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Abstract. In this paper we theoretically describe a method to simultaneously control

both the position and orientation of single nano-objects in fluids by precisely controlling

the flow around them. We develop and simulate a control law that uses electro-

osmotic flow (EOF) actuation to translate and rotate rigid nano-objects in two

spatial dimensions. Using EOF to control nano-objects offers advantages as compared

to other approaches: a wide class of objects can be manipulated (no magnetic or

electric dipole moments are needed), the object can be controlled over a long range

(> 100 µm) with sub-micrometer accuracy, and control may be achieved with simple

polydimethylsiloxane (PDMS) devices. We demonstrate the theory and numerical

solutions that will enable deterministic control of the position and orientation of a

nano-object in solution, which can be used, for example, to integrate nanostructures

in circuits and orient sensors to probe living cells.

1. Introduction

We theoretically describe a technique for simultaneously positioning and orienting single

nano-objects in a fluid in two spatial dimensions by manipulating the flow around them.

We address two object control goals with this technique. The first is the ability to move

the object across large distances (tens of micrometers). The second is the ability to

accurately control the position and orientation of objects of a variety of shapes and

material properties - for example, semiconductors [1], conductors [2], and dielectrics [3].

Previously, we showed simulations demonstrating position control of spherical

objects [4] in a microfluidic device using electro-osmotic flow (EOF) control. The ideas

developed in that study enabled an experimental demonstration of position control of

micrometer sized spherical objects to sub-micrometer accuracy [5] and subsequently the
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control of nanoscopic particles (single quantum dots) to nanometer precision [6]. In this

paper, we explain and simulate a technique that shows how the translational and shear

components of the flow field in the device can be manipulated, to trap an object at a

desired position and orientation or manipulate both its position and orientation along

a desired trajectory.

Existing approaches for simultaneously controlling the position and orientation of a

single (or a few) object(s) can be classified into actuation strategies that include optical,

magnetic, and electrical techniques. If objects have a higher refractive index than their

surrounding medium, a laser beam can be used to attract the object into the region

of highest light intensity. Variations of this basic principle have been used to transfer

translational and angular momentum from the laser beam to the object by either making

use of special optical properties of the object or by manipulating the wave front of the

incident light [7, 8, 9, 10, 11, 12, 13].

Magnetic fields in combination with fluidic forces have been used to control

magnetic objects [14], or with a combination of optical forcing for translation and

electromagnets for rotation [15]. Apart from the requirement that the object be

magnetic, the objects may require specially designed shapes to enable fluidic actuation

[16]. Alternatively, magnetic features are lithographically patterned on objects to allow

manipulation of their orientation by magnetic fields [17].

If the object has a significant dipole moment, dielectrophoresis (a type of electric

actuation) can be used to position and orient nanowires [18, 19, 20, 21, 22, 23] and

biological cells [24]. In this technique a high electric field gradient interacts with the

object’s dipole moment to translate and rotate the object. Since the electric field

gradients have to be high, the object is controlled near an electrode in a device where

the gradient is steep.

The position and orientation control that we present below uses electrical actuation

to modulate the flow around an object. Our technique depends on controlling viscous

drag, a force that applies to every object, and can hence be used to control a general class

of object - the object does not have to be charged or magnetic or have any other special

properties. Our simulations will show that the object can be controlled across a large

(≈ 100 µm) region. The approach uses feedback control of shear flow in a microfluidic

device to translate and rotate the object. The fluidic shear force acting on the object

(which is assumed to be inertia-less) suspended in the fluid, rotates the object to any

desired orientation (left panel of Fig. 1) while the translational component of the fluidic

drag moves it to any desired location in a 2-dimensional control region. The position

and orientation of the object, which are randomly perturbed due to Brownian motion,

are measured at regular intervals. From this visual measurement, a feedback control

loop determines and applies the fluid flow that will translate and rotate the object from

where it is towards where it should be (see right panel of Fig. 1).

The flow is actuated electro-osmotically. Here the electric field moves the fluid which

moves the object by viscous forces [25, 26] (which is different from electrophoretic or

dielectrophoretic actuation where the electric field creates a force directly on a charged
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Figure 1. The left panel shows a schematic of the top view of the proposed device.

The electrodes actuate a flow that translates and rotates the object from its current

to its desired position and orientation. The right panel shows the feedback loop that

achieves flow control in the device. At every instant, a camera captures an image of

the object and an image processing algorithm computes the position and orientation

of the object and transmits that information to the controller. The controller uses this

information to actuate a flow in the device (by creating an electric field that moves

the fluid in the device) that translates and rotates the object to the desired position

and orientation.

or polarizable object). By using multiple (here 8) electrodes in concert (see Fig.2) it is

possible to create complex electric field patterns in space, and in our thin planar devices

those patterns are faithfully transmitted to the fluid flow in the control region. Feedback

control of those patterns in time has allowed us to control the position of single objects

[6], and is here being extended to also allow control of their orientation.

Reservoir Electrodes Channels Control region

Top view of a typical PDMS
device (previously used to
control spherical particles)

Magnified schematic of the region
where the eight channels intersect

Figure 2. The left panel shows the top view of a typical flow control device. The

device is made of PDMS and consists of eight channels that merge into a central region.

