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Experimental measurements of domain wall propagation are typically interpreted by comparison
to reduced models that ignore both the effects of disorder and the internal dynamics of the domain
wall structure. Using micromagnetic simulations, we study vortex wall propagation in magnetic
nanowires induced by fields or currents in the presence of disorder. We show that the disorder
leads to increases and decreases in the domain wall velocity depending on the conditions. These
results can be understood in terms of an effective damping that increases as disorder increases. As a
domain wall moves through disorder, internal degrees of freedom get excited, increasing the energy
dissipation rate.

The dynamics of magnetic domain wall structures
driven by fields or currents is a subject of practical impor-
tance related to possible schemes for nanoscale magnetic
memory [1–3] and logic [4, 5] devices. In these devices, in-
formation is encoded in the magnetic domains separated
by domain walls and the stored information is manipu-
lated by domain wall motion driven either by fields or
currents.

Experimentally, domain wall dynamics have been stud-
ied by the magneto-optical Kerr effect [6–10], resistance
measurements using the giant magnetoresistance effect
[11, 12] or the anisotropic magnetoresistance effect [13–
15], and real-space magnetic imaging by magnetic force
microscopy [16] or spin-polarized scanning electron mi-
croscopy [17, 18]. Typical experiments measure a domain
wall displacement and a time interval which are used to
infer an average velocity. Interpretations of these results
typically ignore the effects of disorder. Real samples,
however, display thickness fluctuations and grain struc-
ture, and contain impurities and other defects.

The consequences of disorder on domain wall motion
have been studied theoretically in several limits. Micro-
magnetic simulations show that sample edge roughness
can enhance domain wall propagation in a Ni80Fe20 wire
[19, 20]. The dynamics of domain walls in the presence
of a single pinning potential [21] or array of pinning po-
tentials [22] show the existence of a threshold field or
current to depin domain walls trapped by the pinning
potentials. Moreover, domain wall creep [23] is common
for distributed disorder at finite temperatures.

In this Letter, we describe micromagnetic simulations
of domain wall propagation induced by fields or currents
in the presence of disorder throughout the film. Our re-
sults indicate that disorder, which exists inevitably in
real experiments, affects domain wall dynamics in a way
that can be interpreted as an enhancement of the effec-
tive damping. This increase is significant enough that
it should affect the interpretation of most domain wall
experiments. Our work adds important considerations

FIG. 1: (color online). (a) A typical vortex wall structure in
a wire with 200 nm width and 20 nm thickness. The color
indicates the in-plane angle of the magnetization, and the ar-
rows indicate the approximate magnetization direction. (b)
Schematic trajectories of field-induced vortex wall propaga-
tion in Ni80Fe20 film for µ0H=3 mT above the critical field
along the x direction with disorder D=0 and 0.05. Here the
total simulation time is 100 ns. Points that the vortex core
pass through are black (dark blue) or gray (orange) depend-
ing on whether the vortex core has its magnetization into or
out of the plane. Insets show the domain wall displacement
as a function of time.

to the extraction from experiment of the intrinsic damp-
ing constant and the closely related nonadiabatic spin-
transfer torque parameter.

Magnetization dynamics in the presence of a spin cur-
rent can be described by an extended Landau-Lifshitz-
Gilbert equation [24, 25]

Ṁ = γHeff × M + αM̂ × Ṁ

− (vs · ∇)M + βM̂ × (vs · ∇)M, (1)

where Heff is the effective magnetic field including the ex-
ternal, exchange, demagnetization, and anisotropy fields,
γ is the gyromagnetic ratio, Ms is the saturation magne-
tization, M̂=M/Ms, and α is the Gilbert damping con-
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stant. The coupling between the current and the mag-
netization is characterized by two parameters. The first
is the velocity vs=PJgµB/(2eMs), where P is the po-
larization of the current, J is the current density, g is
the Landé factor, µB is the Bohr magneton, and e is the
(negative) charge of the electron. The second parameter
is the nonadiabatic spin-transfer torque parameter β.

In magnetic nanowires, the magnetization tends to
point along the wires. Domain walls form between do-
mains of oppositely directed magnetization with demag-
netization fields giving them complicated structures de-
pending on the wire geometry [26, 27]. The domain wall
structure of interest here is a vortex wall, in which the
magnetization in the wall rotates around a vortex core
and points out of the plane of the wire at the core re-
gion. This magnetization configuration is illustrated in
Fig. 1(a). The configuration also contains two half an-
tivortices on each of the edges of the wire.

