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Statistical strength of experiments to reject local realism with photon pairs and inefficient detectors
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Because of the fundamental importance of Bell’s theorem, a loophole-free demonstration of a violation of
local realism (LR) is highly desirable. Here, we study violations of LR involving photon pairs. We quantify
the experimental evidence against LR by using measures of statistical strength related to the Kullback-Leibler
(KL) divergence, as suggested by van Dam et al. [W. van Dam, R. D. Gill, and P. D. Grunwald, IEEE Trans.
Inf. Theory. 51, 2812 (2005)]. Specifically, we analyze a test of LR with entangled states created from two
independent polarized photons passing through a polarizing beam splitter. We numerically study the detection
efficiency required to achieve a specified statistical strength for the rejection of LR depending on whether photon
counters or detectors are used. Based on our results, we find that a test of LR free of the detection loophole
requires photon counters with efficiencies of at least 89.71%, or photon detectors with efficiencies of at least
91.11%. For comparison, we also perform this analysis with ideal unbalanced Bell states, which are known to
allow rejection of LR with detector efficiencies above 2/3.
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I. INTRODUCTION

In 1964, J. Bell first showed that the predictions of quantum
mechanics contradict those of any theory based on local
hidden variables [1]. Such theories are called “local realistic
theories,” and the principle they are based on is called “local
realism” (LR). To disprove local realistic theories, Bell and
others constructed the Bell inequalities. These inequalities
are satisfied by all the predictions of local realistic theories,
but are violated by some predictions of quantum mechanics
(see Refs. [2–4] for reviews). The most famous and easiest
to test is the Clauser-Horne-Shimony-Holt (CHSH) inequality
[5]. To test this inequality, each of two parties—Alice and
Bob—receives one particle from a common source. Each of
them performs one of two possible measurements randomly
and independently on their own particle and records the
outcome. This procedure is repeated a large number of times.
At the end, Alice and Bob test the CHSH inequality by
analyzing their joint measurement outcomes. A test of LR
showing violation was first realized by Freedman and Clauser
in [6]. Since then, many such tests have been performed, which
show that quantum mechanics contradicts LR. For a review,
see Ref. [7]. However, all tests of LR thus far have required
supplementary assumptions. (We assume without saying that
tests of LR are intended to show violations of LR.) These
additional assumptions introduce two loopholes: the detection
loophole [8] and the locality loophole [9].

The detection loophole is introduced when correlated pairs
are detected with imperfect detectors [8]. If the detection
efficiencies are sufficiently low, then it is possible for the
subensemble of detected pairs to give results violating LR,
even though the entire ensemble is consistent with LR. To close
this loophole, highly efficient detectors are required, as shown
in Refs. [10–14]. The locality loophole arises when there is
the possibility of a causal connection between the event where
the measurement setting is chosen at one site and the event
where the measurement outcome is recorded on the other [9].
Closing this loophole requires first that the choices of local

measurements should be made randomly and independently,
and second that the distance between different parts of the
experiment should be large enough to prevent light-speed
communication between one observer’s measurement choice
and the result of the other observer’s measurement.

To date, no single experiment has closed both the detection
loophole and the locality loophole. An experiment carried out
on trapped ions closed the detection loophole [15], but the
ions were only a few micrometers apart, so this experiment
did not close the locality loophole. There have been photonic
experiments addressing the locality loophole [16–18]. Yet
due to low photon detection efficiency, photonic experiments
have not closed the detection loophole. A loophole-free test
of LR would not only show that some quantum systems
cannot be described by a local realistic theory, but would also
show that a family of quantum communication protocols are
secure even for causal adversaries not limited by the laws of
quantum mechanics [19–21]. Hence, it is desirable to realize
an experiment that can demonstrate a loophole-free violation
of LR.

Previous results show that closure of the detection loophole
requires a minimum detection efficiency of 82.85% when Bell
states are used [10]. With unbalanced Bell states of the form
cos(θ )|00〉 + sin(θ )|11〉, the minimum detection efficiency
approaches 2/3 as θ goes to 0 [11]. Recently, a new type
of photon counter with high detection efficiency (∼95%) was
demonstrated [22], making a loophole-free test of LR very
promising.