The electrodes are immersed in reservoirs connected to the channels. The fluid and

objects are injected into the reservoirs and then flow into the central region where the

channels merge. A magnified schematic of this central region is shown in the right

panel. The square region (shown with a dotted black line in the right panel) is the

100 µm × 100 µm control region.
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The rest of the paper is organized as follows. Section 2 describes electro-osmotic

flow. Section 3 describes the effect of the fluid on the motion of the object. Section 4

discusses the control algorithm that is used to manipulate the flow around the object.

We show numerical examples demonstrating object control in Sec. 5 and end with a

discussion of additional considerations towards experiments in Secs. 6 and 7.

2. Electro-osmotic flow

At the interface between any solid and an electrolytic fluid, the surface energy of the

solid surface is reduced by the adsorption of ions from the fluid onto the oppositely

charged ions at the surface of the solid [25, 26]. This results in a charge imbalance

in a thin (< 100 nm) fluid layer, termed the diffuse (or Debye) layer adjacent to the

wall-fluid interface of the device.
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Figure 3. Flow profile in the device (figure in the right panel is modified from [25]):

The negatively charged surface of the device is shielded by positively charged ions from

the electrolyte solution. The ions in the thin diffuse (Debye) layer near the device-

fluid interface move under the influence of the electric field and drag the rest of the

fluid by viscous forces [25]. The resulting flow profile is uniform along ẑ (except for

the variation in the thin diffuse layer, not drawn to scale in the figure) with the flow

velocity ~U proportional to the applied electric field ~E.

A potential difference applied at the electrodes creates a planar electric field ~E(x̂, ŷ)

in the plane of the device. That electric field moves the ions in the Debye layer which

in turn drags the rest of the fluid in the device due to viscosity. The flow is laminar

(Reynolds number < 10−4), has a steady state velocity profile ~U(x̂, ŷ) of a plug flow

(that is constant along ẑ apart from the variation in the thin Debye layer as shown in

Fig. 3) which is linearly proportional to the applied electric field, and has the value [25]

~U(x̂, ŷ) =
ǫζ

µ
· ~E(x̂, ŷ) (1)

where µ and ǫ are the dynamic viscosity and permittivity of the fluid respectively, and ζ
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is the potential difference across ẑ between the edge of the Debye layer and the device-

fluid interface.

Since the electric field is irrotational (curl-free) the fluid velocity in the device,

which follows the local electric field, is also irrotational. This means EOF can only

impart a translational velocity to a spherical object - one cannot rotate a sphere using

EOF. However, as described in the next section, EOF can translate as well as rotate a

non-spherical object such as an ellipsoid or a nanorod.

3. Translational and rotational velocity of an ellipsoid in electro-osmotic

flow

Similar to the inertia-free spherical particles [27] used previously to demonstrate

positional control [4, 5], an inertia-free ellipsoid will instantaneously translate along

the stream lines of any flow that is set up in the device. If the flow in the device

was rotational, one could create a vortex flow and the rotational velocity of a spherical

object would be proportional to the vorticity of the flow. However, for an irrotational

flow, one can nevertheless rotate an ellipsoid due to the interaction of the individual

shear components of the flow and the reduced symmetry of the ellipsoid (as compared

to a sphere) as shown below. After computing the flow velocity, exact expressions

for the force and torque acting on an ellipsoid [30] can be obtained by summing the

infinitesimal shear force components (and the resultant torques) acting on every point

of the ellipsoid’s boundary. For the saddle flow shown in Fig. 4, the net fluidic torque

will rotate the ellipsoid clockwise.

x

y

a1

a2

Device fixed
frame of
reference

x

ŷ

^
ẑ

Saddle flow

θ
Clockwise
   torque

Figure 4. The total torque acting on the body is the sum of infinitesimal torques

due to the shear force acting throughout the boundary of the ellipsoid. Due to the

unequal axes lengths of the ellipsoid, a saddle flow (illustrated above) can be shown to

rotate the ellipsoid clockwise [30]. The body-fixed frame of reference is x− y, and the

device-fixed frame is x̂ − ŷ.

The slow, viscous, incompressible and isothermal flow that is electro-osmotically

set up in the device is well described by Stokes flow [30], which neglects the momentum

of the fluid in the Navier-Stokes equations of fluid dynamics. The ellipsoid is controlled
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in a plane parallel to the floor of the device and is assumed to lie far enough (> 200 nm)

from the floor and ceiling of the device to neglect increased drag due to wall effects [31].

This claim is supported by recent calculations [32] which can be applied, for example,

to compute the drag correction terms for a cylindrical particle of diameter 200 nm and

length 2 µm, with the nearest point on its surface located at a distance d = 200 nm

from a plane wall, and its axis tilted at an angle φ to the plane of the wall. Detailed

simulations [32], performed for such cylinders (with aspect ratios of 10), show that

the correction term for the (x, y) translational drag coefficients and the rotational drag

coefficient about the z axis are each less than 15% as compared to the unbounded fluid

drag coefficients for φ as large as 45◦. The correction terms decrease as the aspect ratio

of the cylinder increases because a proportionately lower area of the rod is close to the

wall [32]. Hence, we disregard the wall-correction term and use the unbounded fluid

drag coefficients in what follows.

The flow set up in the device is perturbed by the presence of the ellipsoid [33, 34, 35].

The linear nature of Stokes flow can be exploited to obtain the force and torque acting

on any body (not just an ellipsoid) that is immersed and free to move in the flow.

