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A procedure is introduced that can mitigate the deleteri-
ous effect of low-frequency noisesoften termed driftson
the precision of an analytical experiment. This procedure
offers several performance benefits over traditional de-
signs based on the periodic measurement of standards
to diagnose and correct for variation in instrument re-
sponse. Using repeated measurements of every sample
as a drift diagnostic, as opposed to requiring the periodic
measurement of any given sample or standard, the analyst
can better budget the measurement time to be devoted to
each sample, distributing it to optimize the uncertainty
of the analytical result. The drift is diagnosed from the
repeated measurements, a model of the instrument
response drift is constructed, and the data are corrected
to a “drift-free” condition. This drift-free condition allows
data to be accumulated over long periods of time with little
or no loss in precision due to drift. More than 10-fold
precision enhancements of analytical atomic emission
results have been observed, with no statistically significant
effects on the means. The procedure is described,
performance data are presented, and matters regarding
the procedure are discussed.

Analytical instruments transduce chemical properties to a
signal, which is accompanied by noise. This noise will have a
power spectrum encompassing many frequencies, all of which
obscure the analytical signal. The frequency distribution of the
noise will have different effects on a practical analysis: for our
purposes, we can define high-frequency noise as noise that results
in a poor signal-to-noise ratio for the measurement of a given
sample, and low-frequency noise as noise that results in a poor
signal-to-noise ratio for repeated measurements of a given sample.
High-frequency noise is commonly treated in several fashions,
including time-correlated internal standardization.1 Low-frequency
noise is often called driftsa slowly varying change in instrument
background or sensitivity. Various filtering schemes (analog or
digital) have been applied to both high2 and low-frequency
noise,3-5 with varying degrees of general applicability. Treatment
of drift is most often performed by periodic reestablishment of
the relationship between measured signal and chemical

compositionsrecalibration.6 Recalibration approaches demand
extra time spent measuring the standard, time that would be better
spent measuring samples. Presented here is a more efficient,
simple, high-performance drift correction approach that should
have general utility for precision chemical metrology.

It is useful here to represent the measured signal as a true
signal perturbed by high- and low-frequency noise, as defined
above:

where Smeasured is the measured signal, Struth is the true signal, εnoise

is the high-frequency noise, and εdrift is the low-frequency noise,
or drift.

In a drifting system (one dominated by low-frequency noise,
εdrift > εnoise), time is also an enemy of the measurement; depending
on the rate of drift, a “get-in-and-get-out” approach (where the
experiment is designed to take as short a time as possible) may
yield more robust results, since the magnitude of the drift is
limited by the experiment duration. For precision measurements
with well-characterized uncertainties, long integration times (a
simple method for low-pass filtering) and replicate measurements
are often required, demanding long experiment times. In such
scenarios, system drift often puts a lower limit on the measure-
ment precision that can be attained, either by determining the
maximum permissible experiment time or by its contribution to
measurement variability.

Consider an example where five samples are to be analyzed,
with five replicate measurements, using an external standard
approach for calibration. In a drifting system, the analyst might
choose the traditional experimental design that alternates mea-
surement of the standard and the samples, illustrated in the upper
section of Figure 1. This design requires as many as 50
measurements to analyze these samples when adjacent standards
are used to calibrate a given sample. Such a design compensates
for drift simply by frequent recalibration. A more sophisticated
use of this type of design exploits the change in response of the
measurements of the standard to infer instrument response at the
time the sample was measured, through some sort of interpolation.
Some efficiency may be gained, with some sacrifice in responsive-
ness to drift, by measuring more samples between repeated
measurements of the standard.

We introduce here a more efficient and effective procedure
designed to be optimally responsive to system drift, which places
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fewer demands on the run order of samples and standards and
which permits efficient distribution of measurement time for the
samples and standards. A simple analysis of this procedure relies
on the premise that εdrift is some relatively smooth function of time
that is independent of what samples are being measured. Equa-
tion 1 is used to estimate a time trend representing εdrift by
separating the noise sources from an estimate of Struth. This
estimate of εdrift as a function of time, εdrift(t), is then used to correct
the measured data to a nominally “drift-free” condition. For each
sample, the grand mean of the individual signals Smeasured(t),
Ŝmeasured, is used as the estimate of Struth, and the deviations of the
individual Smeasured values from Ŝmeasured are used as an estimate of
εdrift + εnoise. The separation of these noise terms is performed
by fitting a smooth curve to the deviations, where the curve is
the estimate of εdrift(t), and the residuals of the fit are an estimate
of εnoise. The drift-corrected signals are calculated by adding the
estimated drift, εdrift(t), to the measured signals Smeasured(t), yielding
a corrected series of signals, Smeasured

0 (t).
This procedure requires that replicate measurements are

performed on all samples and standards in order to obtain Ŝmeasured,
an estimate of Struth. A already noted, this is a common practice
when precise analytical results are desired. The fitted model of
εdrift is based on all the measurements, regardless of what is being
measured (any standard or sample with sufficient a signal-to-noise
ratio that the condition εdrift > εnoise is met). This approach uses
both the standards and the samples as diagnostics of the system
drift, while the traditional approach uses only the periodic
measurements of the calibration standard as the diagnostic.

