convergence of the Fourier
series for the Hessian matrix elements themselves. It can further
be seen from Table 5 that the Fourier coefficients and the residuals
for m2 and m9 are nearly equal and opposite, which also strongly
suggests trying to treat these two vibrations as an interacting pair,
whose initial unperturbed frequencies m0

2; m0
9 and strength of inter-
Table 6
Values for (m2 � m9)2/100 at the top (point 1) and bottom (point 21) of the barrier,
Fourier expansion coefficients a3n for (m2 � m9)2/100, and G03-minus-Fourier-series
values at the 21 points along the MEP, all in cm�2.

Point (m2 � m9)2/100a a0 16.711(8)b

1 0.350 a3 �17.953(11)
21 36.259 a6 1.572(11)

r 0.033
G03-minus-Fourier-series values [cm�2] for (m2 � m9)2/100 at 21 points along
the MEP

1 0.019 8 �0.002 15 0.001
2 0.025c 9 �0.021 16 0.023
3 0.008 10 �0.007 17 0.022
4 �0.004 11 �0.015 18 0.019
5 �0.003 12 0.027 19 �0.098
6 �0.009 13 �0.029 20 �0.454c

7 �0.007 14 0.053 21 0.023

a Values of (m2 � m9)2 have been divided by 100 to make their total variation along
the MEP, i.e., j(value at point 1) � (value at point 21)j, numerically comparable to
the variations in Table 5.

b Fourier expansions have the form
P

na3ncos3nc, where n 6 2 in this table.
Numbers in parentheses indicate one standard uncertainty (k = 1, type A) [27].

c These points were weighted zero in the fits.
action W might be well represented by short Fourier expansions.
The formula for eigenvalues of a 2 � 2 matrix then leads to consid-
ering an expression of the form

E
 ¼ ð1=2Þðm0
2 þ m0

9Þ 
 ð1=2Þ m0
2 � m0

9

� �2 þ 4W2
h i1=2

: ð18Þ

As shown in the last column of Table 5, the average (m2 + m9)/2 can
indeed be fit to 0.02 cm�1 by a three-term Fourier cosine series. (We
note in passing that addition of a cos9c term gives no improvement
to the (m2 + m9)/2 expansion.) Table 6 shows that

ðm2 � m9Þ2 ¼ ðEþ � E�Þ2 ¼ m0
2 � m0

9

� �2 þ 4W2 ð19Þ

can also be fit to a three-term Fourier cosine series with a standard
deviation only slightly worse. (Again, addition of a cos9c term gives
no improvement.) The set of numerical values for (m2 + m9)/2 and
(m2 � m9)2 from G03 could thus, if desired, be replaced by their Fou-
rier expansion coefficients in Tables 5 and 6 with essentially no loss
in precision.

Since m2 is of species A0 and m9 is of species A00 when the mole-
cule has Cs symmetry, W = 0 at the top and bottom of the barrier,
and its Fourier series should be a sine expansion. The 2 � 2 model
of an A1 vibration interacting with an A2 vibration via a sinusoidal-
ly varying interaction during the internal rotation process can then
be pushed further by setting

m0
2ðcÞ ¼ a2;0 þ a2;3 cos 3c ¼ 3186:89600� 13:82250 cos 3c;

m0
9ðcÞ ¼ a9;0 þ a9;3 cos 3c ¼ 3153:83235þ 13:32905 cos 3c;

ð20Þ

where values for the two coefficients in the Fourier expansions of
Eq. (20) are obtained by fitting exactly to the values of m2 and m9

at the top and bottom of the barrier (see Table 5). The Fourier
expansion of the interaction function W(c) can then be obtained
by setting
4 4.66 �0.04
5 6.10 �0.02
6 7.35 �0.02
7 8.42 �0.01
8 9.27 0.00
9 9.83 �0.02

10 10.18 0.00
11 10.23 �0.01
12 10.06 0.04
13 9.51 �0.03
14 8.89 0.07
15 7.85 �0.01
16 6.71 0.02
17 5.36 0.02
18 3.86 0.00
19 1.47c �0.80
20 0.00c �0.63
21 0.00 0.00

a WðcÞ ¼ ð1=2Þ m2ðcÞ � m9ðcÞ½ �2 � m0
2ðcÞ � m0

9ðcÞ
� �2n o1=2

. W at point 20 was
imaginary.

b G03-minus-Fourier-series = W(c) � b3sin3c, from the second equality in Eq.
(21); b3 = 10.246(9), where one standard uncertainty from the least squares fit
(k = 1, type A, Ref. [27]) is given in parentheses.

