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Abstract—We present methodology and preliminary results of
a Monte-Carlo simulation to perform a quantified analysis of
regularized deconvolution in the context of full waveform metrol-
ogy. We analyze the behavior of different regularized inversion
methods with varying dimensionless parameters that serve as
indicators of the problem difficulty, including: the ratio of input
pulse duration to that of the system impulse response, signal to
noise ratio, pulse shape, and/or the ratio of high frequency roll-
off of input to system response. We characterize the waveform
estimates in terms of pulse parameters and total error, comparing
different Tikhonov deconvolution algorithms as well as commonly
used heuristic approaches. We present a quantitative comparison
of the relative merits of the different procedures, and compare
the numerical performance with asymptotic analyses.

I. INTRODUCTION

Waveforms constitute the currency of modern, data-
intensive communications.1 As such, and as data-rates and
waveform complexity increase, the problem of waveform
measurement is receiving increased interest and relevance.

A waveform is defined as, “A representation of a signal,
for example, a graph, plot, oscilloscope presentation, discrete
time series, equation, or table of values”, where a signal
is, “[a] physical phenomenon that is a function of time”
[1]. Predominantly engineers have employed waveform pa-
rameter metrology to characterize signals of interest. Under
this paradigm pulse parameters must first be defined; see for
example the IEEE standard [1]. Waveform parameter metrol-
ogy then consists of techniques for estimating the central
values of these parameters and their associated uncertainties
from measured waveforms. Parameter estimation techniques
differ in the ways they account for the finite response time
(“finite bandwidth”) of the measurement device. One example
is the root-sum-of-squares (RSS) estimation of the transition
duration (see [2]).

The characterization of a waveform by a collection of wave-
form parameters entails a collapse of information; subtleties of
waveform shape are necessarily lost. For example, there are
infinitely many step-like functions with any given transition
duration. When these steps are measured as part of an eye-
mask test, some of these functions may pass while others
fail. Increasingly, the complexity of waveform aberrations that
engineers must control requires more detailed measurement of
underlying waveform shapes. The loss of information entailed

1This work is a contribution of the National Institute of Standards and
Technology and is not subject to copyright in the United States.

by waveform parameter metrology is no longer acceptable and
a new paradigm is required.

At NIST we have responded to this need by developing
a new waveform measurement capability referred to as full
waveform metrology. This paradigm has as its goal an estimate
of the central value and associated uncertainty of the entire
waveform as a function of time. To do so requires that corre-
lations between uncertainties in the time-domain be accounted
for, as these correlations, although small in magnitude in the
time domain, can add in phase to produce strong signatures in
the frequency domain (for example, see [3], [4], and [5]). In
principle the full waveform metrology paradigm is desirable
as a universal referent; any waveform parameter analysis may
be derived from a full waveform measurement combined with
uncertainty propagation rules, as in [5] and [6]. However, the
increased measurement and computational requirements of the
full waveform paradigm incur a significantly higher burden on
waveform measurement analysis.

One of the more delicate analysis procedures is the de-
convolution of the measurement system response from the
measured waveform. Deconvolution is a common problem
arising in signal processing, image analysis, as well as several
biomedical applications. As is well known, deconvolution is
ill-posed and requires regularization to control noise ampli-
fication. The literature on regularization is large. It includes
discussion of diverse regularized inversion frameworks as well
as competing strategies for selecting the parameters appearing
in these frameworks. Furthermore, asymptotic analysis exists
where limits are taken with respect to large sample size,
small noise, or combination of both. From the perspective
of quantitative analysis of realistic, non-asymptotic measure-
ment scenarios, much of this literature is inadequate. Studies
between competing regularization frameworks or parameter
selection strategies are rarely attempted. This fact has been
noted in, for example, [7] and [8]. In the few cases where
comparisons are attempted, the analysis is often not quanti-
tative or the sample sizes are insufficient to make statistical
claims about relevant strengths and weaknesses. 2 Concerning
the theoretical asymptotic analysis, much of this is of limited

2A notable exception is the recent quantitative comparison of parameter
selection strategies in the context of optical topography for biomedical
applications [9]. The quantitative, simulation-based approach taken in that
work is similar to ours albeit for a different application entailing, in turn,
different constraints and accuracy goals.