The lower part of Figure 1 depicts the experiment design for
our example of five samples using this more efficient drift
correction approach. Not only is the experiment shorter in
elapsed time, which allows less time for drift to occur, but this is
a more efficient way to distribute measurement time between the
samples and the standards. The flexibility permitted by this drift
correction approach allows the analyst to budget more efficiently
the time spent determining the calibration relationship (i.e.,
measuring standards) and the time spent measuring samples.

Multiplicative Drift. The discussion to this point assumes
that the drift is additivesthat the magnitude of the perturbation
is independent of the signal level. This is typical of a system with
a drifting baseline or offset. Equation 1 describes this type of
drift. Equation 2 models multiplicative drift, which is dependent

on signal level. This is typical of a system with drifting sensitivity,
or calibration curve slope. Because different samples (hence
different signal levels) are being used to characterize the drift,
this method requires that the signal drift be characterized as either
additive or multiplicative. When the drift is additive, as presented
in eq 1, it is modeled directly from the deviations. When the drift
is multiplicative, as in eq 2, the deviations are mean scaled (made
into relative deviations), and the drift is modeled from these
relative deviations.

For multiplicative drift, we again use Ŝmeasured as an estimate
of Struth, and the mean scaled deviations, Smeasured/Ŝmeasured, are fitted
to a smooth function, εdrift(t), permitting the series Smeasured(t) to
be corrected as in eq 3.

Implementation. Development of this drift correction pro-
cedure resulted from the need for a precise method for the value
assignment of analyte mass fraction in single-element spectro-
metric solution Standard Reference Materials (SRMs). These
materials are intended to be used as primary standards for
calibrant preparation for determination of elemental composition.
Inductively coupled plasma-optical emission spectroscopy (ICP-
OES) was selected for its broad elemental coverage, relative
simplicity, and performance capabilities. Our laboratory had
previous, successful, experience with ICP-OES in a similar
application, using a dual internal standard approach to help
compensate for drift.7 Long experiment times are required to
minimize and accurately assess uncertainties, and instrument drift
is the limit to precision.

The value assignment experiment relies on the comparison of
standards prepared from different source materials, under different
conditions, with potentially different levels and species of impuri-
ties, in different quantities, and by different analysts. The ability
to distinguish between solutions that are close in composition is
directly related to the precision of the measurement, which can
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Figure 1. Experiment designs for the traditional drift correction through recalibration approach and the proposed, efficient drift correction
approach.

Smeasured ) Struth (1 + εdrift + εnoise) (2)

Smeasured
0 ) [Ŝmeasured (1 - εdrift(t))] + Smeasured (3)
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be considered as the concentration resolution of the experiment.
The target relative uncertainty for the value assignment is 0.3%,
precision performance more typically expected from classical
methods.

Though developed for ICP-OES, this method should be
applicable to any system where the high-frequency noise is small
enough that drift dominates the precision, allowing the drift to
be well characterized. A general scheme for application of the
procedure is as follows:

(1) Design the experiment measurement run order to include
repeated measurements of samples and standards that exhibit
signal much greater than the detection limit.

(2) Measure the set of samples and standards.
(3) Select whether the drift to be corrected is additive or

multiplicative (use eq 1 or eq 2).
(4) Calculate means for each sample and standard (Ŝmeasured).
(5) Calculate deviations. These are calculated as Smeasured -

Ŝmeasured if the drift is additive, and as Smeasured/Ŝmeasured if the drift
is multiplicative.

(6) Plot time series of deviations; select and fit model (for
example, select order of polynomial, perform least-squares estima-
tion). Model selection and fitting should be performed with good
scientific and statistical practice.8

(7) Calculate corrections for individual samples. For additive
drift, these corrections are directly predicted from the fitted
function εdrift(t), and for multiplicative drift, the correction is
Ŝmeasured(1 - εdrift(t)).

(8) Calculate “drift-free” time series of signals by adding
corrections to measured signals, Smeasured(t).