Here, we study the possibility of testing LR with a source
of entangled states created from two independent polarized
photons passing through a polarizing beam splitter. Similar
sources are used in Refs. [23–25]. We call this source the
“independent inputs” source. Although this source does not
produce balanced or unbalanced Bell pairs (see below), it
does create some entanglement. An advantage of this source
is that the input photons do not need to be entangled. The
two independent polarized photons can be generated by
spontaneous parametric down-conversion (SPDC) in nonlinear
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crystals [23–25], or by other single-photon sources being
developed such as atoms, ions, molecules, solid-state quantum
dots, or nitrogen-vacancy centers in diamond [26,27]. The
states of the two photons can be detected by photon counters or
photon detectors. (We use the term “photon detector” to refer
to detectors that determine only the presence or absence of
photons, not their number.) Since experimenters can gain more
information with photon counters than with simple photon
detectors, we expect that photon counters make violation of
LR more detectable. We also expect that photon counters can
mitigate the influence of the effectively unentangled part of
the state. Our results show that it is possible to perform a test
of LR free of the detection loophole using the independent
inputs source, assuming that the detection efficiency of photon
counters (photon detectors) is at least 89.71% (at least 91.11%,
respectively), showing a small advantage for photon counters.
Furthermore, we numerically quantify the statistical strength
of such a test of LR as a function of the counter or detector
efficiency and state parameters. For comparison, we obtain
the same information for an ideal source of unbalanced Bell
states. This makes it possible to estimate the minimum number
of experiments required to gain reasonable confidence in
rejecting LR, as this number is inversely related to statistical
strength.

In Sec. II, we briefly describe the experimental scheme that
we analyze. In Sec. III, we point out the deficiencies of the
most commonly used method for quantifying violation of LR
and summarize the method based on Kullback-Leibler (KL)
divergence proposed in Ref. [28]. We present our results in
Sec. IV. Finally in Sec. V, we conclude.

II. EXPERIMENTAL CONFIGURATION

Here we consider a test of LR using pairs of matched
polarized photons. The two photons can be generated by an
SPDC process [23–25] in the weak-pumping regime, although
single-photon sources could be used [26,27]. Given such
photon pairs, they can be processed as shown in Fig. 1 to
produce a state that can violate LR.

Consider a pair of photons arriving in modes 1 and 2 of
Fig. 1 in the state

|ψ〉12 = |H 〉1|H 〉2, (1)

where H (V) denotes horizontal (vertical) polarization. We set
the polarization rotators PR1 and PR2 to the same angle to
produce the state

|ψ ′〉12 = (α|H 〉1 + β|V 〉1)(α|H 〉2 + β|V 〉2), (2)

where |α|2 + |β|2 = 1. After polarizing beam splitter PBS1,
we get the “pseudo-Bell” state

|ψpB〉 = α2|H 〉3|H 〉4 + β2|V 〉3|V 〉4

+αβ|H 〉3|V 〉3 + αβ|H 〉4|V 〉4. (3)

Using these states, we can perform a test of LR. Motivated by
the result of Eberhard [11], we investigate the possibility of
reducing the minimum detection efficiency required to close
the detection loophole in a test of LR by changing the values
of α and β in Eq. (3).

When we set |α| = |β| = 1/
√

2 in Eq. (3) and condition
on coincidence postselection, we may treat the pseudo-Bell
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FIG. 1. Schematic of a test of LR with the independent photons
source. Two spatially and temporally matched polarized photons are
inserted at 1 and 2. The polarization rotators PR1 and PR2 are set so
that photons 1 and 2 are linearly polarized at equal angles when they
reach the polarizing beam splitter PBS1. After PBS1, the photons
are in a nonmaximally entangled state [see Eq. (3)] and are sent to
Alice’s and Bob’s detector setups. Each detector setup uses a PR, a
PBS, and two detectors. The PR is used to select measurement bases
by rotating the photon’s polarization state.

state as a maximally entangled state, as in the experiments
reported in Refs. [23–25]. This postselection process discards
events where both photons leave PBS1 in the same direction,
effectively projecting onto a Bell state. However, the discarded
events may create another loophole similar to the detection
loophole for tests of LR [29,30]. To close this loophole,
the entire pattern of experimental data must be included
when evaluating the terms of a Bell inequality [31]. Here,
we also use all data without postselection, but instead of
obtaining a violation of a Bell inequality, we quantify the
experimental evidence against all local realistic theories by
means of measures derived from the KL divergence.

