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Abstract

The Gilbert parameter α describing the damping of magnetization dynamics is commonly taken

to be an isotropic scalar. We argue that it is a tensor α that is anisotropic, leading to a dependence

of the damping on both the instantaneous direction of the magnetization M(t) (orientational

anisotropy) and on the direction of rotation of the magnetization (rotational anisotropy). For

small-angle precession of M around a prescribed axis in the crystal, the rotational anisotropy is

averaged out and the damping is determined by an effective damping scalar αeff which depends on

the orientation of the prescribed axis. The quantity αeff of Fe, Ni and Co is calculated for various

orientations as a function of the electronic scattering rate. The calculations are performed by the

ab-initio density functional electron theory within the framework of the torque-correlation model.

The intraband contribution of this model (breathing Fermi surface contribution) is anisotropic for

all scattering rates. In contrast, the interband contribution (bubbling Fermi surface contribution) is

anisotropic only at small scattering rate (τ−1), but becomes increasingly isotropic as τ−1 increases.

Because the latter contribution dominates at high τ−1, each material should exhibit isotropic

damping at sufficiently high τ−1 (i.e., sufficiently high temperatures).

PACS numbers: 75.40.Gb, 76.60.Es, 76.50.+G
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I. INTRODUCTION

In recent years there has been a steadily growing interest in fast magnetization dynam-

ics on time scales between several picoseconds and nanoseconds, especially for micro- and

nanosized magnets because of their potential use in advanced information storage and data

processing devices. Examples are the dynamics of domain walls in nanowires1, the magne-

tization reversal in nanomagnets1 and the dynamics of vortices2. From a theoretical point

of view, most investigations have been simulations based on Gilbert’s equation of motion3

for the magnetization M(r, t),

dM

dt
= −γ(M × Heff) +

1

M
M × α

dM

dt
, (1)

or on extensions of this equation including the effect of spin-polarized transport currents.

In Eq. (1) the first term describes the precession around an effective field Heff (γ is the

gyromagnetic ratio). The second term describes the damping, i.e., the relaxation of the

magnetization direction toward the equilibrium orientation parallel to Heff , and α is the

damping scalar which is typically treated as a scalar constant.

More recently, various theoretical approaches have suggested that for a more realistic

description of the magnetization dynamics Gilbert’s damping term should be replaced by

a more complicated form. For instance, the damping scalar α has been replaced4–11 by a

damping matrix α. This represents a first type of anisotropy of the damping, because it

means that the damping is different for different directions of the change dM/dt of the mag-

netization (rotational anisotropy). Furthermore, it has been proposed5,7–11 that α depends

on the momentary configuration M(r, t). For the case of a collinear system, e.g., this repre-

sents a second type of anisotropy (orientational anisotropy) because the damping depends

on the momentary orientation of M(t). Finally, it has been noted6,8 that in general, e.g.,

for a noncollinear configuration M(r, t), the damping matrix is nonlocal, i.e., it relates the

time-derivative dM(r, t)/dt at site r to the derivatives dM(r′, t)/dt at other sites r′.

The rotational anisotropy is related to the fact that the damping matrix has two nonzero

eigenvalues which are different for an arbitrary orientation of the magnetization in the crys-

tal, and because of the orientational anisotropy both eigenvalues depend on this orientation.

For a magnetization direction which corresponds to a three- or fourfold symmetry direction

of the crystal the two eigenvalues are the same, i.e., there is no rotational anisotropy. In a
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ferromagnetic resonance experiment, the strong external dc field selects a crystal orienta-

tion about which the magnetization vector precesses under the action of an additional small

perpendicular ac field. It has been shown11 that under these circumstances the rotational

anisotropy is averaged out: The FMR linewidth is to a very good approximation described

by an effective damping scalar αeff which is just the arithmetic mean of the two eigenval-

ues for the magnetization direction prescribed by the dc field. Because of the orientational

anisotropy of the two eigenvalues, αeff depends on the orientation of the dc field.

In the present paper we consider the temperature dependence of the anisotropy of αeff .

The anisotropy and its temperature dependence will be different for different physical pro-

cesses leading to damping (a review on different damping mechanisms is given in Ref. 12).