978-1-4244-2833-5/10/$25.00 ©2010 IEEE



quantitative value. In our laboratory practice the signal to noise
ratio (SNR) is between 102 and 105, and the dimensionality
of the problem is typically between 500 and 5000. Although
we can use the asymptotic arguments as heuristics, they are
generally not suitable for reliable quantitative guidance in our
measurement context.

In this work we present preliminary results of a simulation-
based study designed for quantitative analysis and compar-
ison of regularized deconvolution strategies for full wave-
form metrology. For compatibility with waveform parameter
metrology, we present quantitative analysis of the effects of
deconvolution on waveform parameters. The design variables
of our study include dimensionless ratios such as the ratio
of input pulse duration to system impulse response duration,
signal to noise ratio, as well as variation in pulse shapes.
These ratios are varied systematically over a range of realistic
values. We characterize the estimates of the deconvolved input
waveform in terms of the duration and amplitude, and in
terms of a full waveform error norm. We compare estimates
obtained by different analytical procedures, including use of
the as-measured waveform, the root sum of squares “rule of
thumb”, and by Tikhonov deconvolution with two different
regularization parameter selectors. Finally, we draw conclu-
sions regarding the relative merits of the different procedures.

II. WAVEFORM METROLOGY

A. Convolution and noise model

We investigate the problem of using a calibrated system to
measure the impulse response function of another measure-
ment device under test. We model ideal waveform measure-
ment as a convolution,

y∗(t) =
∫ ∞

0

a(s)x∗(t− s)ds.

Here a is the system response function of the calibrated
device, and x∗ and y∗ are, respectively, the input waveform
and ideal measurement for device under test. The asterisk
subscripts on the waveforms denote ideal quantities. In prac-
tice we measure waveforms at N discrete times, for example
y∗ := (y∗(t0), . . . , y∗(tN−1))T . In the present analysis we
assume equi-spaced times, tn := t0 + n∆t, and negligible
jitter.

For the numerical experiments below we replace the con-
tinuous, linear convolution above with a discrete, periodic
approximation. More precisely, the integral kernel is replaced
by a matrix operator

y∗ = Ax∗, (1)

where the matrix A is circulant. In our context, the con-
volution kernel a(t) is an oscilloscope response function
and is designed to approximate a delta function subject to
engineering constraints. As such, a(t) = 0 for t < 0, and then
exhibits a primary lobe followed by decaying oscillations. In
addition, the ideal waveforms x∗(t) are impulse-like as well.
Under these conditions the circulant (periodized) measurement

model is acceptable. Modifications to accommodate step-like
waveforms are discussed in [4].

In practice, x∗ is unknown and the measured quantity is
contaminated by noise:

y = Ax∗ + σn. (2)

We model the measurement noise vector σn as an multivariate
Gaussian random variable with mean zero and, in this work,
constant diagonal covariance σ2I.

B. Waveform Parameters and Waveforms

In this work we study deconvolution effects on estimation
of the pulse duration at half maximum or, more simply, the
pulse duration. This parameter is estimated from a measured
waveform as follows. The half-max value is defined as half of
the maximum of the sampled waveform values. (Alternative
estimates of the waveform amplitude were considered; the
differences were negligible for our purpose.) By use of sam-
pled values of the waveform to generate local approximations,
the two times at which the waveform is estimated to take
on the half-max values are determined [5]. The difference
of these times defines our estimate of the pulse duration at
half maximum. We abbreviate the pulse duration by τ(λ) =
τ(x(λ))for a given waveform x(λ) depending on a parameter
λ. Intuitively, deconvolution increases in difficulty as the
“speed” of the input waveform becomes comparable to that
of the measurement device. The ratio

