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Abstract
The 3D Shape Retrieval Contest 2010 (SHREC’10) on range scan retrieval aims at comparing algorithms that
match a range scan to complete 3D models in a target database. The queries are range scans of real objects, and
the objective is to retrieve complete 3D models that are of the same class. This problem is essential to current and
future vision systems that perform shape based matching and classification of the objects in the environment. Two
groups have participated in the contest. They have provided rank lists for the query set, which is composed of 120
range scans of 40 objects.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Range data, H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

1. Introduction

There has been a considerable amount of work on 3D shape
retrieval based on complete 3D query models [TV07]. There
is also interest in object retrieval based on 2D sketches
[MCF02, NS10]. However, range images of real objects
are becoming common-place with the increase in accuracy,
speed and portabilty of 3D scanning devices. These develop-
ments bring the necessity for algorithms that enable query-
ing by the single view range scans of generic objects. Range
image recognition is already being used in many applica-
tions, such as face recognition, automated inspection, and
target detection. In these applications, the objects in ques-
tion are limited to certain categories; examples are 3D faces,
products in assembly lines, or specific targets in military ap-
plications.

The datasets in this 3D Shape Retrieval Contest track, on
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the other hand, are designed for algorithms that will enable
recognizing novel 3D objects that belong to diverse cate-
gories. These algorithms are necessary for a navigating robot
to explore and interpret its environment, classify the objects
in the scene, and handle them if necessary.

The difference between traditional range image recogni-
tion and 3D shape retrieval of range scans was discussed
in [RCSM03] and in the SHREC’09 paper [DGA∗09]. In
traditional range image recognition, the objective is to match
the range image of an object to its another scan or its com-
plete 3D model. The modifications are limited to pose vari-
ations, acquisition noise, and small deformations; such as
facial expressions in the case of 3D face recognition. In the
retrieval problem, a version of the input object is not nec-
essarily available to the system. The objective is to retrieve
other objects that belong to the same category of the query
scan. The categories are determined with respect to their se-
mantic content; hence the objects in the same category may
present high geometric variations. Therefore, as mentioned
in [DGA∗09], the range queries should be processed with
regard to the current issues raised by the 3D object retrieval
community [TV07].

Another problem with a range query is that, besides con-
taining the geometric information of only one view of an
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object, that information is still noisy and incomplete due to
the limitations of range scaners (Figure 3). The scans con-
tain many holes, and unconnected regions. The scanner was
unable to read some steep regions of the view. These im-
perfections of the view data pose a challenge to the existing
shape retrieval algorithms.

The objective of last year’s SHREC track on retrieval
of partial models was to compare algorithms that perform
3D model retrieval based on range queries [DGA∗09]. This
year’s contest is a continuation of that objective with a larger
set containing more accurate range scans.

2. The Data Set

2.1. Target Set

The target database is the generic shape benchmark con-
structed at NIST and is desribed in [FGLW08]. It contains
800 complete 3D models, which are categorized into 40
classes. The classes are defined with respect to their seman-
tic categories and are listed in Table 1. In each class there are
20 models. The file format to represent the 3D models is the
ASCII Object File Format (*.off).

Bird Fish NonFlyingInsect
FlyingInsect Biped Quadruped
ApartmentHouse Skyscraper SingleHouse
Bottle Cup Glasses
HandGun SubmachineGun MusicalInstrument
Mug FloorLamp DeskLamp
Sword Cellphone DeskPhone
Monitor Bed NonWheelChair
WheelChair Sofa RectangleTable
RoundTable Bookshelf HomePlant
Tree Biplane Helicopter
Monoplane Rocket Ship
Motorcycle Car MilitaryVehicle
Bicycle

Table 1: 40 classes of the target database.

2.2. Query Set

The query set is composed of 120 range images, which are
acquired by capturing 3 range scans of 40 real objects from
arbitrary view directions. These objects correspond to the
23 classes in the target database, with one exception. The
3 scans of that object were excluded from the evaluation;
hence the evaluation is based on 117 scans. Table 2 gives a
summary of the class labels of the scanned objects.

The range images are captured using a Minolta Laser
Scanner (Figure 1). We removed the background noise man-
ually and used ASCII Object File Format (*.off) to repre-
sent the scans in triangular meshes. Figure 2 and Figure 3
show examples of query objects and their range scans, re-
spectively.

Class name # query models
Bed 1
Bicycle 1
Biped 4
Bird 1
Bookshelf 1
Bottle 1
Car 2
Cellphone 1
DeskPhone 1
Fish 1
FlyingInsect 1
Glasses 2
HandGun 1
HomePlant 1
MilitaryVehicle 1
Monoplane 2
Motorcycle 1
Mug 3
NonFlyingInsect 2
NonWheelChair 1
Quadruped 5
SingleHouse 4
SubmachineGun 1
NONE 1

Table 2: Class information of the query set.