c Points were excluded from the fit, which gave a standard deviation
r = 0.03 cm�1.

d The average torsional angles corresponding to these 21 points are given in
Table 1.
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WðcÞ ¼ ð1=2Þ m2ðcÞ � m9ðcÞ½ �2 � m0
2ðcÞ � m0

9ðcÞ
� �2

n o1=2

¼
X

n

b3n sin 3nc: ð21Þ

Table 7 shows that a one term expansion in b3sin3c with b3 =
10.246(9) cm�1, represents the square root in Eq. (21) relatively well,
since all residuals are less than 0.08 cm�1, after removal of the first
point after the saddle and the last two points before the minimum.
Unfortunately, adding more sine terms does not decrease the residu-
als, indicating the quantitative limits of this simple 2 � 2 model.

In summary, the very poorly convergent Fourier series for m2(c)
and m9(c) in Table 5 can be replaced by a 2 � 2 interaction matrix
formulation, where Fourier series for the three independent ele-
ments of the 2 � 2 matrix converge rather quickly. The deeper
physical meaning of this empirical fact, as well as the connection
of this 2 � 2 formalism, with its sin3c interaction term, to the
3 � 3 formulation of Perry [3], with its cos(c) and cos(c ± 2p/3)
interaction terms, is not clear at present.

7.4. Gradient vector [3N = 18 functions = �$V(c)]

Gaussian provides the gradient vector expressed in both Carte-
sian components (18 components, Z-matrix orientation, nine digits
after the decimal) and internal coordinate components (12 compo-
nents, six digits after the decimal). As another test of Fourier series
convergence properties, we show in Fig. 3 examples of six compo-
nents of the normalized gradient vector in mass-weighted and sym-
metrized internal coordinates, SG1=2

I AtrfC=jSG1=2
I AtrfCj. The vector fC

was obtained originally from components of the direction of steep-
est descent, given by Gaussian in non-mass-weighted Cartesian
coordinates in the Z-matrix orientation, but it was transformed into
the PAM system before being used in the expression SG1=2

I AtrfC. The
symmetrization matrix S contains rows corresponding to S1, S2 and
S3 in Eqs. (16) and (17) for the stretches dr(C–Hi), bends db(O–C–Hi),
and dihedral angles ds(H-O–C–Hi) of the methyl top. All elements of
the gradient vector have units hartree/u1/2 Bohr. Fig. 3(a) shows the
coefficient of the largest component of the gradient vector, which,
apart from a small cosine dependence on c, turns out as expected
to be near unity and to lie along the torsional coordinate
sHOCH(S1,A2). Fig. 3(b) and (c) gives the next two largest compo-
nents, which are more than 10 times smaller and lie along the bend-
ing bOCH(S3,A2) and rocking bOCH(S2,A1) internal coordinates (see
Tables 3 and 4 of Ref. [2] for the actual bending and rocking vibra-
tional eigenmodes). Fig. 3(d)–(f) shows that components of the
steepest-descent vector along the three stretching coordinates
rOH(A1), rCH(S1,A1) and rCH(S3,A2), which are expected by symmetry
to be a sine, sine, and cosine curve, respectively, are at the noise le-
vel of the present quantum chemistry calculations.

There are two subtle points associated with the normalized gra-
dient vector plots in Fig. 3. The first concerns symmetry properties.
Because V(c) is of species A1, the species of oV/oqi is the same as the
species of qi itself. The species of j$V j is also A1, so that the species
of oV/oqi/j$V j is the same as the species of qi. However, (without
going into full detail), we note that j$V j for our potential surface
has a discontinuous first derivative at points where j$Vj = 0 (just
as jcj has a discontinuous first derivative at c = 0). It turns out that
this discontinuity and a number of unpleasant problems associated
with it, in particular the slow convergence of Fourier expansions in
its vicinity, can be removed if we consider normalized gradient
vector elements of the form (oV/oqi)(sin3c)/j$Vj � jsin3cj, where
(sin3c)/jsin3cj = ±1 is just a variable phase factor that changes sign
whenever j$V j = 0. Since, however, (sin3c)/jsin3cj is of species A2