T = τ(x∗)/τ(a) (3)

serves as one of the design variables in our study.
We model the impulse-like waveforms a and x∗ using n-

pole low-pass filters, e.g., Butterworth, Chebyshev, Bessel-
Thompson. Descriptions of these filters can be found in
standard textbooks, see for example [10]. The number of
poles n describes the high-frequency roll-off of the magnitudes
of these transfer functions in the Fourier domain and will
serve as one of the design parameters for the Monte Carlo
study. By convention, we scale the amplitudes of the impulse
response functions to have unit total integral,

∫
a(t)dt = 1.

This corresponds to their role as approximate delta functions
with high-frequency attenuation.

For a nominal measured waveform y∗ = Ax∗, we define
the signal-to-noise ratio in a mean-square sense

S :=
‖y∗‖2

E
(
‖σn‖2

) =
‖y∗‖2

Nσ2
, (4)

where the norm is the usual Euclidean norm in RN . Note that
this definition, in conjunction with our scaling convention for
a(t), implies that S would scale with τ(x∗) if the amplitude
of x∗ were fixed. To separate these dependencies we scale x∗
so that ‖y∗‖2 = 1, leading to

S =
1

Nσ2
. (5)

The ratio S is an indicator of the potential for instability of
inversion and is another design variable in this work.



III. DECONVOLUTION AND REGULARIZATION

A. Parametric inversion

If the sole concern is for a characterization of the input
waveform in terms of its pulse duration, a “rule of thumb”
inversion exists. Namely, given estimates of τ(y) and τ(a)
(presumably the former is measured by the experiment and
the later is known as a result of a calibration measurement)
the RSS estimate of τ(x∗) is defined by

τRSS :=
√

τ(y)2 − τ(a)2. (6)

Equation (6) is exact, assuming that x∗(t) and a(t) are
Gaussian waveforms, i.e., of the form exp

(
− (t− µ)2/α2)

)
for some µ and α. To our knowledge, the example of two
Gaussians is the only case for which the RSS estimation of
τ is exact. For more general waveform shapes (6) serves as
an estimate, and as pointed out in [2] it can be unacceptably
poor. As RSS estimation and, more generally, RSS-like “rules-
of-thumb” are common in waveform applications (cf. [11]),
we present it as part of our analysis. As is clear from [2]
and amplified in the analysis below, the RSS approach can
be incorrect even in a qualitative sense. We advise against
using this type of analysis absent detailed experimentation to
determine its suitability. An alternative, RSS-like approach is
discussed in [12].

B. Tikhonov equations

We measure y and wish to invert (2) to estimate x in the
presence of noise. As A is circulant, it is diagonalized by the
discrete Fourier transform matrix (DFT) to yield the complex
diagonal matrix Â = diag(â1, . . . , âN). In this basis (discrete
complex exponentials), the system (2) is equivalent to

ŷ = Âx̂∗ + σn. (7)

If for all entries |aj | 6= 0, then Â is invertible (as is A). More
generally, one may always define the least-squares solution.
For the problems we consider, this least-squares solution
provides an unacceptable estimate for x∗, as the operator A
is ill-conditioned (|âj | is small for some j) causing noise
amplification to dominate the least-squares inversion. This is
common for inverse problems and the common solution is to
introduce some form of regularization into the inversion.

Among the various regularization frameworks we consider
that attributed to Tikhonov. In brief, given a penalty operator
L and a scalar value λ, the least-squares normal equations are
replaced by a regularized counterpart:

x(λ) :=
(
A∗A + λ2L∗L

)−1

A∗y. (8)

For λ = 0 one observes that x(λ) is the least-squares solution.
There are several ways of deriving (8) that highlight different
interpretations, see [8].