Denote the surface of the ellipsoid by x2

a2

1

+ y2

a2

2

+ z2

a2

3

= 1 (here we consider ellipsoids where

a3 = a2 and a1 > a2, so a1 is the semi-major axis length and a2 is the semi-minor axis

length of the ellipsoid). The unperturbed flow field ~u(~r) (i.e., the flow that would be

observed if no object were present) in the device is approximated to be a superposition

of uniform and pure-shear flow fields, i.e., spatial variations of ~u(~r) of O(a2
1) or higher

are neglected.

Denote the translational velocity of the ellipsoid along the device-fixed axes x̂, ŷ

(see Fig. 4) as Ux̂ and Uŷ respectively. As shown in Fig. 4, θ is the angle between the

body and device fixed frames of reference. Denote the angular velocity of the ellipsoid

about the ẑ axis as ωẑ. Denote û and v̂ as the components of the unperturbed uniform

flow along the x̂ and ŷ axes respectively, evaluated at the position that is occupied

by the center of the ellipsoid, while the terms ∂û
∂x̂

, ∂û
∂ŷ

, ∂v̂
∂x̂

, and ∂v̂
∂ŷ

represent the shear

components of the flow. The constant e = a2

a1

is the ratio of the minor to major axis

lengths of the ellipsoid. For the flow ~u(~r) described above, ignoring parasitic pressure

flows, and using the assumption of negligible inertia of the ellipsoid, it can be shown [30]

that the translational velocity of the ellipsoid matches the uniform flow field component

Ux̂ = û

Uŷ = v̂ (2)

and the rotational velocity of the ellipsoid is given by

ωẑ =
1

2

[

(

∂v̂

∂x̂
− ∂û

∂ŷ

)

+
1 − e2

1 + e2

(∂û

∂x̂
(− sin (2θ)) +

∂v̂

∂x̂
(cos (2θ))...

+
∂û

∂ŷ
(cos (2θ)) +

∂v̂

∂ŷ
(sin (2θ))

)]

(3)

Equations 2 and 3 are derived by integrating the shear and pressure distributions on

the surface of the inertia-less ellipsoid after solving the quasi-static Stokes equations
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[28] (see Section A of the Supplementary Information for more details). Even if higher

order spatial flow variations were considered (in addition to uniform and pure shear

flow terms), successive correction terms in Eqns. 2 and 3 would differ by the operator

D2 ≡ a2
i

∂2

∂x2

i

where xi are the axis coordinates [35]. In the proposed device, these higher

order terms are of the order O(
a2

i

r2

dev

) and higher compared to the linear terms included

in Eqns. 2 and 3; where rdev is the distance from the center of the control region to the

midpoint of any straight edge at the boundary in Fig. 5. Since a1

rdev
is 0.1 or smaller in

the proposed device, we ignore higher spatial order flow variations .

Eqn. 3 can be simplified by making use of two relations between the four shear

components. By continuity, the divergence of the flow field is zero, i.e., ∂û
∂x̂

+ ∂v̂
∂ŷ

= 0. We

also have that in EOF, since the fluid velocity is proportional to the electric field (as

explained in the previous section), the flow field is curl-free - i.e., the component of the

the vorticity about the ẑ axis (∂v̂
∂x̂

− ∂û
∂ŷ

) (the first term of Eqn. 3), is identically zero.

This simplifies Eqn. 3 to

ωẑ =
1 − e2

1 + e2

[

∂û

∂ŷ
(cos (2θ)) +

∂v̂

∂ŷ
(sin (2θ))

]

(4)

Thus, if we apply an electric field that creates the unperturbed flow field (û, v̂) in the

device, then this flow will instantaneously turn the ellipsoid with the rotational velocity

ωẑ in Eqn. 4.

Since the flow velocity components û and v̂ are linearly dependent on the electric

field, the translational and rotational velocity of the object are also linearly dependent

on the electric field - a fact that is used in the control algorithm. For any arbitrary

orthotropic object (an object with 3 mutually perpendicular planes of symmetry)

like the ellipsoidal rod (or other bodies like right elliptical cylinders and rectangular

parallelepipeds), the exact same analysis that has been used in this section can be

applied to obtain the translational and rotational velocities; the only difference will be a

different shape dependent constant, instead of 1−e2

1+e2 , in Eqn. 4 [29]. For non-orthotropic

objects there will be an additional dependence of the rotational velocity of the object on

the fluid velocity (and not just the fluid shear as in Eqn. 4). This is because the force

at a particular point on the boundary of the body can give rise to a torque that is not

balanced by an opposing torque (due to the lack of sufficient symmetry in the body),

thus causing the body to rotate [30]. There will also be an additional dependence of

the translational velocity of the object on the fluid shear (and not just the fluid velocity

as in Eqn. 2). As explained later, this kind of coupling between the translational and

rotational motions of the object can be included by experimenting with an appropriate

gain parameter in the control algorithm.