III. DATA ANALYSIS METHOD

Contradictions between experimental results and LR are
often shown by the violation of a Bell inequality, such as the
CHSH inequality [5]

E(Â1, B̂1) − E(Â1, B̂2) + E(Â2, B̂1) + E(Â2, B̂2) � 2, (4)

where the terms E(Âa, B̂b) are correlations between Alice’s
and Bob’s measurements at settings Âa and B̂b, a, b ∈ {1, 2}.
Following this approach, the departure of an experiment’s
results from LR is typically given in terms of the number
of standard deviations separating the experimental value of
the left-hand side of the CHSH inequality from the upper
bound of this inequality, which is 2. Of course, for any
finite set of data, there is a small probability that a system
governed by LR could also violate the inequality. The standard
deviation partially characterizes the measurement uncertainty
due to a finite number of trials, but it does not consider the
probability that a local realistic system could also violate
the inequality. Because such a system’s (non-)violation can
have larger standard deviations, the experimental standard
deviation may suggest more confidence in rejecting LR than
justified. To avoid this problem, we apply a method proposed

032117-2



STATISTICAL STRENGTH OF EXPERIMENTS TO REJECT . . . PHYSICAL REVIEW A 81, 032117 (2010)

by van Dam et al. [28]. In this method, the statistical strength
of a test of LR is characterized by the KL divergence from the
experimental statistics to the best prediction by local realistic
theories. The method is justified by the observation that the
confidence at which the experimental data violate LR is closely
related to this KL divergence [32].

To better understand the approach based on the KL
divergence, it is helpful to analyze tests of LR in terms
of a two-player game. The two players are the quantum
experimenter QM and the theoretician LRT who wants
LR to prevail. During the test of LR, given a source of
quantum states, experimenter QM can randomly change the
measurement settings. After a large number N of trials, QM
obtains empirical frequencies q of measurement settings and
outcomes from the experimental data, which, hopefully, are
consistent with the quantum prediction and violate LR. At the
same time, knowing the state preparation procedure and the
distribution of measurement settings but not the actual settings
or outcomes, LRT can design all kinds of different local
realistic theories, predicting different probability distributions
p for the settings and outcomes. (We are assuming that state
preparation protocols and measurement setting distributions
are not changed during the experiment.) The goal is to make
p as consistent as possible with the eventually obtained
frequencies q. This requires minimizing a distance between
the QM’s frequencies q and LRT’s prediction p. Following the
argument in Ref. [28], this distance can be measured by the
KL divergence from q to p, as defined by

DKL(q ‖ p) =
K∑

k=1

L∑
l=1

qkl log2

(
qkl

pkl

)
, (5)

where k is the measurement setting index, K is the number of
different measurement settings, l is the measurement outcome
index, and L is the number of different measurement outcomes
under each measurement setting. For example, in the test of
the CHSH inequality using photon pairs maximally entangled
in polarization, k denotes one of the measurement settings
(Â1, B̂1), (Â1, B̂2), (Â2, B̂1), or (Â2, B̂2), and so K = 2 × 2 =
4; l denotes one of the outcomes (H, H), (H, V), (V, H), or (V,
V) (assuming perfect detection) and so L = 2 × 2 = 4.

The KL divergence has the property that DKL(q ‖ p) � 0,
with equality if and only if p = q. Since there are many
different local realistic theories, LRT has the freedom to choose
the best one p(s), namely, the one that minimizes the KL
divergence. We can then define a distance from q to the best
local realistic theory according to

DKL
(
q ‖ p(s)

) = min
p∈P

DKL(q ‖ p), (6)

where P is the set of local realistic theories. Likewise, QM
also has the freedom to choose different measurement settings
and setting distributions so that the best local realistic theory
explains the experimental data poorly. Hence, the general
problem is to determine the maximum statistical strength S

of tests of LR subject to experimental constraints, which is
defined to be

S ≡ DKL
(
q(s) ‖ p(s)