In this work we consider regularized inversion of the
Tikhonov system assuming a smoothness penalty, L = D2,
where D2 is the periodized second-difference operator. As
with the convolution kernel, periodization allows for simulta-
neous diagonalization of A and L by the suitably dimensioned

DFT matrix. We implement the diagonalization by use of a fast
Fourier transform summation. We also investigated results for
L = I, but space does not permit discussion of them here.

C. Regularization parameter selection

For given A and penalty function L, the Tikhonov equations
contain a free regularization parameter λ. The development
of selectors–strategies for selecting λ–has resulted in a vast
literature. Periodically, reviews are attempted, see for example,
[13] and the popular Matlab toolbox [14]. However, we find
that the quantitative assessment of the various schemes in the
literature is insufficient for our purposes. The ample proposed
algorithms with meager numerical support serves as a driver
for the present Monte Carlo study.

Selectors can be broadly categorized as methods that re-
quire prior knowledge of the noise level or its point-by-
point expectation, and methods that do not. As representatives
respectively, we include the discrepancy principle (D) and
the L-curve(L) method in our simulations. Definitions and
details of these two methods may be found in several texts,
for example [7] and [8]. The selector method will be indicated
by subscripts, e.g. λD and λL.

As a benchmark against which to evaluate other methods,
we define the optimal λopt as the λ that minimizes the
normalized waveform error e(λ) := ‖x(λ)−x∗‖/‖x∗‖. For a
fixed penalty L this is the minimum full waveform error that
can be achieved with Tikhonov regularization.

IV. NUMERICAL STUDY

We simulated several different combinations of n-pole re-
sponse functions for a(t) and x∗(t). Here we report on the
use of a 4th order Butterworth impulse response with duration
of 5.28 ps for a, and a 2nd order Bessel-Thompson impulse
response for x∗(t). The waveforms are sampled at N = 512
points at intervals of ∆t = 5ns/4096. Note that at this sam-
pling rate, all waveforms are sampled at a rate greater than or
equal to approximately 8.7 samples per characteristic cycle.3

At this rate of oversampling we assume that convolution and
deconvolution discretization effects are negligible.

The dimensionless ratios T and S ((3) and (5)) are the
design variables for the Monte Carlo analysis. Informally,
inversion difficulty scales inversely with these parameters;
measurements involving larger values of S and T should be
inverted more easily. The values we use are

log10(S) 2 3 4 5
T 1 2 3 5

For each combination of S and T we generate 1000 noisy
waveforms according to (2). To analyze the quantitative errors
by use of, for example, the discrepancy principle as a selection

3Informally, we define the characteristic cycle as twice τ and compute
2 · 5.28 · 4096/5000 ≈ 8.7.



strategy for λ, we examine the error metrics

∆eD :=
(
‖xD − x∗‖

‖x∗‖

)
· 100

∆τD :=
τD − τ∗

τ∗
· 100 (9)

The overline refers to averaging over all 1000 noise instances.
A similar set of metrics is defined for the parameter selection
algorithms λopt and λL. In addition to mean values, we report
standard deviations as we are concerned with the stability of
the numerical inversion.

V. RESULTS

A. Regularization parameter selection algorithms

The mean and standard deviation of the regularization
parameters λL, λD, and λopt are tabulated in Table I. For fixed
T , we find that the mean values of λ for all three selectors
scale with σ. This could be anticipated from statistically based
derivations of the Tikhonov equations, for example see [8].
More surprising is that for fixed S, generally the value of
λ determined for the three different methods increases with
increasing T . Originally our qualitative expectation was that
λ would correlate with problem difficulty. If so, then relative to
a fixed characteristic time of the measurement device τ(a), a
slower input waveform is presumably more easily inverted and
λ would decrease with increasing T . Clearly this idea must be
revisited in light of our results. Note below that the waveform
error is consistent with expectations, e.g., ∆e decreases as a
function of S and T .