in G6, the species C of normalized gradient vector elements of the
form (oV/oqi)(sin3c)/j$Vj � jsin3cj are A2 � C(qi), i.e., the symmetry
species of the curves in Fig. 3 are just the opposite of what one at
first expects.
The second subtle point associated with elements of the nor-
malized gradient shown in Fig. 3 concerns the points at the top
and bottom of the barrier, where the gradient is zero. The normal-
ized gradient then takes the form 0/0 and is therefore indetermi-
nate. As discussed in Section 3, the steepest-descent gradient
vector determined in mass-weighted Cartesian coordinates (which
we use here) connects smoothly at the top of the barrier to the
Hessian eigenvector with negative eigenvalue k (and imaginary
frequency / k1/2), and connects smoothly at the bottom of the bar-
rier to the Hessian eigenvector with smallest eigenvalue. We have
therefore used these two eigenvectors in place of the indetermi-
nate quantities $V/j$Vj at the saddle point and at the minimum
of the barrier.
7.5. Vibrational displacements [(3N � 7) � 3N = 11 small-amplitude
vibrations � 18 components di(c) = 198 functions]

Gaussian supplies vibrational displacement vector components
for each projected frequency in non-mass-weighted Cartesian
coordinates (standard orientation and five figures after the deci-
mal). As mentioned earlier, various signs in the eigenvector coeffi-
cients produced by the diagonalization routine are arbitrary, and
they must be adjusted manually at each point along the MEP by
performing suitable C2x, C2y, C2z and/or i operations on the dis-
placements to achieve a smooth point-to-point variation of the
individual displacement-vector components with c. This must then
be followed by a rotation to the principal axis system at each point,
before meaningful Fourier expansions can be attempted.

Table 8 gives a set of Fourier expansion fits for the c-variation of
the vibrational eigenmode atomic displacement vectors in the
principal axis system corresponding to projected frequencies for
the C–O stretch and the H-O–C bend, as well as the RMS of the
fit for each atomic displacement. Similar results were obtained
for the O–H stretch, but are not shown here. As illustrated by the
two modes in Table 8, most of the 54 atomic displacement vectors
for these three modes, which are all ‘‘frame vibrations”, can be rep-
resented along the MEP by their Fourier expansion coefficients to
within a factor of 20 of the expected round-off error of 3 � 10�6

for these five-digit displacements.
On the other hand, the c-variations of displacement vectors

associated with vibrational modes of the methyl-top hydrogens
are not well described by short Fourier series. For example, the m4,
m10, and m5 methyl bending mode displacements require one to
two more terms in their Fourier expansions compared to those
shown in Table 8. The m2 and m9 methyl asymmetric stretch mode
displacements cannot be fit at all, which is almost certainly related
to the bad fits of the individual projected frequencies m2 and m9 de-
scribed in the previous subsection (see Tables 5–7). Even though it
is the c-variation of vibrational eigenmodes for methyl-top vibra-
tions that are intrinsically the most interesting in this study, we
do not attempt to fit these methyl-top-mode displacement vectors
here. Before treating these modes, it will be necessary, in our opin-
ion, to carry out a careful investigation of: (i) mixings like those de-
scribed in connection with the m2/m9 vibrational frequencies in the
previous subsection, and (ii) the (�1) factor multiplying certain
vibrational wavefunctions after 2p rotation of the methyl top,
which is associated with half-integral n values in the Fourier expan-
sions [8] and with the phenomenon of Berry phase [30]. We hope to
make an in-depth study of these questions in the future.
8. Discussion

The main conclusions of this paper concerning the use of ab ini-
tio calculations to aid vibration–torsion–rotation spectroscopic
analyses of methanol-like molecules are the following.
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Fig. 3. Six components of the gradient vector (expressed in symmetrized internal coordinates, as defined by Eqs. (16) and (17)), i.e., six components of the direction of the
steepest descent vector (calculated originally in mass-weighted Cartesian coordinates) at each point along the MEP. Panel (a) shows the coefficient of the torsional coordinate
sHOCH(S1,A2). If the MEP were identical to the torsional motion, as defined by the average HOCH dihedral angle, this coefficient would be constant, with magnitude equal to
unity. In fact it is nearly unity, but has a small cosine dependence. Note also the noisy behavior for points just after the maximum and just before the minimum of the barrier,
presumably associated with numerical difficulties in defining the precise direction of the gradient near stationary points on the potential curve. Panel (b) shows the cosine
variation of the next largest coefficient, which corresponds to the (approximate methyl bending) symmetrized internal coordinate bOCH(S3,A2). Panel (c) shows the sine
variation for the (approximate methyl rocking) symmetrized internal coordinate bOCH(S2,A1). Panels (d)–(f), show components of the steepest-descent vector along the three
stretching coordinates rOH(A1), rCH(S1,A1) and rCH(S3,A2), which are expected by symmetry to be a sine, sine and cosine curve, respectively, but which are in fact at the noise
level of the present quantum chemistry calculations.
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(i) The large-amplitude torsion motion can conveniently be defined
as motion along the path of steepest descent in mass-weighted
Cartesian coordinates, following the recommendations of [12]
and the computational options offered by Gaussian [4], but Fourier
expansions can be carried out using the average dihedral angle c
[9,10] at points along the steepest-descent path, since, to a good
approximation [6], c is linearly related to distance along the steep-
est-descent path. (ii) The Gaussian suite of programs [4] is capable
of delivering: (a) structural information ai(c), (b) potential surface
information V, $V, $$V, and (c) projected small-amplitude vibra-
tional frequency information mj(c) at points c along the steepest-
descent path to levels of self-consistency and absolute accuracy
that make this information potentially useful as an aid to high-
resolution spectroscopic analyses in energy regions exhibiting
extensive vibration–torsion–rotation interactions. Many of the
numerical quantities can be well described by short Fourier expan-
sions in c. (iii) The only part of the Hessian matrix $$V that is use-
ful after transforming to vibration–torsion–rotation coordinates is
the (3N � 7) � (3N � 7) block labeled by the small-amplitude
vibrations (because its diagonalized form yields the projected fre-
quencies). (iv) The task of making Fourier expansions of the vibra-
tional displacement vectors is complicated by both small technical
problems in treating the Gaussian output and larger theoretical
questions.