We confine ourselves to the damping due to the creation of electron-hole pairs resulting

from time-dependent spin-orbit interactions and their subsequent relaxation via scattering

at phonons or lattice defects. This process is the dominant damping mechanism in metallic

ferromagnets. The theoretical approaches to describe this mechanism may be subdivided

into two categories: In the first category the damping parameter is determined from the

low-frequency limit of the transverse-spin-response function which is calculated using model

Hamiltonians13,14 or time-dependent spin-density-functional electron theory15. In the second

category7,8,16,17 an effective field for the magnetization dynamics is defined as the variation

of the electronic energy with respect to the magnetization direction, δE/δM. In a static

situation this effective field is equivalent to the magnetocrystalline anisotropy field, whereas

in a nonadiabatic dynamical situation irreversible contributions appear which give rise to

damping. The relation between these two approaches is discussed in Refs. 17 and 18. It is

common to all these approaches that the creation of electron-hole pairs is treated explic-

itly whereas the subsequent relaxation due to scattering at phonons or defects is accounted

for just phenomenologically by a finite lifetime τ of the states entering the electron spectral

functions14,15,17–19 or by a relaxation time for the nonequilibrium occupation numbers for the

electronic states. As a result, the calculated damping contains the lifetime or the relaxation

time as open parameter and can be compared quantitatively with experimental results only

when inserting some estimate for these quantities (e.g., from conductivity measurements).

The above mentioned theories have shown that there are two contributions to damping

originating from the creation of electron-hole pairs, one which is proportional to the electrical

conductivity that decreases with temperature and one which is proportional to the resistivity
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which increases with temperature. In case of Ni these two contributions have been resolved

very clearly in the experiments20 . For the first contribution a generalized Gilbert equation

could be derived (see above) from an effective field approach7,8 for a general trajectory of

M(t) in which the constant Gilbert scalar α is replaced by a matrix α(M(t)) so that both

the rotational and orientational damping anisotropy are included. The calculations for the

second contribution13–15,17,19 consider from the very beginning the reaction of the system for

a special trajectory of M(t), i.e., for the small-angle precession of M(t) around a prescribed

direction, like in a FMR experiment, i.e., they yield the effective damping scalar αeff for that

prescribed direction. In the present paper both the conductivity-like and the resistivity-like

contribution to αeff are calculated. The purpose of this work is to compare the anisotropies

of these two contributions as functions of the scattering rate of the electrons in order to

quantify the validity of neglecting this effect in the analysis of experimental results.

II. DAMPING DUE TO THE CREATION OF ELECTRON-HOLE PAIRS

In some of the formal derivations of the equations for damping the physics underlying the

conductivity-like and the resistivity-like contributions is hard to recognize. Therefore, the

two contributions have been illuminated more clearly by rederiving them from approaches

which are designed in such a way that the underlying physics becomes more apparent17,18.

Before presenting the numerical results of these calculations we want to approach the two

contributions from a further and alternative viewpoint, hoping that this leads to an even

more improved understanding of the physics of damping. Both contributions are related

to the generation of electron-hole pairs by the magnetization dynamics. The subsequent

relaxation of the excited electrons and the holes by scattering at phonons or lattice defects

in general will transfer angular momentum from the spin system to the lattice, and this is

responsible for the damping of the magnetization dynamics. We focus on the physics behind

the generation of the electron-hole pairs; the scattering is accounted for phenomenologically

via a relaxation time τ .

In the following we consider a situation for which the micromagnetic magnetization en-

tering Eq. (1) is homogeneous, i.e., M(r, t) = M(t) = Me(t). Furthermore, we are only

interested in the temporal evolution of the system on the time scale of ns to several ps.

Then M(t) may be obtained from the microscopic spin magnetization density m(r, t) by a
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coarsegraining procedure21,

M(t) = Me(t) =
1

Ω

ν

2

∫
Ω

d3r

∫ t+1/ν

t−1/ν

dt′m(r, t′) (2)

where Ω is the volume of the sample and where the integration in time averages over the

fast magnetic degrees of freedom, i.e., over the fluctuations on a time scale shorter than the

inverse of the frequency ν of a typical long-wavelength spin wave.

For a complete quantum mechanical description of magnetization dissipation, i.e., of the

transfer of angular momentum and energy from the electronic system to the lattice, one

must start from the time-dependent wave equation for electrons and nuclei, involving spin-

orbit coupling which mediates this transfer. Instead, we will describe the situation by an

effective single-electron theory that involves only electrons and holes and that describes the

transfer via scattering of electrons or holes which is accounted for phenomenologically by

the aforementioned lifetime (relaxation time) τ .

We want to approach the problem from two opposing limits, i.e., τ → 0 and τ → ∞. In

the first case (strictly adiabatic situation) the electronic scattering processes are so frequent

that the electronic system is always in its ground state with respect to the momentary

orientation e(t) which can be considered as an external parameter. Then we can define

(e.g., by the solution of the Kohn-Sham equations of the density functional electron theory

for prescribed e(t)) adiabatic single-electron energies εjk(e(t)) where j and k denote the

band index and the wavevector, the corresponding wavefunctions |Ψjk(e(t))〉, the adiabatic

Fermi-Dirac occupation numbers fjk(e(t)) and the adiabatic Fermi surface S(e(t)). Because

of the action of the spin-orbit coupling, all these quantities change in time when e changes

in time, i.e., the Fermi surface will continuously attain a slightly different form (breathing

Fermi surface Fig. 1a). It can be shown by quantum mechanical arguments21 that in the

strictly adiabatic situation there is no damping at all.