) = max
q∈Q

min
p∈P

DKL(q ‖ p), (7)

where q(s) is an optimal quantum strategy maximizing Eq. (6),
and Q is the set of accessible quantum strategies. The statistical
strength is asymptotically related to the p-value for rejection of
LR. There is a statistical test such that if S > 0, then for almost
all infinite sequences of outcomes of independent experiments,
the p-value after N experiments is bounded by

pN = 2−NS+o(N), (8)

where o(N ) is a data-dependent term that goes to 0 as
N → ∞ [32]. No statistical test can have a better asymptotic
p-value. Because 1 − pN can be thought of as a confidence in
rejecting LR, the statistical strength S quantifies the asymptotic
rate at which confidence is gained. In particular, the number
of experiments required to have reasonable confidence in
rejecting LR is necessarily greater than 1/S.

LRT’s effort to minimize the KL divergence as in Eq. (6) is
a maximum likelihood estimation problem. Here, we use the
expectation-maximization algorithm in Ref. [33]. The general
problem of computing the statistical strength S is nontrivial. To
calculate S, we maximize Eq. (6) over measurement settings
with standard nonlinear optimization techniques.

To calculate the statistical strength of a test of LR, we
need to learn how LRT predicts the measurement results given
the state preparation procedure and possible measurement
settings. Suppose that for a bipartite system with nA × nB

measurement settings there are dA outcomes for each of
nA measurement settings at Alice’s side, and there are dB

outcomes for each of nB measurement settings at Bob’s side.
Then the local realistic description implies the existence of a
single joint probability distribution over a d

nA

A × d
nB

B -element
event space, which we write as

PLR
(
a1, . . . , anA

; b1, . . . , bnB
|Â1, . . . , ÂnA

; B̂1, . . . , B̂nB

)
,

(9)

where a1, . . . , anA
∈ {1, 2, . . . , dA}, and b1, . . . , bnB

∈
{1, 2, . . . , dB}, with normalization

dA∑
a1,...,anA

=1

dB∑
b1,...,bnB

=1

PLR
(
a1, . . . , anA

; b1, . . . , bnB
|Â1, . . . , ÂnA

; B̂1, . . . , B̂nB

) = 1.

(10)

Hence, the marginal probability for the measurement outcome
(ai ; bj ) when settings Âi and B̂j are chosen is given by

PLR(ai ; bj |Âi ; B̂j )

=
dA∑

a1,...,ai−1,ai+1,...,anA
=1

dB∑
b1,...,bj−1,bj+1,...,bnB

=1

PLR
(
a1, . . . , anA

; b1, . . . , bnB

∣∣Â1, . . . , ÂnA
;B̂1, . . . ,B̂nB

)
.

(11)

Since the probabilities PLR(ai ; bj |Âi ; B̂j ) are constrained to
be marginal distributions, they satisfy nontrivial relationships.
The goal of a test of LR is to choose states and settings that
result in quantum predictions that cannot be obtained as the
marginals of a single local realistic theory for all i and j .
The quantum-mechanical prediction of the probability is given
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by Pqm(ai ; bj |Âi ; B̂j ) = Tr[ρO(ai ; bj |Âi ; B̂j )], where ρ is the
density matrix of the quantum state, and O(ai ; bj |Âi ; B̂j )
is the positive operator valued measure (POVM) element
corresponding to the measurement outcome (ai ; bj ) when
Alice and Bob use settings Âi and B̂j , respectively. Given
the distributions of measurement settings chosen by Alice and
Bob, the KL divergence measures the statistical distance of the
optimal local realistic theory from the quantum predictions as
in Eq. (6).