Figure 1: Setup for range scanning.

3. Evaluation Measures

The participants have submitted rank lists for the query in-
puts. The length of each rank list is equal to the size of the
target database. Using the rank lists the following evalua-
tion measures were calculated: 1) Nearest Neighbor (NN), 2)
First Tier (FT), 3) Second Tier (ST), 4) E-measure (E), and
5) Discounted Cumulative Gain (DCG) [SMKF04]. In ad-
dition to these scalar performance measures, the precision-
recall curves were also obtained.

4. Submissions

Two groups have participated in the SHREC’10 track Range
Scan Retrieval. R. Ohbuchi and T. Furuya from University
of Yamanashi have participated with a method based on bag
of local 2D visual features. They submitted five sets of rank
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Figure 3: Examples from the query set.

Figure 2: Examples from the set of the objects that were
scanned to obtain queries.

lists corresponding to different choices of pre-processing of
range inputs. We will refer to these five submissions as 1)
BF-DSIFT-E, 2) Closing-3x3-BF-DSIFT-E, 3) Closing-6x6-
BF-DSIFT-E, 4) Dilation-3x3-BF-DSIFT-E, and 5) Dilation-
6x6-BF-DSIFT-E. The details are explained in Section 5.

U. Hillenbrand from Institute of Robotics and Mecha-
tronics, German Aerospace Center has participated with
a SURFLET-based approach. He submitted five sets of
rank lists each using different statistics of SURFLET pairs.
We will refer to these five submissions as 1) SURFLET-
mean, 2) SURFLET-meanraw, 3) SURFLET-meansqrd, 4)
SURFLET-median, and 5) SURFLET-mediansqrd. A de-
scription of Hillenbrand’s method is given in Section 5. The
reader may refer to [WHH03] for a detailed description of
shape representation based on Surflet-pair relations.

5. Bag of Features - Scale Invariant Feature Transform
(BF-SIFT)

R. Ohbuchi and T. Furuya entered the SHREC’10 track
Range Scan Retrieval by using their earlier algorithm that
employed multi-view rendering and bag-of-2D local visual
features. The algorithm is based on their earlier 3D model
comparison algorithm [OOFB08], but incorporates later im-
provements for 3D-to-3D comparison [FO09], and range-
scan-to-3D comparison [OF09].

The shape comparison of the algorithm starts with
multiple-viewpoint depth-image rendering (Figure 4). For
each query, which is a 3D model based on single view range
scan, a range image is rendered. Note that, as shown in Fig-
ure 5(a), the range image of the single view range-scan 3D
mesh contains cracks, jagged edges, and noisy surfaces. For
the query model, the method first renders a range image
of size 1024× 1024 pixels. It is down sampled with low-
pass filtering to 256× 256 pixels in order to reduce alias-
ing artifacts. For each 3D model in the target database, af-
ter normalizing for position and scale, a set of range images
from Ni = 42 viewpoints are rendered. Range image size of
256×256 is used for the 3D models. GPU is used for depth
image rendering.

The method then densely places sample points on each
range image, and extracts Scale Invariant Feature Transform
(SIFT) [Low04] feature at each sample point. Note that the
interest point detector of the Lowe’s SIFT algorithm is dis-
abled. Instead, sample positions are assigned a priori. The
sample point placement is not completely random. To con-
centrate samples on or near objects on each image, the sam-
ples are placed only on pixels having pixel value above a
certain threshold in a large scale (i.e., low-frequency) image
of the multi-scale image pyramid of the SIFT algorithm. To
speed up the extraction of tens of thousands of SIFT fea-
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tures, the GPU-based implementation of SIFT is employed,
siftGPU [Wu], with necessary modifications.

Extracted SIFT features forms a bag for each view; a bag
for a range scan query, and Ni bags for a 3D model. The SIFT
features in each bag are then Vector Quantized (VQed) using
pre-learned codebook, and accumulated into a histogram for
the view. The VQ codebook is learned from 50k SIFT fea-
tures generated and then sub-sampled from the 3D models in
the database. Extremely Randomized Clustering Tree (ERC-
Tree) [GEW06] is used to learn the codebook and to vector
quantize the SIFT features into visual words [FO09].

Then, a histogram is created of the visual words for the
partial view query model. For each 3D model rendered into
Ni range images, Ni histograms (i.e., feature vectors) are cre-
ated, and a set of Ni histograms describes a 3D model. To
compare a query range scan with a (complete) 3D model, a
feature vector of the query model is compared with Ni fea-
ture vectors corresponding to Ni views of a 3D model. A
minimum of Ni distances between a view of the query and
Ni views of the 3D model becomes the distance between the
query and the 3D model.