3.1. Translational and rotational Brownian motion of an ellipsoid

Thermal equilibrium between the fluid and any object suspended in it is maintained

by the random collisions between the object and the surrounding fluid molecules. The

object translates and rotates in a time interval dt along random directions by an amount
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that is, on average, proportional to
√

dt. Expressions for the translational and rotational

diffusion coefficients [36] of an ellipsoid are given in Section B of the Supplementary

information. For the ellipsoids in our simulation (semi-major axis length a1 = 5 µm

and semi-minor axis length a2 = a3 = 100 nm) that are immersed in water of viscosity

(8.9× 10−4) Pa·s at 300 K, the translational diffusion coefficient along the major axis is

0.306 µm2/s and along the minor axis is 0.199 µm2/s. The rotational diffusion coefficient

about ẑ is 0.0197 rad2/s. The simulations in Sec.5 account for ellipsoid dynamics due

to both fluid flow and Brownian motion.

4. Feedback control of the object’s position and orientation

In the presence of Brownian motion of the ellipsoid, one can control the motion of the

ellipsoid by using a feedback control algorithm. This control algorithm computes the

voltages that need to be applied at the electrodes so that the resultant electric field

creates a flow in the device which translates and rotates the object from the currently

measured to the desired position and orientation. For any position and orientation of

the object, there exists a linear map between the object’s velocity and the voltages

applied at the electrodes (as explained next). The necessary control electrode voltages

can be computed by inverting this map, using least squares. At successive time steps,

the object moves to a new position and orientation, there is a new linear map, and

we solve another least squares problem to get the next set of electrode voltages. This

computation can be done in real time, even for complex situations, as demonstrated in

our previous experiments in which we controlled the position of multiple particles at

once [5].

The desired trajectory of the ellipsoid is a series of discrete, closely spaced points in

the control region with a prescribed desired orientation at each point. At each control

update, the difference between the current measured position (orientation) of the object

and the desired position (orientation) is multiplied by a proportionality constant called

the control gain, yielding the desired (translational and angular) velocity of the object

until the next control update. The controller inverts the map between the voltages and

the desired translational and rotational velocity to determine the electrode voltages.

We now discuss how to compute this needed linear map which is a composition of

three individual maps related to the three physical processes that control the particle

motion. In our previous experiments [5], we did not observe any significant spatial or

temporal variations in the surface properties of the PDMS or glass substrates, or the

viscosity of the fluid, hence we treat the zeta potential, permittivity, and viscosity as

spatially and temporally invariant. The first map relates the applied voltages to the

resulting electric field (including the gradient of the electric field) in the control region

of the device. The second relates the electric field to the fluid flow field in the device.

The final map relates the flow field to the object’s translational and rotational velocity.

We will then show how the composition of these three maps is inverted using least

squares.
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For the first map, Laplace’s equation for the electric potential ∇ · (ǫ∇(Φ) = 0 is

evaluated, where ǫ is the permittivity of water and Φ is the electric potential in the

domain shown in Fig. 5 (which contains the control region as shown in right panel of

Fig. 2).

1 V

0 V

0 V

0 V

0 V

0 V 0 V

0 V

Max = 9.31

Min = -9.31

x̂

ŷ

Figure 5. Pre-computed steady state electric field in the region where the channels

intersect (using COMSOL, www.comsol.com [37]). The left most edge is maintained

at 1 V and all the others are maintained at 0 V. The electric field E(x̂, ŷ) (which is

responsible for the object’s translation) is shown with white arrow heads. The color

plot shows the ellipse rotation that will be created. For an ellipsoid oriented at θ = 0◦,

the shear component ∂
∂ŷ

(Ex̂(x̂, ŷ)) decides the direction of the ellipsoid’s rotation (see

Eqn. 4). Thus in the reddish hued region, the ellipsoid will turn counter-clockwise

(seeing into the paper) and in the blueish hued region it will turn clockwise. We plot

sign( ∂
∂ŷ

(Ex̂(x̂, ŷ)))log10(| ∂
∂ŷ

(Ex̂(x̂, ŷ))|) to show both the sign and magnitude of the

rotation creating term, which varies between ≈ ±109 V/m2.

Eight electric fields are pre-computed, one for each channel. During operation, the

electric field (or its gradient) at any point in the control region is a linear superposition

of these eight electrical fields. Mathematically, this allows us to write the equations of

the first map










Ex̂(x̂, ŷ)

Eŷ(x̂, ŷ)
∂
∂ŷ

(Ex̂(x̂, ŷ))
∂
∂ŷ

(Eŷ(x̂, ŷ))











= [A(x̂, ŷ)]











η1

.

.

η8











(5)

where ηi are the applied voltages and the matrix A(x̂, ŷ) (of size 4 × 8) is known for

each point (x̂, ŷ) in the control region using the pre-computed fields.

From Eqn. 1, the fluid velocity at any point in the control region is directly

proportional to the electric field. The flow velocity is assumed to reach steady state

instantaneously after the potential difference is applied [38] at the electrodes. The fluid

shear (spatial gradient of the velocity) is directly proportional to the gradient of the
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electric field at that point which gives the second map, between the electric field in the

device and the resulting flow and shear field,

û(x̂, ŷ) =
ǫζ

µ
· Ex̂(x̂, ŷ)

v̂(x̂, ŷ) =
ǫζ

µ
· Eŷ(x̂, ŷ)

∂

∂ŷ
(û(x̂, ŷ)) =

ǫζ

µ
· ∂

∂ŷ
(Ex̂(x̂, ŷ))

∂

∂ŷ
(v̂(x̂, ŷ)) =

ǫζ

µ
· ∂

∂ŷ
(Eŷ(x̂, ŷ)) (6)

If the ellipsoid’s center of mass is at the point (x̂, ŷ), then the four relations in Eqn. 6

for the fluid’s velocity and the shear at (x̂, ŷ) are the only ones needed for the third map,

which relates the fluid’s velocity and shear to the object’s translational and rotational

velocity by Eqns. 2 and 4.