IV. RESULTS AND DISCUSSION

We consider tests of LR using the independent inputs source
for pseudo-Bell pairs and tests using unbalanced Bell pairs.
In both cases, Alice and Bob use measurement devices like
those shown in Fig. 1. They use either counters or detectors
for photon detection, and they independently and uniformly
randomly choose one of two measurement settings each,
where the settings are determined by the polarization rotators.
We use Bloch-sphere Euler angles as explained below to
define the measurement settings. We label the measurement
settings Â1 and Â2 (Alice) or B̂1 and B̂2 (Bob) and write the
two-photon state coming in at modes 3 and 4 in Fig. 1 as |ψ〉AB .
We calculate the statistical strength S according to Eq. (7)
by maximizing over the angles of the measurement settings
{Â1, Â2, B̂1, B̂2} and minimizing over the set of local realistic
theories P, where we fix the two-photon state |ψ〉AB shared
by Alice and Bob. The inner minimization as implemented
guarantees convergence to the optimum p(s), whereas the outer
one obtains a local optimum. Confidence in global optimality
can be obtained by repetition from many different starting
points (which we have done) or more sophisticated search
strategies. A local optimum satisfying S > 0 is sufficient for
having found a detection-loophole-free test. On the other
hand, finding no solution with S > 0 is heuristic evidence
that such a test does not exist subject to the constraints of
the experiment. Thus, with this optimization strategy, we can
trace the boundary of the region for which S > 0 (by searching
for where S decreases to 0) to heuristically determine the
minimum detection efficiency ηmin and the associated optimal
measurement settings {Â1min, Â2min, B̂1min, B̂2min} needed to
perform a test of LR of this type free of the detection loophole
with a given state.

Note that as S → 0, the number of experiments required
to gain confidence close to unity diverges. For a con-
stant rate of gaining confidence [see the explanation below
Eq. (8)], we set the desired statistical strength S = X > 0
and determine the minimum detection efficiency ηc and the
associated optimal measurement settings {Â1c, Â2c, B̂1c, B̂2c}
that achieve statistical strength X. The strategy for finding
such solutions {ηc, Â1c, Â2c, B̂1c, B̂2c} is as follows: First we
start with a set of solutions {ηold, Â1old, Â2old, B̂1old, B̂2old}
having statistical strength Xold � X. Second we optimize
Eq. (6) over the measurement settings {Â1, Â2, B̂1, B̂2} with
fixed detection efficiency ηold, which yields new settings
{Â1new, Â2new, B̂1new, B̂2new} achieving S = Y (Y � Xold) for
efficiency ηold. Third, we decrease the detection efficiency
from ηold to ηnew as much as we can without reducing
the statistical strength to below X, so that this new set

of solutions {ηnew, Â1new, Â2new, B̂1new, B̂2new} has S = Xnew

with Xnew close to X (within numerical error). We then
repeat the above procedure several times, replacing the
old with the new solutions, until we are unable to reduce
the efficiency parameter. We thus find heuristically optimal
solutions {ηc, Â1c, Â2c, B̂1c, B̂2c}.

First, we analyze unbalanced Bell states of the form

|ψuB〉 = cos(θ )|H 〉A|H 〉B + sin(θ )|V 〉A|V 〉B, (12)

where θ ∈ (0, π/4]. Note that whether there is a relative
phase ei�φ between the second and first terms of Eq. (12)
is not important, since Alice can always adjust her polar-
ization basis, i.e., |H 〉A → |H 〉A, and |V 〉A → e−i�φ|V 〉A,
to put the state in the above form. In principle, the state
|ψuB〉 can be simulated by postselection on the state |ψpB〉
[Eq. (3)], although this introduces a loophole, as mentioned
earlier. Experimental techniques to prepare |ψuB〉 without
postselection have been demonstrated and applied to tests
of LR [35,36]. Here we calculate the statistical strength for
photon detectors. Photon counters have no advantage over
photon detectors here, because no more than one photon
arrives at Alice’s or Bob’s detectors. That is, counters and
detectors have the same possibilities for detection outcomes
and with the same probabilities. Our optimization results are
summarized in Table I and Fig. 2. The measurement angle
αi,min (or βj,min) shown in Table I is the angle from the z

axis of the polarization state of an incoming photon that gets
reflected at PBS2 (or PBS3) in Fig. 1, where we use the Bloch
sphere representation for this state. By convention, |H 〉 and

1√
2
(|H 〉 + |V 〉) are polarization states associated with the z

and x axes, respectively. In general, we let the “unhatted”
form of the measurement setting denote twice the traceless
part of this reflected state’s density matrix, or equivalently, the
measurement operator that describes the effect of the PR, PBS,
and ideal detector combination on single photon states. For ex-
ample, Aic = cos(αic)σz + sin(αic)[cos(φic)σx + sin(φic)σy].