In view of the good precision and accuracy mentioned above, it
is now reasonable to ask exactly how the available ab initio infor-
mation should be used to help with high-resolution vibration–tor-
sion–rotation analyses. While the detailed answers to this question



Table 8
Fourier expansion coefficients of non-mass-weighted displacement-vector components in the principal axis system, in CH3OH, as determined for the C–O stretch and the C–O–H
bend along the MEP.

x(H) y(H) z(H) x(O) y(O) z(O) x(C) y(C) z(C)

Fourier expansion coefficients for displacements of the H, O, and C frame atoms in Å for the C–O stretcha,b

a0 0.318590(2) 0 (fixed) �0.54091(2) �0.019461(2) 0 (fixed) 0.24422(2) �0.043326(6) 0 (fixed) �0.23965(2)
a3 0.016555(3) 0.0522(3) 0.03315(2) �0.009948(2) 0.00058(2) 0.07419(2) 0.014744(8) �0.008175(4) �0.08719(3)
a6 �0.000038(3) 0.0013(3) 0.00363(2) �0.000772(2) 0.00027(2) 0.00334(2) 0.001469(8) �0.000629(4) �0.00418(3)
a9 �0.000254(3) �0.00021(2) 0.000049(2) 0.00003(2) �0.00082(2) �0.000025(8) �0.000049(4) 0.00094(3)
a12 0.000007(3) �0.00008(2) 0.000015(2) �0.00007(2) 0.000008(4) 0.00009(3)
rc 0.000009 0.0010 0.00007 0.000007 0.00007 0.00007 0.000026 0.000012 0.00008

Fourier expansion coefficients for displacements of the H, O, and C frame atoms in Å for the H-O–C benda,b

a0 �0.241305(2) 0 (fixed) 0.755348(3) 0.0819417(7) 0 (fixed) �0.012614(1) �0.1213202(9) 0 (fixed) �0.040696(2)
a3 �0.003050(2) 0.0446(2) 0.011427(5) �0.000315(1) �0.00047(1) 0.005733(1) 0.004041(1) �0.008632(2) �0.010363(2)
a6 �0.000406(2) 0.001505(5) 0.000049(1) 0.00030(1) 0.000112(1) �0.000019(1) �0.000677(2) �0.000112(2)
a9 �0.000015(2) 0.000104(5) 0.000007(1) 0.000019(1) �0.000015(1) �0.000036(2) �0.000019(2)
rc 0.000006 0.0005 0.000016 0.000003 0.00004 0.000005 0.000004 0.000006 0.000006

x(S1) y(S1) z(S1) x(S2) y(S2) z(S2) x(S3) y(S3) z(S3)