For the opposing case, τ → ∞, there are no scattering processes at all and hence again

no damping. The many-electron wavefunction Ψ(s1, s2, . . . sN , t) for the N electrons then

evolves in time coherently according to the time-dependent Schrödinger equation. As initial

condition Ψ(s1, s2, . . . sN , t = 0) we can use, e.g., the adiabatic many-electron wavefunction

for an initial orientation e(t = 0) which does not correspond to a high-symmetry direction

of the crystal. From Ψ(s1, s2, . . . sN , t) we can calculate the microscopic spin-magnetization

m(r, t), from which the momentary e(t) are obtained by use of Eq. (2). From the solu-
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tion of the Kohn-Sham equations for this e(t) the adiabatic quantities εjk(e(t)), Ψjk(e(t)),

fjk(e(t)) and S(e(t)) are determined. Finally, we can represent the many electron wave-

function Ψ(s1, s2, . . . sN , t) by the adiabatic single-electron wavefunctions Ψjk(e(t)). The

occupation numbers njk(t) = 〈Ψ(s1, s2, . . . sN , t)| â†
kj âkj |Ψ(s1, s2, . . . sN , t)〉, where â†

kjâkj is

the particle number operator for the single-electron state (jk), in general will be different

from the adiabatic occupation numbers fjk(e(t)). This occurs because without scattering

the electronic system will be driven away from the adiabatic situation, i.e., there will be a

generation of excited electrons and holes when we consider the strictly adiabatic situation

as the corresponding momentary reference situation.

In a realistic situation there are scattering processes which require a finite time (i.e., τ

is nonzero and finite) and which tend to drive the occupation numbers njk(t) toward the

adiabatic occupation numbers fjk(t) by a relaxation of the electron-hole pairs. We thereby

can distinguish between pairs for which the electrons and holes appear in the same adiabatic

band, respectively, and pairs for which electrons and holes are generated by transitions

between different bands. To illustrate the physical reason for the generation of these two

types of pairs it is convenient to consider the situation from the viewpoint of the hypothetical

adiabatic reference situation. The first type is generated because the spin orbit energy of each

adiabatic single electron state changes when e(t) varies in time. Some states which were just

below the Fermi surface for time t−dt get pushed above the Fermi surface for time t, whereas

other states which were originally above are pushed below. For very frequent scattering

processes the real many-electron wavefunction would evolve adiabatically, i.e., njk(t) =

fjk(t), and there would be no damping at all (see above). For finite τ , however, the actual

occupation numbers njk(t) lag behind the adiabatic occupation numbers fjk(t). Therefore

it may be that at time t some of the adiabatic states which were originally occupied at time

t− dt and which would be empty in an adiabatic situation are still occupied, whereas some

other states which should be occupied are still empty (Fig. 1b). The intraband relaxation

of these electron-hole pairs leads to the transfer of angular momentum from the spin system

to the lattice. This so-called intraband or breathing Fermi surface contribution7,8,16–19 to

damping increases linearly with τ and thus represents the conductivity-like term. The second

type of pairs is generated because the system of adiabatic single-electron wavefunctions Ψjk

feels a time-dependent perturbation due to the changing spin-orbit interaction, and this

leads to band transitions between the adiabatic states Ψjk(e(t)) and Ψj′k(e(t)) (The initial
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and final states have the same wavevector k because the transitions are caused by the

uniform mode e(t) which has a wavevector of zero.). Thereby, the number of final states

accessible by the perturbation increases with decreasing τ due to the lifetime broadening

of the states (Fig. 1b), and it turns out that this so-called17 interband or bubbling Fermi

surface contribution to damping increases monotonically with 1/τ and hence represents the

resistivity-like term. It has been shown in Refs. 17,18 that the breathing and the bubbling

Fermi surface contributions obtained from the physical reasonings of this paragraph are

identical to the intraband and interband contributions of Kamberský’s torque correlation

model14.