The query contains range scan artifacts, such as cracks,

single view range-scan 3D mesh contains cracks and jagged 
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Figure 4: Processing pipeline.

jagged edges, and noisy surface normal vectors, which af-
fect retrieval performance. Figure 5(a) shows the query, and
Figure 5(b) shows its range images. Artifacts due to range
scan, such as cracks (missing surfaces) and jagged edges at
glazing angle are noticeable in the range image as well. To
reduce effects of these artifacts, three approaches were em-
ployed.

(a) Range scan model with
artifacts.

(b) Rendered range image.

(c) After dilation. (d) After closing.

Figure 5: Query 3D mesh (a) and its rendered range image
(b). The range image after dilation (c) and closing (d) using
circular structural element of radius 6 pixel.

The first is abandoning of interest point detector in the
SIFT algorithm; interest point tend to stick to high-contrast,
corner-like features due to cracks and jagged edges. Instead,
SIFT sample points are placed densely and randomly [FO09,
OF09].

The second is Lower Frequency Emphasis (LFE) [OF09],
which is an importance sampling of larger scale images. The
LFE places more samples per pixel in the lower frequency
(i.e., larger scale) images than in higher frequency (i.e.,
smaller scale) images of the multiresolution image pyramid
of the SIFT algorithm. This produces a feature histogram
that emphasizes larger scale features.

The third is morphological filtering, dilation and closing,
to fill/reduce cracks in rendered range images. For dilation
and closing, circular structural elements of radius 3 and 6
pixels are used on rendered range images prior to SIFT fea-
ture extraction.

c© The Eurographics Association 2010.



H. Dutagaci et al. / SHREC’10 Track: Range Scan Retrieval

6. Shape similarity from surflet pair relations

This entry to the range scan retrieval track of SHREC’10
investigates the performance of a variation of a technique
that was applied earlier to a different 3D shape classification
task [WHH03]. The method is based upon a feature called
surflet pair relations. A surflet is a surface point with its lo-
cal (directed) normal vector. The intrinsic geometric relation
of two surflets can be described by four parameters, three
angels and a distance; see Figure 6. These parameters can
be understood as a generalization of surface curvature: while
curvature describes the local change of surface normals, sur-
flet pair relations describe the normal change across various
distances.

d

γ

α

β

Figure 6: Three angles and a distance for parameterizing
a surflet pair relation. Disks are points, arrows are normal
vectors, dashed arrows are normal vectors projected into
plane orthogonal to point difference.

For a pose-invariant description of object geometry, the
associated density of surflet pair relations, or rather of their
four parameters, is of interest. This density can be sampled
from geometric object models.

The general strategy for shape similarity computation pur-
sued here is thus:

1. sampling of surflet pair relations from the target models;
2. compact description of the sampled target feature densi-

ties;
3. at query time, sampling of surflet pair relations from the

query models;
4. computing the distance between query feature samples

and target density models.

Prior to any feature sampling, the object surfaces are uni-
formly point-sampled. The size of the models is normalized
such that the median of point pair distances is always unity.

6.1. Sampling of surflet pair relations from target
models

Since the query data are single-view object data, 1000 view-
ing directions were uniformly sampled from the sphere. For
each viewing direction, 1000 surflet pairs were drawn uni-
formly among those surflets with orientation consistent with
the viewing direction. A total sample of 1,000,000 surflet
pairs were obtained from each target object. The surflet pair
relations were computed from each pair.

6.2. Description of target feature densities

For comparing query to target features, a compact descrip-
tion of the target feature density is needed. To this end, a
number of clusters are extracted from the target feature sam-
ples. In detail, 100,000 features were drawn randomly from
the total sample of 1,000,000 target features for each object,
and a k-means clustering was applied to the sub-sample with
k = 100. This procedure was repeated 10 times, yielding a
total of 1000 cluster centers for each target object, which
may be somewhat sloppily regarded as describing modes of
the underlying feature density.

6.3. Sampling of surflet pair relations from query
models

At query time, 100,000 surflet pairs were randomly drawn
from the low-resolution version of the query models. The
surflet pair relations were computed from each pair.

6.4. Computing the distance between query feature
samples and target density models

The all-over distance between shapes was computed as a
simple statistics of the Euclidean distance between each in-
dividual query feature (from the sample of 100,000 features
for each query model) and its nearest target cluster center in
the 4D feature space. The following statistics were tried.