TABLE I. Extreme conditions for tests of LR free of the
detection loophole for photon counters or photon detectors using
the unbalanced Bell states |ψuB〉 defined in Eq. (12). The asymptotic
behavior when θ → 0 is consistent with results in Ref. [34], which
are shown in the last row. The angle parameters are explained in the
text.

θ α1min α2min β1min β2min ηmin

45◦ 22.50◦ −67.50◦ −22.50◦ 67.50◦ 82.85%
40◦ 21.28◦ −66.89◦ −21.28◦ 66.89◦ 80.61%
35◦ 19.40◦ −65.60◦ −19.40◦ 65.60◦ 78.50%
30◦ 17.00◦ −63.58◦ −17.00◦ 63.58◦ 76.50%
25◦ 14.21◦ −60.72◦ −14.21◦ 60.72◦ 74.60%
20◦ 11.14◦ −56.79◦ −11.14◦ 56.79◦ 72.81%
15◦ 7.92◦ −51.42◦ −7.92◦ 51.42◦ 71.12%
10◦ 4.70◦ −43.88◦ −4.70◦ 43.88◦ 69.53%
5◦ 1.81◦ −32.41◦ −1.81◦ 32.41◦ 68.06%
4◦ 1.32◦ −29.25◦ −1.32◦ 29.25◦ 67.78%
3◦ 0.87◦ −25.55◦ −0.87◦ 25.55◦ 67.52%
2◦ 0.48◦ −21.04◦ −0.48◦ 21.04◦ 67.27%
1◦ 0.17◦ −15.01◦ −0.17◦ 15.01◦ 67.06%
→ 0 0 → −2θ1/2 0 → 2θ1/2 → 2/3

032117-4



STATISTICAL STRENGTH OF EXPERIMENTS TO REJECT . . . PHYSICAL REVIEW A 81, 032117 (2010)

0 5 10 15 20 25 30 35 40 45
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

θ

η c

e

2/3

c

b

d

(deg)

a

a: 0   b: 1E-6   c: 1E-5   d: 1E-4   e: 1E-3

FIG. 2. Detection efficiency of photon counters or photon detec-
tors required for different statistical strength levels S vs the parameter
θ [Eq. (12)]. The empty squares show our calculated points, and the
dotted lines are linear interpolations to guide the eyes. In curve a, the
linear extrapolation toward θ = 0 is shown.

The optimizations show heuristically that we can take φic = 0
everywhere; i.e., all the optimal measurement settings lie in
the (x, z) plane of the Bloch sphere, an observation which has
been proven for several special cases [37–39].

From Table I, we can see that when the statistical strength
S approaches 0, αi,min = −βi,min for i = 1, 2. The minimum
detection efficiency ηmin decreases monotonically with the
parameter θ in |ψuB〉 and is 82.85% when θ = π/4, where the
state is a Bell state. It approaches 2/3 when θ approaches 0,
where the state is very close to a product state. These results are
consistent with previous results [10,11]. From Fig. 2, we can
see how the optimal statistical strength increases for η > ηmin

and how the input state must change to achieve this statistical
strength. Note that not all unbalanced Bell states can achieve
a given statistical strength level S > 0, even for η = 1. For
example, for S � 10−4, the parameter θ must be greater than
0.98◦. Associated measurement settings can be found in the
tables of the online supplementary material [40].

We now consider the pseudo-Bell states of Eq. (3). Let
α = cos(γ ) and β = sin(γ )eiφ , then Eq. (3) can be rewritten as

|ψpB〉 = cos2(γ )|H 〉3|H 〉4 + sin2(γ )ei2φ|V 〉3|V 〉4

+ cos(γ ) sin(γ )eiφ(|H 〉3|V 〉3 + |H 〉4|V 〉4), (13)

where γ ∈ (0, π/4], and φ ∈ [0, 2π ). We can prepare different
pseudo-Bell states by changing the values of both γ and φ.
However, for a given γ , as the following discussion shows, the
optimal statistical strength S is the same regardless of the value
of φ. In the test of LR as shown in Fig. 1, Alice’s and Bob’s
measurements are restricted to polarization rotation followed
by photon counting. They cannot detect coherences between
any two of the first two, the third, and the last terms in the state
|ψpB〉 as written in Eq. (13), because these terms correspond
to different photon-number-distribution subspaces. Hence, the
measurement outcomes determined by |ψpB〉 are equivalent to
the outcomes given by a mixture of the following two states:

|ψ1〉〈ψ1|, with |ψ1〉 ∝ cos2(γ )|H 〉3|H 〉4

+ sin2(γ )ei2φ|V 〉3|V 〉4, (14)

and

ρ2 ∝ |H 〉3|V 〉3 3〈H |3〈V | + |H 〉4|V 〉4 4〈H |4〈V |. (15)