After combining the three maps, the object’s translational velocities Ux̂, Uŷ, and

its rotational velocity ωẑ are given by the final composite linear map







Ux̂

Uŷ

ωẑ






=

ǫζ

µ
·







1 0 0 0

0 1 0 0

0 0 Fc(θ) Fs(θ)






[A(x̂, ŷ)]











η1

.

.

η8











(7)

where ηi are the applied voltages, and Fc(θ) and Fs(θ) are given by Fc(θ) = 1−e2

1+e2 cos (2θ)

and Fs(θ) = 1−e2

1+e2 sin (2θ). We now show how best to select the 8 electrode voltages to

achieve the desired object velocities Ux̂, Uŷ, ωẑ that will translate and rotate the object

from where it was to where it should be (a similar argument will hold for the general

case of N electrodes in an N -channel device).

At every control update we request the desired translational and rotational

velocities of the object, which are uncoupled in the case of orthotropic particles like the

ellipsoid, to be respectively proportional to the positional and orientational deviations

from the desired trajectory. These deviations, or errors, from the desired path are

εx̂ = x̂des − x̂, εŷ = ŷdes − ŷ and εθ = θdes − θ, so (εx̂, εŷ) is the difference between

the desired and current object position and εθ is the difference between the desired and

current object orientation. The desired object velocities Ux̂, Uŷ, and ωẑ are set to be

proportional to the errors εx̂, εŷ, and εθ by the proportionality gain matrix Kprop






Ux̂

Uŷ

ωẑ







des

= Kprop







εx̂

εŷ

εθ






=







Kr 0 0

0 Kr 0

0 0 Kθ













εx̂

εŷ

εθ






(8)

The gains Kr and Kθ are penalties on the translational and orientational errors

respectively. A higher value of Kr forces the controller to select voltages that will

translate the object to the desired position more quickly. Similarly a higher value of
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Kθ forces the controller to select voltages that will rotate the object to the desired

orientation quicker. The relative values of Kr and Kθ decide whether the controller

spends more of its control authority on the object’s translation or on its rotation.

Combining Eqns. 7 and 8 there are more unknowns (the actuator voltages

~η = (η1 η2 .. η8)
T ) than there are known quantities (the desired velocities Ux̂, Uŷ, ωẑ). A

least square solution, which chooses the minimal size control that achieves the desired

velocities, is used to find ~η. Denote the linear map of Eqn. 7 by the matrix P(x̂, ŷ)

P(x̂, ŷ) =
ǫζ

µ
·







1 0 0 0

0 1 0 0

0 0 Fc(θ) Fs(θ)






[A(x̂, ŷ)] (9)

The least square fit computes the voltages ηi, that minimize the 2-norm [39] of the

electrode voltages ||~η||2. The optimal voltages are given by










η1

.

.

η8











= P+(x̂, ŷ)Kprop







εx̂

εŷ

εθ






(10)

where P+(x̂, ŷ) = (PT (x̂, ŷ)P(x̂, ŷ))−1PT (x̂, ŷ) is the pseudo-inverse [39] of the matrix

P(x̂, ŷ), and PT (x̂, ŷ) is the transpose of the matrix P(x̂, ŷ). This is the control law -

it states how to compute the electrode voltages given the difference between the actual

and desired ellipsoid position and orientation.

As for the control design in our previous experimental work [5], in order to avoid

electrolysis (the formation of bubbles at the electrodes that can disrupt the intended

flow) we limit the voltages to a maximum value (termed the saturation voltage)

ηsat = 0.15 V. Hence the voltages determined in Eqn. 10 are linearly scaled so that

this constraint is not violated. If the maximum absolute value of the eight voltages ηi,

computed by the controller in Eqn. 10 is ηmax, then the eight scaled voltages ηscaled
i that

are eventually applied at the electrodes are given by

ηscaled
i =

(

ηsat

ηmax

)

ηi (1 ≤ i ≤ 8) (11)

Since the ellipsoid velocity is linearly proportional to the applied voltages, this scaling

limits the magnitude of the maximum achievable translational and rotational velocity of

the object. At every time step this scaling might reduce the magnitude of the object’s

velocity but not the direction (even after voltage scaling, the particle is steered to correct

for the deviation from the desired path, but possibly at a slower speed).

4.1. Non-dimensionalized equations for the feedback loop

A non-dimensionalized version of the governing equations using the flow Peclet numbers

is presented here. The relevant physical parameters governing the dynamics are the

length scale given by the radius of the control region of the device rdev (in Fig. 5, rdev

is the distance from the center of the control region to the midpoint of any straight
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edge at the boundary), the saturation voltage ηsat, the zeta potential ζ at the fluid-

PDMS interface and the fluid’s permittivity ǫ, and viscosity µ. In what follows, the

non-dimensional parameters are superscripted with an asterisk.

Since the electric field in the device scales as ηsat

rdev
, the translational velocity VEOF

due to EOF will scale as VEOF = ( ǫζ

µ
)( ηsat

rdev
). The time needed for the particle to traverse

the control region will then scale as tdev = rdev

VEOF
. The electro-osmotic shear σEOF

generated in the device will scale proportionally to the gradient of the electric field.