When a magnetic field is applied to a vortex wall, the
vortex core displaces to the side of the wire. If the field
is below a value called the Walker breakdown field [28],
the core then moves steadily along the wire. If the field
is above the breakdown field, the vortex core collides
with the edge of the wire, reverses its magnetization, and
moves to the other side. The vortex core moves along the
wire as it collides with both edges, as illustrated in the
first panel of Fig. 1(b). Similar motion results when a
current is applied to the wire.

The motion of domain walls is frequently studied in
models which adopt a reduced description of domain wall
structures in terms of a limited number of collective co-
ordinates [25, 28–31]. These models, however, ignore the
additional degrees of freedom that may be excited dur-
ing domain wall motion and further ignore the degree to
which the excitation of these additional degrees of free-
dom change in the presence of disorder. These effects are
captured in micromagnetic simulations.

We compute domain wall motion through numerical
solution of Eq. (1) using the Object Oriented MicroMag-
netic Framework (OOMMF) [32]. We set up a Ni80Fe20

strip with 200 nm width, 20 nm thickness, and 5 nm cell
size, and choose a long enough length to allow for sub-
sequent domain wall propagation (typically from 10000
nm to 15000 nm). In this geometry, vortex wall struc-
tures are formed as the ground state between head-to-
head magnetic domains, as shown in Fig. 1(a). For
material constants, we use the saturation magnetization
Ms=800 kA/m, exchange stiffness constant A=13 pJ/m,
and damping constant α=0.01. In order to remove fi-
nite size effects, we add two features to the simulations.
First, when we truncate the infinite wire we are model-
ing, there are unwanted fringing fields at the ends of the
finite segment. We compensate these fields with static
magnetic fields. Second, we include absorbing boundary
conditions [33] to remove spin waves reflected back to the
computational region.

We model thickness fluctuations by varying the satu-
ration magnetization Ms [34] but keeping the geometry

FIG. 2: (color online). Energy dissipation rate along x for
µ0H=3 mT with disorder (a) D=0 and (b) D=0.05. Insets
show contributions from spin wave and vortex to the energy
dissipation rate, which were obtained by separating regions
near a vortex core with a diameter of 400 nm, as shown in
Fig. 1(a).

uniform for simplicity. We choose a spatial correlation
length of 10 nm [35] and characterize the disorder as
the ratio of fluctuation standard deviation to the sat-
uration magnetization, D=

√

〈(M(r) − Ms)2〉/Ms. We
limit the size of the fluctuations to ensure that the mag-
netization stays positive. To test this disorder model,
we made comparisons (not shown) with recent gyration
experiments [35], which show a factor of 2−3 variation
in resonance frequency as a vortex is scanned over a
disk-shaped sample. We find that a disorder value of
0.05 gives roughly the same variation in simulations with
similar length scales. We tested different disorder mod-
els, such as random anisotropy directions with enhanced
anisotropy constants, and found that our main results
remain unaltered.

Figure 1(b) shows the effect of disorder on field-induced
vortex wall propagation above HW. In the absence of dis-
order (upper panel), the vortex wall moves regularly from
side to side of the wire switching the sign of core magne-
tization each time as it collides into the boundary. In the
presence of disorder (lower panel), the vortex wall prop-
agates both irregularly and faster. The wall moves faster
because disorder complicates the wall motion, increasing
the fluctuations of the magnetization, and hence enhanc-
ing the total rate of energy dissipation into the lattice.

Figure 2 shows the local energy dissipation rate
summed over the width and thickness of the wire as a
function of the position along the wire (x axis) and time
(y axis). At each time, there are peaks in the dissipation
rate where the magnetization changes rapidly in time as
the domain wall moves, particularly around the vortex
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FIG. 3: (color online). Domain wall velocity as a function of
applied field for disorder D=0, 0.025, and 0.05. Error bars
indicate 1 standard deviation statistical uncertainty.

core and around each of the half antivortices. This mo-
tion is an example of an internal degree of freedom that
is left out of a description of the domain wall in terms of
collective coordinates. The straight lines running left or
right and slightly up indicate the emission of spin wave
packets when the vortex core collides with the bound-
ary. This emission is much stronger for collisions with
one wire edge than the other because the collisions with
the edges are not symmetric. For the field values con-
sidered, the magnetization in vortex walls rotates with
a fixed handedness around the vortex core, which when
combined with the applied field breaks the symmetry of
the vortex relative to the two edges. Because of this
asymmetry, the core has a significantly higher velocity
approaching one edge than it does approaching the other.