EXPERIMENTAL SECTION
We present two examples of this drift correction procedure

applied to high precision ICP-OES measurement of single-element
solutions. The ICP-OES instrument used in this experiment is a
Perkin-Elmer Optima 3000 XL, an axial-view ICP with solid-state
array detection and an integrated Perkin-Elmer AS-91 autosam-
pler.9 Data processing is performed external to the instrument
software, in a spreadsheet program. All measurements are
performed with time-correlated, or “real-time,” internal standard-
ization.1 This is made possible through the explicit selection of
the integration times to be used for the measurement of the
different spectral regions for the analyte and the internal standard.
The concentration ratio of the analyte and internal standard must
also be chosen to allow such fixed-time integration, typically
selected to yield photoelectron count rates within a factor of 2 for
the lines of interest and permitting high signal-to-noise ratio
measurements for both signals.

The two long-duration experiments each measured six different
zirconium solution samples. In each experiment, three samples
are aliquots of a single solution (being evaluated for solution
homogeneity) and three are different comparison standards. The
experiment design employs duplicate preparations (dilution and

addition of internal standard) of each of these six solutions to
permit distinction between preparation effects and statistically
significant differences among the six different Zr solutions. This
experiment design is schematically described in Figure 2. The
shapes used here are used throughout the following figures, with
the different shapes indicating the different samples and the open
or dotted shape indicating the different preparations.

The solutions were prepared for analysis gravimetrically,
diluting the ∼10 mg g-1 Zr solutions to ∼10 µg g-1 in two stages
of about 32:1. Yttrium, used as the internal standard element for
zirconium, was added at the second stage, mixed with the 2% (v/
v) HNO3 diluent, to ∼10 µg g-1. An artifact of the gravimetric
dilution procedure is that the internal standard is present at a
slightly different level in each solution. However, the relative
amounts of internal standard are well-known and the measured
signal ratios are corrected for these differences, accounting for
the mutual dilution of analyte and internal standard. The
experimental parameters and operating conditions are summarized
in Table 1, which has three sections describing the spectroscopic,
ICP, and measurement parameters.

ICP signal quantitation was performed in “peak integration”
mode, using four-pixel summation under the peak, with two-point
background correction. Typical signal levels were on the order

(8) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical
Recipes in C, 2nd ed.; Cambridge University Press: Cambridge, 1992;
Chapter 15.

(9) To adequately describe experimental procedures, it is occasionally necessary
to identify commercial products by manufacturer’s name or label. In no
instance does such identification imply endorsement by the National Institute
of Standards and Technology, nor does it imply that the particular products
or equipment are necessarily the best available for that purpose.

Figure 2. Schematic representation of the experiment design. The
different symbol shapes denote different solutions; open and dotted
symbols of the same shape are from different sample preparations.
Circles, squares, and upward-pointing triangles are aliquots of a single
solution, downward-pointing triangles, diamonds, and hexagons are
three different solutions.

Table 1. ICP-OES Experiment Parameters and
Operating Conditions

Spectroscopic Parameters
analyte Zr
analyte wavelength 343.823 nm
analyte excitation energy 84221 cm-1

internal standard Y
internal standard wavelength 360.073
internal standard excitation

energy
79241 cm-1

ICP Parameters
plasma flow 15 L min-1

auxiliary flow 0.5 L min-1

nebulizer flow 0.8 L min-1

sample uptake 1 mL min-1

power 1300 W

Measurement Parameters
signal measurement mode peak integration, high-resolution readout
integration time manual, 20 ms
measurement time 10 s (sum of 500 20-ms integrations)
replicate measurements 10
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of 1.5 × 106 to 3 × 106 counts s-1, and background levels were
less than 1% of the signal.

RESULTS AND DISCUSSION
The results from the two long-duration experiments are

presented to illustrate the performance of the drift correction
procedure and the ability, after drift correction, to detect very small
differences between samples. These data are corrected for
multiplicative drift, as the spectral background correction em-
ployed eliminates baseline effects.

The observed instrumental performance is well suited to this
drift correction procedure because the short-term precision of the
Zr/Y intensity ratio is excellent, averaging 0.02% relative standard
deviation in both experiments. In the first example, the drift in
the Zr/Y intensity ratio was (0.4% over a period of more than 9
h. In the second example, the drift in the Zr/Y intensity ratio
was (2.3% over a period of more than 13.7 h.