Fourier expansion coefficients for displacements of the three methyl hydrogens in Å for the C–O stretchd,e

a0 0.292195(6) 0 (fixed) �0.27808(2) 0.019809(4) 0 (fixed) 0.54304(2) 0 (fixed) �0.023152(2) 0 (fixed)
a3 �0.019752(9) 0.02072(2) �0.09956(3) �0.053011(5) 0.0416(1) �0.09091(2) �0.0761(1) �0.062101(3) �0.07129(2)
a6 �0.003018(9) 0.00113(2) �0.00398(3) 0.002777(5) �0.0019(1) �0.01096(2) 0.0016(1) 0.000981(3) �0.00584(2)
a9 �0.000123(9) 0.00014(2) 0.00118(3) 0.000197(5) �0.0002(1) �0.00008(2) 0.0003(1) 0.000309(3) �0.00034(2)
a12 0.000062(9) �0.00004(2) 0.00009(3) �0.000022(5) 0.00020(2) 0.000007(3) 0.00011(2)
rc 0.000029 0.00005 0.00009 0.000017 0.00037 0.00008 0.0004 0.000009 0.00006

Fourier expansion coefficients for displacements of the three methyl hydrogens in Å for the H-O–C bendd,e

a0 0.222478(2) 0 (fixed) �0.040765(3) 0.023800(2) 0 (fixed) 0.511296(5) 0 (fixed) 0.0151994(7) 0 (fixed)
a3 �0.023129(3) 0.037876(8) 0.012106(4) �0.123657(2) 0.10972(6) 0.001986(7) �0.14233(5) �0.1272452(9) �0.03002(1)
a6 �0.000091(3) 0.001830(8) �0.001117(4) �0.001110(2) 0.00087(6) �0.000492(7) �0.00061(5) �0.0004509(9) �0.00449(1)
a9 0.000048(3) 0.000085(8) �0.000122(4) �0.000307(2) 0.00023(6) �0.00028(5) �0.0002134(9) �0.00031(1)
a12 0.000006(3) 0.000014(4) �0.000007(2) �0.0000165(9)
rc 0.000009 0.000025 0.000013 0.000008 0.000177 0.000022 0.000164 0.000003 0.00004

a Displacements at all points along the IRC, which are printed out with only six decimal places by G03, have been rotated into their principal axis systems. Since the
molecule has an xz plane of symmetry at the top and bottom of the barrier, the y-displacements of all frame atoms for in-plane vibrations are zero at these two points, but not
at other points along the MEP.

b Fourier expansions for the x and z displacements have the form
P

na3n cos3nc, where n is limited to either 2 or 3 in this table. Fourier expansions for the y-displacements
have the form

P
na3n sin3nc, where n = 0 is not used in the sum. Numbers in parentheses indicate one standard uncertainty (k = 1, type A) [27] from the least-squares fits.

c The standard deviations of the fits are given by r.
d The linear combinations S1, S2 and S3 of the methyl hydrogen displacements used in this table are defined as in Eqs. (16) and (17).
e Fourier expansions for the x and z components of S1 and S2 and for the y component of S3 have the form

P
na3ncos3nc, where n is limited to 3 in this table. Fourier

expansions for the y component of S1 and S2 and for the x and z components of S3 have the form
P

na3nsin3nc, where n = 0 is not used in the sum. Numbers in parentheses
indicate one standard uncertainty (k = 1, type A) [27] from the least-squares fits.
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are not yet known, an important general remark is clear: ab initio
calculations give adiabatic potential surfaces, in the sense that all
interactions arising purely from the potential energy operator have
been taken into account. This means that observed spectroscopic
complications associated with concepts like perturbations, avoided
crossings, intensity borrowings, etc. will have to be explained in
terms of interactions arising from the kinetic energy operator,
i.e., by interactions arising from operators which differentiate the
various adiabatic quantities with respect to the small-amplitude
vibrational displacements and the internal rotation angle c. This
is not a particularly appealing way for spectroscopists to have to
think, since we intuitively prefer to ignore velocity effects and fo-
cus instead on potential energy terms to explain observed spectro-
scopic complications. In short, it is not clear if a many-atom
vibration–torsion–rotation Hamiltonian treatment should proceed
from an adiabatic starting point (i.e., proceed directly from the po-
tential surface information provided by Gaussian), or if some arti-
ficial adiabatic starting point (where many first derivative terms
are small enough to be ignored in any qualitative explanation)
should be constructed.

Another important question concerns the use of rectilinear
coordinates for the small-amplitude vibrations (upon which all of
the work of this paper is based). As discussed in detail elsewhere
[31,32], there is reason to worry that rectilinear coordinates are
not a good zeroth-order starting point for small-amplitude vibra-
tions along a chemical reaction path. Very preliminary consider-
ations suggest, however, that the difficulties discussed in [31,32]
may be less severe along internal rotation MEPs, where the saddle
and minimum differ in energy by only a few hundredths of an eV
(as is the case for the torsional problem in methanol-like mole-
cules), rather than by a few eV (as is the case for typical chemical
reactions).
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