Since the gradient of the electric field in the control region scales as ηsat

r2

dev

, the shear will

scale as σEOF = ( ǫζ

µ
)( ηsat

r2

dev

), so σEOF = 1
tdev

. This scaling of VEOF and σEOF ignores the

contribution of the shape of the control region which is fixed once the number channels

and the ratio cdev

rdev
are fixed (cdev, the channel width, is the width of the straight edge at

the boundary of the control region in Fig. 5). For the rest of this paper, as shown in

Fig. 5, the number of channels is fixed at 8, and cdev

rdev
at 0.5.

The non-dimensional displacement and time parameters are chosen as x̂∗ = x̂/rdev,

ŷ∗ = ŷ/rdev, θ∗ = θ, and t∗ = t/tdev. The translational [û(x̂, ŷ), v̂(x̂, ŷ)] and shear

components [∂û(x̂,ŷ)
∂ŷ

, ∂v̂(x̂,ŷ)
∂ŷ

] of the flow field and their non-dimensional counterparts

[û(x̂, ŷ)∗, v̂(x̂, ŷ)∗], and [(∂û(x̂,ŷ)
∂ŷ

)∗, (∂v̂(x̂,ŷ)
∂ŷ

)∗] are related by û(x̂, ŷ) = VEOF · û(x̂, ŷ)∗,

v̂(x̂, ŷ) = VEOF · v̂(x̂, ŷ)∗, ∂û(x̂,ŷ)
∂ŷ

= σEOF · (∂û(x̂,ŷ)
∂ŷ

)∗, and ∂v̂(x̂,ŷ)
∂ŷ

= σEOF · (∂v̂(x̂,ŷ)
∂ŷ

)∗. With

the non-dimensional map A(x̂, ŷ)∗ chosen as

A(x̂, ŷ)∗ =











rdev 0 0 0

0 rdev 0 0

0 0 r2
dev 0

0 0 0 r2
dev











A(x̂, ŷ) (12)

the non-dimensional flow components can then be stated in terms of A(x̂, ŷ)∗ as










û(x̂, ŷ)∗

v̂(x̂, ŷ)∗

(∂û(x̂,ŷ)
∂ŷ

)∗

(∂v̂(x̂,ŷ)
∂ŷ

)∗











= A(x̂, ŷ)∗











η∗

1

.

.

η∗

8











(13)

where the non-dimensional voltages η∗

i are given by η∗

i = ηscaled
i /ηsat with ηscaled

i chosen

according to the control law given by Eqn. 10 and 11.

The motion of the ellipsoid is governed by e∗1 (= a1

rdev
), e (= a2

a1

), and the rotational

Peclet number Peθ = σEOF/Dθ where Dθ is the rotational diffusion coefficient about ẑ.

Since the expected time for the ellipsoid to rotate by 1 radian about ẑ due to diffusion

and the applied actuation are 1
2Dθ

and 1
σEOF

respectively, the quantity Peθ compares the

actuation’s ability to compensate for the rotational diffusive motion [40]. A larger value

of Peθ signifies a higher ability of the actuation to compensate for the diffusive motion

about ẑ. Denoting the translational diffusion coefficients along the major and minor

axes of the ellipsoid as Dx and Dy respectively, we define two functions, T θ
x (e) = Dx

a2

1
Dθ

and T θ
y (e) = Dy

a2

2
Dθ

, both of which depend solely on the parameter e (see Sec. B.1 of

the SI for details). The function T θ
x (e) is the ratio of the expected time taken for an
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ellipsoid to rotate by 1 radian due to rotational diffusion about ẑ, to the expected time

taken by the ellipsoid to diffuse by a distance a1 along the major axis of the ellipsoid.

Similarly, T θ
y (e) is the ratio of the expected rotational diffusion time, to the expected

time taken to diffuse by a distance a2 along the minor axis of the ellipsoid.

With the control law given by Eqns. 8 and 10, the controlled dynamics of an

ellipsoid, including the effect of Brownian motion, is as follows. The geometric center

translates by an amount dx̂∗ along x̂∗ , dŷ∗ along ŷ∗ , while the ellipsoid rotates by an

amount dθ∗ about ẑ in time dt∗ according to the stochastic dynamics update given by

dx̂∗ = û(x̂, ŷ)∗ · dt∗ + dB∗

x̂

dŷ∗ = v̂(x̂, ŷ)∗ · dt∗ + dB∗

ŷ (14)

dθ∗ =
1 − e2

1 + e2

[(

∂û(x̂, ŷ)

∂ŷ

)

∗

cos (2θ∗) +

(

∂v̂(x̂, ŷ)

∂ŷ

)

∗

sin (2θ∗)

]

· dt∗ + dB∗

θ

where dB∗

x̂ and dB∗

ŷ are the translational Brownian displacements along x̂ and ŷ

respectively and dB∗

θ is the rotational Brownian displacement about ẑ which are given

by

dB∗

x̂ = (

√

2T θ
x (e)dt∗

Peθ

e∗1 cos (θ∗) −
√

2T θ
y (e)dt∗

Peθ

e∗2 sin (θ∗)) · Nx(0, 1)

dB∗

ŷ = (

√

2T θ
x (e)dt∗

Peθ

e∗1 sin (θ∗) +

√

2T θ
y (e)dt∗

Peθ

e∗2 cos (θ∗)) · Ny(0, 1) (15)

dB∗

θ = (

√

2dt∗

Peθ

) · Nθ(0, 1)

where e∗2 = a2/rdev = e∗1 · e. The factors Nx(0, 1), Ny(0, 1), and Nθ(0, 1) denote

independent Gaussian random variables with mean 0 and variance 1 which reflect

the random character of Brownian motion (see [41] for an introduction to stochastic

update formulae). Equations 10-15 describe the controlled motion of the ellipsoid in

non-dimensional terms. We simulate this motion for different ellipsoid manipulation

tasks and Peclet numbers in the next section.