The different panels of Figure 3 illustrate the stages of the
drift correction procedure and make clear the ability to deduce
different information about the samples at each stage. Figure 3a
is a time trend of the measured ratios of Zr signal to Y signal, the
“raw” data. See Figure 2 for the symbol descriptions. At this
stage of data treatment, the variation in the ratio levels is due to
the variation in both the “parent” sample and the amount of
dilution (which effects both the analyte and the internal standard
level). Figure 3b depicts the time trend of the Zr/Y ratios,
corrected for dilution. This time trend is the Smeasured data for
this experiment. In this panel, the drift behavior is obvious, as is
its sample-to-sample correlated nature. This correlation is a clear
signature of instrument drift. The different levels of the different
solutions are also evident, with the six solutions derived from the
samples of the SRM solution clustered together (implying
homogeneity) and with the preparation-to-preparation effect also
evident. These same data are also summarized in Figure 4a,
which shows box plots of the dilution-corrected results for the
samples in this experiment, over the duration of the experiment.
When assessed in this manner (or with summary statistics), the
drift is sufficient to obfuscate the subtle, yet present, preparation-
to-preparation effect.

Figure 3c shows the ratio of these data to their sample means,
and a quartic polynomial fitted to these data. This time series is
the estimate of the sum of relative perturbations, εdrift + εnoise, while
the fitted polynomial is an estimate of εdrift, the multiplicative drift
observed in this experiment. Finally, Figure 3d displays the Zr/Y
ratios corrected for both dilution and drift, using the multiplicative
quartic model to estimate and remove drift as a function of time.
These data show more clearly a preparation-to-preparation effect
than the data before drift correction. Though some variability in
level remains, pairwise comparisons of duplicate preparations of
the same solutions exhibit the same level relationship (dotted
greater than open, or vice versa). The data in Figure 3b, before
drift correction, do not behave this way, rather they seem to track
the drift. These data are summarized in the box plots of Figure
4b, where the narrowing of the distributions of the data is apparent
in comparison to Figure 4a, as is the ability to detect the
preparation effect. As a practical matter, when detectable, this
preparation-to-preparation effect is the “floor” of the precision in
our experiment. Further improvement in the precision of instru-

mental measurements will not improve the precision of the
analytical result. In this experiment, the precision before drift
correction averages 0.059% relative standard deviation of the mean,
and after drift correction, the average precision is 0.014% relative

Figure 3. Data transformation through the stages of the first
experiment. See Figure 2 for description of the symbols. (a) Zr/Y
signal ratios as measured. (b) Zr/Y signal ratios corrected for sample
dilution. (c) Noise, drift, and drift model in the Zr/Y ratios. (d) Zr/Y
signal ratios corrected for sample dilution and drift.
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standard deviation of the mean. This is a more than 4-fold
improvement.

A second experiment is presented in a manner identical to the
first, to illustrate both a more significant drift correction improve-
ment, and system drift of somewhat different behavior. Different
preparations of the solutions were analyzed in this experiment,
and the results are presented in Figures 5 and 6. Here, the drift
was monotonic, and a quadratic polynomial was fitted as the
model. There are missing data for several of the solutions because
the solutions were consumed before the experiment ran its course.
Notable in Figure 5d is the correlated fluctuation remaining in
the results after drift correction. Despite this imperfect removal
of system drift, significant precision improvement was attained.
The precision before drift correction was 0.39% relative standard
deviation of the mean, and after drift correction it was 0.031%
relative standard deviation of the mean. This is a greater than
12-fold improvement.

The results in Figures 4 and 6 dramatically demonstrate the
enhanced concentration resolution available when this drift
correction procedure is used. More chemical information about
the samples is available. Samples that would otherwise be
statistically indistinguishable are now resolved into their different
concentration levels.

Uncertainty Estimates. Upon careful consideration, this
approach demanded examination of the uncertainty estimates for
the drift-corrected data. It is to be expected that there is a sample-

to-sample covariance introduced by the determination of the drift
correction from multiple samples. Additionally, application of the
drift model uses degrees of freedom for the model parameters. A
first approach to estimating uncertainty in the drift-corrected mean

Figure 4. Box plots of Zr signal ratios for first experiment. See
Figure 2 for description of the symbols. (a) Distribution of signal ratios
before drift correction and (b) distribution of signal ratios after drift
correction.

Figure 5. Data transformation through the stages of the second
experiment. See Figure 2 for description of the symbols. (a) Zr/Y
signal ratios as measured. (b) Zr/Y signal ratios corrected for sample
dilution. (c) Noise, drift, and drift model in the Zr/Y ratios. (d) Zr/Y
signal ratios corrected for sample dilution and drift.
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will assume the covariance is negligible. This has been our
experience, evidenced by the fact that the sample means show
no statistically significant shifts from before to after drift correc-
tion. A heuristic approach to account for the loss of degrees of
freedom is to correct the variance of the drift-corrected means.