Since the state |ψ1〉 can be written in the form |ψuB〉 as in
Eq. (12) by changing the mode labels and the state bases,
the measurement outcomes attributable to |ψ1〉 can reveal a
violation of LR when γ ∈ (0, π/4], as our earlier results show.
But ρ2 is a separable state, and so the outcomes attributable to
ρ2 can be explained by LR no matter what the measurement set-
tings {Â1, Â2, B̂1, B̂2} are. Hence, in a test of LR, the informa-
tion about whether LR is or is not violated is conveyed only by
the outcomes from |ψ1〉, while the state ρ2 acts as noise. Based
on these considerations and the earlier arguments about being
able to eliminate a potential phase in |ψuB〉, we do not need
to consider different phases φ in the pseudo-Bell state |ψpB〉
when calculating the optimal statistical strength S, so we can
choose a fixed value, such as φ = 0. Moreover, we determined
heuristically by extended optimizations in selected cases that
the optimal measurement settings {Â1c, Â2c, B̂1c, B̂2c} can be
chosen to lie in the (x, z) plane of the Bloch sphere, just like for
|ψuB〉. Taking these observations into account reduces the num-
ber of free parameters and speeds up the general calculations.

The optimization results for pseudo-Bell states are sum-
marized in Table II and Fig. 3. Similar to unbalanced Bell
states, Table II shows that when the statistical strength S

approaches 0, αi,min = −βi,min for i = 1, 2. Figure 3 shows
that there is a lower bound on the state parameter γ to achieve
a nonzero statistical strength level S. Measurement settings for
the data shown in Fig. 3 are given in the online supplementary
material [40].

Table II and Fig. 3(a) show that the minimum detection
efficiency ηmin required to close the detection loophole
achieves its minimum in the interior of the domain, in contrast
to what was found for the case of unbalanced Bell states.
We might have expected this behavior based on the following
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FIG. 3. Detection efficiencies of photon counters and photon
detectors required for different statistical strength levels S vs the
parameter γ of the pseudo-Bell state of Eq. (13): (a) S = 0, (b) S =
5E-5, (c) S = 5E-4, and (d) S = 1.5E-3. The calculated points are
labeled by squares for photon counters and by diamonds for photon
detectors, and the dotted lines are linear interpolations to guide the
eyes.
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TABLE II. Extreme conditions for tests of LR free of the detection loophole for photon counters and photon detectors using the pseudo-Bell
states of Eq. (13). The angle parameters are explained in the text.

Photon counter Photon detector

γ α1min α2min β1min β2min ηmin α1min α2min β1min β2min ηmin

45◦ 22.50◦ −67.50◦ −22.50◦ 67.50◦ 90.62% 11.64◦ −63.88◦ −11.64◦ 63.88◦ 92.23%
40◦ 20.49◦ −66.01◦ −20.49◦ 66.01◦ 89.71% 11.08◦ −62.79◦ −11.08◦ 62.79◦ 91.31%
35◦ 16.76◦ −62.14◦ −16.76◦ 62.14◦ 89.78% 9.79◦ −59.60◦ −9.79◦ 59.60◦ 91.11%
30◦ 12.32◦ −56.16◦ −12.32◦ 56.16◦ 90.80% 7.93◦ −54.42◦ −7.93◦ 54.42◦ 91.71%
25◦ 8.00◦ −48.43◦ −8.00◦ 48.43◦ 92.57% 5.73◦ −47.46◦ −5.73◦ 47.46◦ 93.05%
20◦ 4.43◦ −39.49◦ −4.43◦ 39.49◦ 94.71% 3.53◦ −39.09◦ −3.53◦ 39.09◦ 94.89%
15◦ 1.96◦ −29.88◦ −1.96◦ 29.88◦ 96.81% 1.68◦ −29.76◦ −1.68◦ 29.76◦ 96.85%
10◦ 0.59◦ −19.98◦ −0.59◦ 19.98◦ 98.52% 0.54◦ −19.96◦ −0.54◦ 19.96◦ 98.53%
5◦ 0.07◦ −10.00◦ −0.07◦ 10.00◦ 99.63% 0.07◦ −10.00◦ −0.07◦ 10.00◦ 99.63%