5. Numerical simulations of an ellipsoid’s manipulation

In this section the control law described previously is used to simulate the steering of an

ellipsoid along a desired trajectory while the ellipsoid is being perturbed by Brownian

motion (according to the controlled ellipsoid dynamics described in Eqns. 10-15). We

show how the ellipsoid can be translated and simultaneously rotated as well as rotated in

place while trapped at a given location. We will show the dependence of the root mean

square (RMS) orientation error (while the ellipsoid is trapped) on Peθ and the shape

parameter e. We explain the source of this error in detail with a simple Fokker-Planck

model which can be used to theoretically predict the trapping error in orientation given

the size and aspect ratio of the rod, and the flow parameters.
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Parameter Description Value

ζ Zeta Potential at water-PDMS interface 5 × 10−2 V

µ Viscosity of water 8.9 × 10−4 Pa·s
T Temperature 300 K

ǫ Permittivity of water 78.4 ǫo[42]

rdev Radius of control region 100 µm

ηsat Saturation voltage 1.5 × 10−1 V

tdev Time scale 1.7 s

VEOF Electro-osmotic velocity 58 µm/s

σEOF Electro-osmotic shear 0.58 rad/s

a1 Major axis length of ellipsoid 5 µm

a2(= a3) Minor axis length of ellipsoid 100 nm

Table 1. Example of parameter values for e∗1 = .05, e = .02, and Peθ = 30.

For showing control over different trajectories, the simulations were performed with

parameters e∗1 = .05, e = .02, and Peθ = 30. Table 1 states a sample set of values of the

physical parameters that reflect the above non-dimensional numbers.

Unless otherwise stated, the non-dimensional simulation results are stated in

degrees for rotation, the translational displacements in units of rdev, time in units of

tdev, and applied voltages in units of ηsat. The applied voltages are updated every

dt∗ = 5.9 × 10−3, which corresponds to the 10 ms time lag that is expected in

experiments [43]. This time lag occurs due to the finite frame rate of the camera and

the computational time required by the control and object vision detection algorithm.

The ellipsoid’s position and orientation are assumed to be perfectly known in these

simulations. The choice of gain coefficients Kr and Kθ (see Eqn. 8) determines the

extent to which the control authority is spent on controlling position versus orientation

respectively. We experimented with different values of the gain coefficients, for achieving

the optimal trade-off between positional and orientational errors in simulations and

settled on K̂r = Kr ∗ tdev = 1.7×106 and K̂θ = Kθ ∗ tdev = 8×104 for all the simulations

shown here. We will discuss the relation between ηsat, the rotational diffusion coefficient,

and the gain coefficients at the end of this section. The first simulation is of the ellipsoid

tracing a square path, shown in Fig. 6 and 7.

The square path has a side length equal to 0.8. The ellipsoid initially starts off at

the bottom left corner of the square and is returned to the same point at the end of the

simulation. In the initial part of the simulation (from the bottom left to the top left

corner of the square path), the ellipsoid is controlled to move along a straight line, at a

constant orientation (θ∗ = 90◦). Along the next three sides of the square, the ellipsoid

is controlled to rotate by 90◦ by the time it reaches the end of that side (see movie M1

in Supplementary information). The positional and orientation errors are shown in Fig.

8.
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Figure 6. Six snapshots showing the ellipsoid tracing the square path (shown in

black). In each snap shot, the flow field is shown with blue arrows and the voltages

applied at the eight electrodes are shown inside the gray circles at the periphery. The

ellipsoid is continually perturbed by Brownian motion and is controlled and corrected

by the flow to start at the bottom left corner of the desired trajectory, trace the square

path, and then return to the bottom left corner. While traversing the trajectory from

the bottom left corner to the top left corner of the square (t∗ = 0.3 and t∗ = 0.9),

the ellipsoid is controlled to translate without rotating (an orientation of θ = 90◦ is

maintained). Then the ellipsoid is controlled to rotate by 90◦ while translating along

each of the remaining three segments of the square. A strobe plot showing only the

ellipsoid’s position and orientation with respect to the square is shown in Fig. 7.

In Fig.9, we demonstrate the ellipsoid being controlled along a more complex “hour

glass” path shape that spans the entire control region. The ellipsoid starts at the bottom

left corner of the trajectory at an initial orientation of θ∗ = 90◦. It is then controlled

to move to the top right corner, then to the top left corner, down to the bottom right

corner, and finally back to the bottom left corner. While translating, the ellipsoid is

controlled to simultaneously rotate so that its major axis is aligned with the each of

the four segments of the trajectory by the time it reaches the end of that segment (see

movie M2 in Supplementary information).