When the variance of the mean of a sample population is
estimated, the divisor used is the degrees of freedom, typically
N-1, where N is the number of measurements. N - 1 is used to
account for the fact that the mean (used in the numerator) is
determined from the data, and not independently.10 So, to estimate
conservatively the standard deviation of the drift-corrected data,
the degrees of freedom must be corrected by the number of
parameters used in the estimate of the drift-corrected mean, now
not merely the average, but in fact, dependent upon the value of
a polynomial. The polynomial is determined from a large number
of data, in our example cases N ) 120. The correction for the
number of parameters using a quartic polynomial drift model is a
factor of (1/120)1/2/(1/115)1/2, or 1.02. So long as there are many
more data than parameters used to fit the model, the correction
is in fact negligible. A more statistically rigorous approach to
estimating the uncertainties in the drift-corrected means, including
induced uncertainty from covariance, is based on a regression
approach which will be described in further work.

General Considerations. As the second experiment dem-
onstrates, modeling the drift as a low-order polynomial is not ideal

for every experiment. We have observed simple behavior, such
as that depicted here, as well as more complex behavior.
Functions with many more inflection points may be required to
model the observed drift in experiments of longer duration or with
less stable instruments. The low-order polynomial modeling used
here was selected for its intuitive clarity and its readily understood
statistical treatment.

Higher-order polynomials or splines are easily computed and
applied, but there is the pitfall of overfitting, and as discussed
above, the use of excess degrees of freedom limits the precision
improvement that can be attained. Nonparametric models are a
more general solution to the drift model. Approaches such as a
moving average or a more robust method such as LOWESS11 are
excellent candidates for drift modeling. Regardless of the model-
ing approach, the ability to estimate the number of fitting
parameters is a requirement to properly estimate the standard
deviation of the drift-corrected data.

Two other considerations are worthy of note: the time spacing
of the measurements derived from the experiment run order and
the effects of outliers on the drift correction. Both of these
considerations have the potential to induce small biases in what
is already a relatively small correction (not more than a couple of
percent in the examples presented here).

Because the drift diagnostic is mean-based, the time spacing
of the repeated measurements of a sample can effect the drift
model. If a sample is measured more times while the instrument
signal is climbing, its mean may be biased high relative to a
sample that is measured more frequently while the system is
drifting down. For this reason, after a run order is established
for the samples to be measured (typically randomized), this same
order is used for the repeated measurements from which the
means are derived. This helps to ensure that sample spacing is
distributed evenly over the entire experiment duration and,
hopefully, evenly over the drift behavior. Subtle effects will still
occur, especially if the system is drifting faster at some times than
others and if there are strong slope changes in the drift behavior
within the duration of a single measurement of the samples.

Outlier effects also affect the drift correction by biasing the
sample means, from which the drift diagnostic is calculated. We
have found the procedure to be robust with respect to outliers
when there are a reasonable number of repeated measurements
and samples (on the order of five repeated measurements and
five samples). In these cases, the outlier effect on the sample
mean and the drift model is minimized. Though we have noted
outliers in our data, we have noticed no significant effects in the
drift-corrected data as a result of their presence.

CONCLUSIONS
The drift correction approach presented here is effective in

reducing the uncertainty of the results of a comparison of solutions
with ICP-OES. The procedure is simple and should prove to be
generally useful in any analytical methodology where the precision
of the results is detrimentally effected by system drift. We have
demonstrated that this procedure permits the use of ICP-OES at
a level of precision that was previously expected only from the
classical methodsstitrimetry and gravimetrysor from isotope
dilution measurements.

(10) Bevington, P. R.; Robinson, D. K. Data Reduction and Error Analysis for the
Physical Sciences, 2nd ed.; McGraw-Hill: New York, 1992; p 11. (11) Cleveland, W. S. J. Am. Stat. Assoc. 1979, 74, 829-836.

Figure 6. Box plots of Zr results for second experiment. (a)
Distribution of signal ratios before drift correction and (b) distribution
of signal ratios after drift correction.
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This drift correction approach is efficient and effective. It has
allowed our laboratory to extend the capabilities of an existing
instrumental technique, ICP-OES, to a problem that requires
precision heretofore unavailable from a non-isotope-dilution in-
strumental measurement. Application of this approach to other
techniques should yield similar enhancements.

Extension of this procedure to experimentally characterize drift
as additive or multiplicative, and to adapt it to circumstances where
the drift is a mix of these types, will be presented in a subsequent

study. This extension will be based on the comparison of the
measured results for different dilutions of a given sample. The
signal relationships for multiple dilutions will be compared to the
dilution relationships, allowing the separation of additive and
multiplicative components.
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