Quantitatively, we find that for low signal to noise (S =
102) the mean values of λL and λD agree to within about 20
% but are about a factor of 3 larger than λopt . Thus for noisy
signals there is little difference between selectors, and both
are over-damped with respect to the optimal inversion. As the
signal increases relative to noise (S = 105) we find that the
situation changes: λL ≈ 2λopt and λD ≈ 4λopt . Comparing
the differences between λL and λD relative to their variances
(see Table I), we conclude that in this high-signal case the two
selectors are statistically different. As before, both are over-
damped with respect to the optimal selector. Over-damping of
the discrepancy principle has been noted previously, see for
example [7] and [8]. However, under-damping with use of the
L-curve selector has been observed in numerical experiments
(cf. [7]) and is predicted by analysis. Hence, the over-damped
nature of the L-curve selector observed here is unexpected and
perhaps draws attention to shortcomings of existing analysis.

To elaborate, a theorem of Bakushinskii states that a se-
lector that does not explicitly depend on σ, must necessarily
diverge in the limit σ → 0 [15]. The argument is indi-
rect and couched in the language of Banach spaces–infinite-
dimensional, normed linear spaces. The L-curve does not
depend explicitly on σ, and therefore some have argued that it
follows from Bakushinskii’s result that this selector diverges
[16]. This has been the source of some discussion in the
literature, engaging both L-curve opponents and advocates. In
particular, the analysis of [17] suggests that the signature of the

divergence predicted by Bakushinskii is indicated by extreme
under-damping in the limit σ → 0. This stands in stark contrast
to what we observe in our study: λL is slightly over-damped
but otherwise near optimal, and λD (which does explicitly
depend on S) performs worse. The analysis presented in [17]
demonstrates the divergence for “smooth” problems with a
norm penalty, L = I. Notwithstanding the ambiguity as to
the precise definition of smooth, our numerical results are
based on the second difference penalty, L = D2, which may
account for the discrepancy. In summary, existing asymptotic
analyses require refinement to be useful as a priori predictors
of performance.

Closer inspection of Table I suggests the optimal λ follows a
scaling law. Performing linear least squares analysis in log-log
space, we find that λopt can be well approximated by

λ̃(T , σ) := 3.8640T 1.4883σ1.001. (10)

The relative residual errors all lie in the interval
[−1.8%, 2.5%]. Additional simulations reveal that the
scaling law (10) persists when the filter order of a and x∗ is
changed, although the values of the coefficients and exponents
change, and the range of T and S over which the law holds
changes as well. This scaling law is unexpected and suggests
that a deeper analysis should be performed.

B. Waveform parameter estimation.

Errors in the estimated pulse durations are shown in Table II.
One point that immediately stands out is the poor performance
of the RSS correction. Conventional wisdom (suggested from
analysis of Gaussian waveforms) states that finite bandwidth
effects of a measurement system will cause the measured
waveform to be “slower” than the true input signal. In Ta-
ble II we show the error that would ensue from using the
observed τ(y) as an estimate for underlying τ(x∗). When the
time scale of x∗ is directly comparable to the measurement
system T = 1, in fact we find that τ(y) is approximately
30 % higher than τ(x∗), which qualitatively corresponds to
this conventional wisdom. Quantitatively, we observe that the
RSS correction consistently overestimates the effects of the
convolution and thereby over-corrects. The situation changes
dramatically as T increases. For all values of T ≥ 2 we find
that the measured waveform is faster than the true input signal.
In this case the RSS correction, by further subtracting a value
from τ(y), increases the error. Indeed, our results indicate that
doing nothing at all can be an improvement over using the
RSS heuristic. Of course this statement depends strongly on
the waveform shape, as the composition law for Gaussians is a
well-known fact. The more accurate statement, and one which
supports the full waveform metrology measurement paradigm,
is that the suitability of applying heuristic corrections must be
checked on a case-by-case basis.