III. RESULTS FOR THE ANISOTROPY OF THE EFFECTIVE DAMPING CON-

STANT αeff

Figure 2 shows results for Fe, Ni and Co for the effective damping constant αeff as a func-

tion of the inverse lifetime τ−1 for various directions of the prescribed axis around which the

magnetization vector precesses. As discussed in section I, for the high-symmetry directions

(which are 〈001〉 and 〈111〉 in Fe and Ni, and 〈0001〉 in Co) the two eigenvalues of the

damping matrix are the same and thus αeff is identical to that eigenvalue. We present the

total, intraband, and interband contribution of Kamberský’s torque correlation model as

calculated by the linear augmented plane wave method in the local spin density approxima-

tion (details of the calculation are given in Ref. 18). It becomes obvious from Fig. 2 that for

small τ−1 the conductivity-like contribution dominates whereas for increasing temperature

the resistivity-like contribution takes over, so that the damping exhibits a minimum. What-

ever the relation τ(T ), the calculated minimum can be compared directly and quantitatively

with the experimentally measured minimum. It has been shown in Ref. 18 that for Fe 〈001〉

and Ni 〈111〉 these two values agree rather well, demonstrating that the torque correlation

model accounts for the dominant contribution to damping in these systems. The present

objective is to compare the orientational anisotropy of αeff of the intra- and interband con-

tributions. Since the electron scattering rate τ−1 increases with the number of thermally

excited phonons, the results give a qualitative sense for the temperature dependence of the

anisotropy of the damping.

Calculations of αeff were performed for a number of orientations, but for the purposes of
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clarity results for only a few of these orientations are presented in Fig. 2. The present findings

corroborate previous work that investigated the orientational anisotropy of the eigenvalues

of the conductivity-like contribution to the damping parameter. We find here that the

orientational anisotropy present in these eigenvalues is maintained in the conductivity-like

contribution of the rotationally averaged αeff and that this anisotropy persists for all τ−1.

The conductivity-like contribution to αeff for all directions tested in Fe and Ni was bounded

by the values for the high-symmetry directions, while for Co the high-symmetry direction

yielded the minimal αeff of all orientations tested.

While the conductivity-like contribution is anisotropic for all τ−1, the anisotropy of the

resistivity-like contribution decreases with increasing τ−1 (i.e., with increasing temperature).

Anisotropy of the resistivity-like contribution arises when the number of interband transi-

tions that occur for a given lifetime broadening of the states is different for the bandstructure

belonging to one orientation than for the bandstructure belonging to another orientation.

When the lifetime broadening is much larger than the energy differences that occur when

switching between orientations, then equally many transitions are allowed for the different

orientations, i.e., the damping becomes isotropic.

IV. CONCLUSIONS

To conclude, we have shown that the conductivity-like contribution to magnetization

damping is anisotropic for all scattering rates τ−1 whereas the anisotropy of the resistivity-

like contribution decreases with increasing τ−1. The anisotropy of the resistivity-like con-

tribution decreases as the thermal energy becomes comparable to the spin-orbit energy.

Therefore, any system will exhibit an isotropic damping at sufficiently high scattering rates.

Whether intrinsic damping is isotropic at room temperature depends on the details of the

band structure and the strength of the spin-orbit coupling of the material under considera-

tion. For Ni (for which both the conductivity-like and the resistivity-like contribution could

be resolved experimentally20) an anisotropy of the linewidth of ferromagnetic resonance FMR

has been observed for low temperatures, giving a hint to anisotropic damping, whereas other

materials did not show a clear indication for an anisotropic intrinsic FMR linewidth (see

Ref. 11 and Refs. therein). We suspect that the anisotropy of αeff would be more prominent

in systems with stronger spin-orbit coupling, such as magnetic semiconductors.
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11 J. Seib, D. Steiauf, and M. Fähnle, Phys. Rev. B 79, 092418 (2009).

12 B. Heinrich, Ultrathin Magnetic Structures III (Springer, New York, 2005).

13 V. Korenman and R.E. Prange, Phys. Rev. B 6, 2769 (1972).
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FIG. 1: A sketch of the adiabatic Fermi surface S for time t − dt and time t (Fig. 1a, left part).

In a strictly adiabatic situation the yellow states are occupied only at time t − dt, the red states

are occupied only at time t, whereas the blue states are occupied at both times. Fig. 1b (right

part) shows a sketch of the adiabatic bandstructure εjk(t) along the direction in k-space indicated

by the horizontal dashed line in Fig. 1a. For a realistic situation where the njk lag behind the fjk

there may be some yellow states which should be empty in a strictly adiabatic situation but which

are occupied in a realistic situation. Furthermore, there may be some red states which should be

occupied but which are still empty. In Fig. 1b there is also a sketch for the interband transitions.
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FIG. 2: The effective damping parameter αeff for Fe (top), Ni (middle) and Co (bottom) vs. elec-

tron scattering rate τ−1, for various orientations of the prescribed axis around which the small-

angle precession of the magnetization vector takes place. Full lines: total damping, dashed lines:

conductivity-like contribution, dotted lines: resistivity-like contribution.
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