observations: First, with respect to the detector setups used,
the state |ψpB〉 can be thought of as the state |ψuB〉 with noise,
as pointed out above, and second, the violation of LR given by
|ψuB〉 is very sensitive to noise, particularly when θ [Eq. (12)]
is small [14]. Figure 3(a) also suggests that any pseudo-Bell
state |ψpB〉 can violate LR using counters or detectors with
sufficient efficiency.

When we look at the minimum detection efficiency required
to achieve a given statistical strength level S, the efficiencies
of photon counters and photon detectors are notably different,
showing the utility of the additional information available
with photon counters. The advantage of photon counters is
most notable for γ between approximately 35◦ and 45◦. In
particular, the minimum detection efficiency ηmin is 89.71%
for photon counters and 91.11% for photon detectors and is
achieved for γ in this range. Loosely speaking, this advantage
is because photon counters are better at differentiating between
measurement outcomes contributed by the entangled (|ψ1〉)
and unentangled (ρ2) parts of the state |ψpB〉.

A comparison of Figs. 2 and 3 suggests that higher effi-
ciencies are required to achieve given statistical strengths with
|ψpB〉 than with |ψuB〉. This again can be attributed to the noise
added by ρ2 to measurement outcomes, which reduces the sta-
tistical strength considerably. As an explicit example, consider
the optimal statistical strengths S(1) or S(2) achievable with

|ψuB(θ = π/4)〉 = 1√
2

(|H 〉A|H 〉B + |V 〉A|V 〉B), (16)

or with

|ψpB(γ = π/4, φ = 0)〉
= 1

2 (|H 〉3|H 〉4 + |V 〉3|V 〉4 + |H 〉3|V 〉3 + |H 〉4|V 〉4).

(17)

We find that S(1) = 2S(2) ≈ 0.04627 for perfect photon
counters. The ratio can be explained by observing that half
of the measurement outcomes of |ψpB(γ = π/4, φ = 0)〉 are
from the separable ρ2.

V. CONCLUSION

We have demonstrated a method to measure the statistical
strength of tests of LR that is based on the KL divergence from
the predicted experimental frequencies to the best prediction

given by LR. This method helps to design a loophole-free
test of LR and quantifies the confidence in violation of LR
for sufficiently large experimental data sets. We used the
method to determine optimal statistical strengths of tests of LR
using a typical detector setup for polarized photon pairs with
inefficient detectors. We considered both ideal unbalanced
Bell states and pseudo-Bell states obtained by combining
independent polarized photons on a polarizing beam splitter.
Creating the latter can be easier [23–25], but observing a
violation of LR requires higher detection efficiencies. Our
calculations show that with pseudo-Bell states, we can close
the detection loophole with a minimum detection efficiency
of 89.71% using photon counters or 91.11% using photon
detectors. For unbalanced Bell states, we confirmed previous
calculations [11] showing that violations of LR are possible at
detection efficiencies above 2/3. Furthermore, we numerically
exhibited the relationships between state parameters and
minimum detection efficiencies needed to achieve given levels
of statistical strength. Given that the current roadblock for
performing loophole-free tests of LR with photons is detection
inefficiency rather than the difficulty of obtaining an entangled
source, we cannot recommend using the pseudo-Bell state for
such an experiment.

In current experiments based on spontaneous parametric
down-conversion to produce entangled photon pairs, we must
consider other sources of potentially unwanted measurement
outcomes. Such sources include dark counts and the generation
of more than one photon pair [41,42]. The latter effect can be
quite noticeable, particularly for the brighter, more strongly
pumped sources. Further work is required to analyze the
consequences of these effects for statistical strength. It is also
desirable to obtain rigorous confidence levels for the rejection
of LR with moderately sized data sets. Such levels could
improve on measures derived from experimental standard
deviations of Bell-inequality violation.
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