Turning to the estimated pulse durations of the deconvolved
waveforms, we find that deconvolution with regularization
uniformly improves the estimation of τ over the measured
waveform. This is to be expected. Nevertheless it is reassuring
to find that the instability of the underlying deconvolution



TABLE I
MEAN VALUE OF λ (STANDARD DEVIATION). THE OPTIMAL λ IS THE VALUE MINIMIZING ‖xλ − x∗‖2 . THIS IS COMPARED TO THE L-CURVE AND

MOROZOV DISCREPANCY SELECTION ALGORITHMS (SEE TEXT).

XXXXXXXXT
log10(S) 2 3 4 5

1
Optimal 0.396 (0.060) 0.121 (0.016) 0.038 (0.005) 0.012 (0.001)
L-Curve 1.312 (0.130) 0.341 (0.032) 0.086 (0.007) 0.022 (0.002)
Discrepancy 1.464 (0.243) 0.450 (0.062) 0.139 (0.017) 0.043 (0.004)

2
Optimal 1.092 (0.171) 0.342 (0.050) 0.109 (0.014) 0.035 (0.004)
L-Curve 2.956 (0.266) 0.879 (0.078) 0.242 (0.019) 0.065 (0.004)
Discrepancy 3.517 (0.637) 1.191 (0.179) 0.386 (0.051) 0.123 (0.015)

3
Optimal 1.968 (0.312) 0.626 (0.093) 0.198 (0.026) 0.063 (0.008)
L-Curve 4.972 (0.467) 1.553 (0.131) 0.443 (0.037) 0.123 (0.008)
Discrepancy 5.832 (1.152) 2.073 (0.335) 0.694 (0.097) 0.224 (0.029)

5
Optimal 4.216 (0.667) 1.326 (0.208) 0.422 (0.061) 0.135 (0.017)
L-Curve 10.915 (1.430) 3.192 (0.274) 0.959 (0.080) 0.273 (0.020)
Discrepancy 11.067 (2.597) 4.069 (0.730) 1.430 (0.217) 0.473 (0.065)

problem is controlled by regularization. It is notable that we do
not find significant differences between the two selectors. This
observation somewhat belies the immense literature devoted to
the study of such algorithms.

C. Full waveform error.

In Table III we show the percent residual error of the
entire waveform. The full waveform error of the measured
waveform decreases as the input signal slows with respect to
the measurement system. However, this decrease is very slow.
Tikhonov regularized deconvolution improves on this and the
effectiveness of the correction depends on the signal-to-noise
ratio. We note that ∆eL is consistently smaller than ∆eD.
However, it is more instructive to observe that the differences
between using the L-curve and the Morozov Discrepancy
Principle to select λ are not terribly striking.

VI. CONCLUSION

We describe a numerical study designed to quantify and
compare the accuracy of competing algorithms for waveform
parameter estimation and deconvolution. We find that the
commonly-used RSS heuristic for estimating pulse duration
can be qualitatively incorrect, to say nothing of its quantitative
performance. Our results indicate that the instability associated
with deconvolution can be reliably controlled by regulariza-
tion. Even more, perhaps undermining the large literature
devoted to the problem, parameter selection strategy does not
radically alter the results. Finally, we observe that the optimal
parameter follows a scaling law with very low residuals.
We emphasize that these results require more investigation
to include a greater range of waveform shapes. Even more
subtle is to introduce inconsistency in the measurement model,
i.e., the convolution kernel is itself a perturbation of a nominal
value. We will report on these investigations in the future.
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TABLE II
PERCENT MEAN RELATIVE ERROR (STANDARD DEVIATION) IN ESTIMATED PULSE DURATION, ∆τ (9). HEURISTIC PARAMETER ESTIMATION

TECHNIQUES ARE COMPARED TO DECONVOLUTION WITH TIKHONOV REGULARIZATION USING DIFFERENT PARAMETER SELECTION ALGORITHMS.