• Mean Euclidean distance (method mean).
• Median Euclidean distance (method median).
• Mean squared Euclidean distance (method meansqrd); if

the cluster centers are understood as means of Gaussian
density modes with equal and isotropic covariance, the re-
sulting shape distance is essentially a negative likelihood.

• Median squared Euclidean distance (method median-
sqrd); this distance measure will be nearly the same as the
square of the median Euclidean distances above, the rank-
ings produced by the two median measures must hence be
very similar, if not identical.

Moreover, for comparison a method was included (method
meanraw) where the mean Euclidean distance was taken be-
tween the query features and their nearest target feature from
the raw sample.

7. Results

The two participants of the SHREC’10 track Range Scan Re-
trieval submitted five sets of rank lists each. The results for
the ten submissions are summarized in Figure 7 and in the
precision-recall curves in Figure 8. The reader can find the
retrieval results for the individual range queries at our Flex
based Graphical User Interface [INT]. The interface shows
the retrieved models for all the query models and for all the
methods described in this paper. Figure 9 shows the mod-
els retrieved by Closing-6x6-BF-DSIFT-E in response to a
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range scan of a toy bike, and Figure 10 shows the interface
for a range scan of a toy fish and the SURFLET-mean algo-
rithm.

PARTICIPANT METHOD NN FT ST E DCG

BF-DSIFT-E 0.573 0.380 0.524 0.367 0.683

Ohbuchi Closing_3x3_BF-DSIFT-E 0.598 0.393 0.535 0.382 0.696

& Furuya Closing_6x6_BF-DSIFT-E 0.650 0.424 0.569 0.398 0.713

Dilation_3x3_BF-DSIFT-E 0.675 0.405 0.557 0.392 0.713

Dilation_6x6_BF-DSIFT-E 0.547 0.395 0.550 0.386 0.696

SURFLET - mean 0.325 0.244 0.363 0.252 0.556

SURFLET - meanraw 0.171 0.153 0.242 0.163 0.462

Hillenbrand SURFLET - meansqrd 0.231 0.197 0.322 0.213 0.513

SURFLET - median 0.282 0.226 0.325 0.224 0.528

SURFLET - mediansqrd 0.282 0.226 0.325 0.224 0.528

Figure 7: Retrieval performances.
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Figure 8: Precision-recall curves.

For the bag of features algorithm, the participants used the
dense and random sampling combined with the LFE. Four
out of five used morphological filtering; either dilation or
closing, each with circular structural element of radius ei-
ther 3 or 6 pixels. The evaluation results show that the mor-
phological filtering worked to some extent. In terms of the
First Tier (FT) or Discounted Cumulative Gains (DCG) mea-
sures, the variation using closing with structural element ra-
dius 6 pixel ("Closing-6x6-BF-DSIFT-E (LFE)") performed
the best. In terms of the Nearest Neighbor (NN) measure, the
method employing dilation with structural element radius 3
("Dilation-3x3-BF-DSIFT-E (LFE)") performed the best.

For the surflet-based algorithm, the average performance
across the 120 queries turns out to be rather poor, as seen in
Figure 7 and 8. Looking at the distribution of quality mea-
sures for individual queries gives somewhat more insight. As
an example, Figure 11 shows the histograms of first tier ra-
tios, i.e., the frequencies of their discrete values, for the five
variants of surflet-based method and the five variants of the
bag of features algorithm. The first tier distribution for all
methods is roughly uniform for most of the range of values.
For surflet-based method, however, there is a set of about
one third of queries with zero first tier ratios, indicating a

complete break-down, while on a set of two thirds of queries
its performance is comparable to the one based on bag of
features.

The main reason for the frequent break-down of the
surflet-based method likely lies in the fact that here, all views
of the target objects have been superposed in a single model.
Not keeping the features of different views separate may eas-
ily give rise to confusion for certain shapes. Since employing
multiple view models generally incurs higher computational
costs, the results reflect a kind of performance/cost trade-off.
Problems might also derive from the rather coarse descrip-
tion of the feature densities used here for the target models.
However, it is interesting to note that usage of the raw sam-
ple of target features does not improve the results.

 

Figure 9: A sample shot from the web-based interface [INT].
The query is the range scan of a toy bike. The method is
Closing-6x6-BF-DSIFT-E.

 

Figure 10: A sample shot from the web-based interface
[INT]. The query is the range scan of a toy fish. The method
is SURFLET-mean.

8. Conclusions

In this paper, we have described and compared two algo-
rithms and their variants of two research groups that partici-
pated in the SHREC’10 Range Scan Retrieval track. The al-
gorithms accept a range scan as the input and retrieve similar
models from a database of complete 3D models. The method
based on bag of features yielded better average performance
as compared to the surflet-based algorithm.
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