The inset of Fig. 2(a) shows that most of the energy
dissipation occurs in a 400 nm wide region around the
vortex core rather than through spin wave emission. In
the presence of disorder, both energy dissipation centered
around the core and through spin wave emission increase,
as shown in the inset of Fig. 2(b). Spin wave emission is
not just associated with collisions with the boundary, but
apparently also with motion of the core through patches
of strong disorder. However, the dominant contribution
to the increased rate of energy dissipation occurs in the
localized region of the domain wall itself indicating the
increase in the excitement of the internal degrees of free-
dom of the domain wall. Note that the enhanced damp-
ing presented here is quite different than the two-magnon
contribution to the linewidth as measured in ferromag-
netic resonance. We tested this by carrying out simu-
lations of ferromagnetic resonance without vortex wall
structures and found a much smaller enhancement of the
effective damping.

Figure 3 shows the domain wall velocity as a function
of applied field for disorder D=0, 0.025, and 0.05. Here
the domain wall velocity is estimated by ensemble av-
erages of up to 40 samples with different realizations of
the disorder. The disorder suppresses or enhances the
domain wall velocity depending on the field range. At
low enough fields, the domain walls are pinned in the
presence of disorder. Note that the Walker breakdown

FIG. 4: (color online). Domain wall velocity (a) as a function
of disorder and (b) as a function of the damping constant for
J=2×1013 A/m2 with β as a parameter.

field (HW≈0.7 mT in the absence of disorder) itself is
increased by the disorder.

The results in Fig. 3 show that even in the absence of
disorder, vortex wall motion is complicated. The curve
for no disorder, D=0, shows the expected linear rise as
the field increases up to the breakdown field, then the
subsequent decrease and increase as the field increases
further. However, the domain wall velocity as a function
of field also shows additional peaks above the breakdown
field, H>HW. Increasing disorder suppresses the peaks
in the velocity curve, which may be the reason that they
are not seen in experiments. We observe that the spac-
ing of peaks increases with increased intrinsic damping
constant, and with the increased sample width. These
results suggest that the origin of the peaks is a resonance
between periodic collisions and the internal excitations
of vortex wall structures. It would be interesting if mag-
netic nanowires could be fabricated with sufficiently low
disorder to observe such features.

The results in Fig. 3 can be understood in terms of an
increase in effective damping parameter due to disorder.
For field driven motion, the velocity depends strongly
on the energy dissipation rate because a translation of
the domain wall along the wire reduces the Zeeman en-
ergy. If the internal energy of the wall is not changed,
the wall can only move as this Zeeman energy is dissi-
pated into the lattice. In the reduced models mentioned
above, we expect vDW∼α for H≫HW because the energy
dissipation rate and drift velocity of the wall increase as
α increases, while vDW∼1/α for H<HW because, as α
increases, the displacement of the core toward the sam-
ple edge decreases, and the drift velocity and the en-
ergy dissipation rate decrease [25, 29]. We also note
that HW∼α. In the presence of disorder, the domain
wall velocity increases as disorder increases for H>HW,
while for H<HW, the domain wall velocity decreases, ex-
actly as would be expected for an increase in the effective
damping parameter.

In the case of current-induced domain wall propaga-
tion, the results can also be interpreted by an enhanced
effective damping. While we expected that the effective
value of β would increase as well, we find that changing
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FIG. 5: (color online). Effective damping αeff as a function of
disorder D for field-induced and current-induced vortex wall
propagation.

α alone provides the best explanation of the results. To
see this behavior, we compare calculations of the domain
wall velocity as a function of disorder with calculations
without disorder but increasing damping constant, both
with fixed β. Figure 4(a) shows the domain wall velocity
as a function of disorder D for J=2×1013 A/m2, which
is above the critical current Jβ=0

c ≈0.8×1013 A/m2. Fig-
ure 4(b) shows the domain wall velocity as a function of
the damping constant α with the same applied current
density. As the disorder increases, the variation of the
domain wall velocity increases or decreases depending on
β showing a clear resemblance to the results with the
enhanced damping constant in the absence of disorder.

We compute the disorder dependence of effective
damping by fitting the domain wall velocity in the linear
low field and low current regime, as shown in Fig. 5. We
point out that the actual values of the disorder-enhanced
damping rate depend on various factors such as the type
of the domain wall structures, the type of disorder, ge-
ometry of samples, and material properties. Several ex-
periments would test the results of our calculations. One
possible experiment is to measure the domain wall ve-
locity with a disorder introduced in a controlled manner.
Another possible experiment would be the vortex gyra-
tion in a single pinning potential in which the enhanced
damping could be measured by comparing the spectrum
between free and trapped regimes of vortex gyration.

In summary, we have demonstrated that disorder af-
fects domain wall dynamics significantly and that the ef-
fective damping is increased by disorder and internal ex-
citations of the domain wall structure. From this work,
we conclude that damping constants inferred from do-
main wall motion measurements are effective rather than
intrinsic values, which are enhanced by the disorder in a
sample. These results suggest that caution is necessary
in extracting fundamental parameters from domain wall
motion measurements.
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