XXXXXXXXT
log10(S) 2 3 4 5
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2
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Optimal -4.55 (1.60) -3.32 (0.64) -3.24 (0.67) -1.63 (0.55)
L-Curve -3.38 (1.14) -4.33 (0.54) -3.33 (0.26) -2.73 (0.33)
Discrepancy -2.46 (1.39) -4.59 (0.52) -3.33 (0.22) -3.35 (0.20)

3

Measured -8.72 (2.36) -7.84 (0.83) -7.68 (0.28) -7.67 (0.09)
RSS -15.07 (2.53) -14.13 (0.89) -13.95 (0.30) -13.94 (0.10)
Optimal -3.16 (1.15) -2.34 (0.86) -0.74 (0.47) -0.56 (0.30)
L-Curve -2.74 (0.99) -3.20 (0.40) -1.79 (0.34) -0.52 (0.19)
Discrepancy -2.49 (1.01) -3.17 (0.36) -2.47 (0.37) -0.81 (0.19)

5

Measured -4.84 (2.39) -3.31 (0.89) -2.92 (0.31) -2.83 (0.10)
RSS -6.98 (2.45) -5.41 (0.91) -5.01 (0.31) -4.92 (0.11)
Optimal -1.13 (1.25) -0.65 (0.54) -0.61 (0.36) -0.20 (0.25)
L-Curve -1.96 (0.97) -0.81 (0.42) -0.64 (0.20) -0.48 (0.16)
Discrepancy -1.84 (1.02) -1.03 (0.45) -0.61 (0.17) -0.62 (0.12)

TABLE III
PERCENT MEAN RELATIVE ERROR (STANDARD DEVIATION) IN FULL WAVEFORM ESTIMATION ∆e (9). ERROR IN USING THE MEASURED WAVEFORM (NO

DECONVOLUTION), IS COMPARED TO THE MINIMAL ERROR POSSIBLE AND DIFFERENT PARAMETER SELECTION ALGORITHMS.

XXXXXXXXT
log10(S) 2 3 4 5

1

Measured 29.17 (0.39) 27.81 (0.13) 27.67 (0.04) 27.66 (0.01)
Optimal 20.01 (0.76) 15.05 (0.55) 11.39 (0.39) 8.62 (0.28)
L-Curve 23.33 (0.44) 17.13 (0.32) 12.50 (0.24) 9.12 (0.18)
Discrepancy 23.80 (1.06) 18.07 (0.70) 13.71 (0.46) 10.38 (0.30)

2

Measured 15.37 (0.38) 12.21 (0.13) 11.85 (0.04) 11.81 (0.01)
Optimal 10.17 (0.42) 7.28 (0.29) 5.43 (0.20) 4.09 (0.14)
L-Curve 11.58 (0.29) 8.19 (0.16) 5.95 (0.12) 4.35 (0.09)
Discrepancy 12.06 (0.68) 8.72 (0.40) 6.54 (0.26) 4.93 (0.17)

3

Measured 12.06 (0.35) 7.53 (0.13) 6.91 (0.04) 6.85 (0.01)
Optimal 7.02 (0.32) 4.74 (0.20) 3.48 (0.14) 2.61 (0.09)
L-Curve 7.94 (0.27) 5.31 (0.11) 3.82 (0.08) 2.79 (0.06)
Discrepancy 8.30 (0.56) 5.65 (0.29) 4.18 (0.18) 3.14 (0.12)

5

Measured 10.51 (0.32) 4.59 (0.12) 3.49 (0.04) 3.36 (0.01)
Optimal 4.75 (0.26) 2.83 (0.12) 1.99 (0.08) 1.47 (0.06)
L-Curve 5.56 (0.34) 3.16 (0.08) 2.19 (0.05) 1.59 (0.03)
Discrepancy 5.64 (0.52) 3.36 (0.20) 2.38 (0.11) 1.77 (0.07)