The next simulation shows the ellipsoid both trapped in place and being rotated

from an initial orientation of 90◦ to a final orientation of 0◦ by EOF control. The

change in orientation of the ellipsoid over time and the associated flow field and electrode
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Figure 7. The panel on the left is a strobe plot of the desired orientation of the

ellipsoid along different points of the square path. The panel on the right shows a

strobe plot of the ellipsoid tracing the square path (shown here for 95 consecutive

time steps). The side of the square path (marked in black) measures 0.8 in the non-

dimensional length units. The ellipsoid starts in the bottom left corner, traces the

path, and returns to the starting point by t∗ = 5.6.
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Figure 8. The top and bottom panels show the variation of the positional and

orientational errors respectively for the ellipsoid tracing the square path. Denote the

coordinates of the ellipsoid at time t∗i as (x̂∗(t∗i ), ŷ
∗(t∗i ), θ

∗(t∗i )) and the coordinates

that were desired at the previous time step t∗i−1 as (x̂∗

des(t
∗

i−1), ŷ
∗

des(t
∗

i−1), θ
∗

des(t
∗

i−1)).

The positional error εpos(t
∗

i ) is defined as εpos(t
∗

i ) ≡ ((x̂∗(t∗i )− x̂∗

des(t
∗

i−1))
2 +(ŷ∗(t∗i )−

ŷ∗

des(t
∗

i−1))
2)

1

2 . The orientational error εθ∗(t
∗

i ) is defined as εθ∗(t
∗

i ) ≡ θ∗(t∗i )−θ∗des(t
∗

i−1).

For the first side of the square (0 < t∗ < 1.2), apart from countering rotational

Brownian motion, there was no need to rotate the ellipsoid. Hence the available control

authority could be committed more fully to correcting positional errors. At subsequent

stages, the need to turn the ellipsoid leads to a decreased capability to correct positional

errors.
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Figure 9. Six snapshots showing the ellipsoid tracing the “hour glass” path (shown

in black) that spans the majority of the control region. The ellipsoid starts at the

bottom left corner of the desired trajectory, traces the path, and then is returned to

the bottom left corner. Along each of the 4 segments of the desired trajectory, the

orientation task is to align the major axis of the ellipsoid along that segment by the

time it reaches the end of that segment.

voltages are shown in Fig. 10 (see movie M3 in Supplementary information).

In the initial part of the simulation (until t∗ = 1.17), the controller spends most

of its control authority on rotating the ellipsoid from θ = 90◦ to θ = 0◦ compared to

correcting for positional error due to translational Brownian motion. This results in

a non-zero mean translational error of 1.9 × 10−4 in position, with root mean square

(RMS) of 1.3 × 10−4. In the tail end of the above simulation, when the ellipsoid is

nominally trapped at the desired location and orientation, as shown in Fig. 12, we

observe an RMS error in the orientation angle. The RMS error in orientation, RMSsim,

is computed from the simulations in the following manner

RMSsim = (
1

n

i=m+n
∑

i=m

(θ∗(t∗i ) − θ∗)2)
1

2 (16)

where θ∗(t∗i ) is the orientation of the ellipsoid at the ith time step. There are a total of

(m + n) time steps in the simulation, the ellipsoid first reaches θ∗ = 0◦ at the mth time

step (termed the first passage time), then θ∗ = 1
n+1

(
∑i=m+n

i=m θ(t∗i )). This RMS error is a

result of the competition between Brownian motion and the controller. The rotational

Brownian motion of the ellipsoid will tend to rotate the ellipsoid away from θ∗ = 0◦,

while the controller tries to bring it back to θ∗ = 0◦.

Since the rotational dynamics depends on the rotational Peclet number Peθ and



Simultaneous Positioning and Orientation of a Single Nano-Object by Flow Control 18

0 0.5 1

0

0.5

1

t* = 0

0.13

−0.47 0.16 1

0.33

−0.70.30.97

0 0.5 1

0

0.5

1

t* = 0.6

−0.55

−0.22 1 0.25

−0.67

−0.110.70.43

0 0.5 1

0

0.5

1

t* = 1.2

−0.11

−0.73 0 1

0.48

−0.470.520.95

0 0.5 1

0

0.5

1

t* = 2.4

−0.21

0.82 −0.12 −1

−0.43

0.15−0.19−0.79

Figure 10. Four snapshots showing the ellipsoid rotating by 90◦. In each snap shot,

the flow field is shown with blue arrows and the voltages applied at the eight electrodes

are shown inside the gray circles at the periphery. The ellipsoid has been rotated by

90◦ by t∗ = 1.2 after which the controller continuously adjusts voltages to counteract

Brownian motion and maintain the ellipsoid in place at θ∗ = 0◦.

the shape parameter e, we plot the dependence of the RMS trapping error as a function

of these variables in Fig. 11. For better visualization, the error is plotted against the

aspect ratio 1/e. As one would expect, the orientation error decreases with increasing

Peθ because of comparatively larger actuation compensating for the particle’s diffusive

motion. For a fixed Peθ, the plot shows a sharp increase in error as the aspect ratio

approaches 1, i.e., as the shape of the ellipsoid approaches that of the sphere (unit aspect

ratio). In addition there is a slow increase in error, for a fixed Peθ, as the aspect ratio

increases (compare errors between aspect ratios 10 and 50). We explain this next.

5.1. Fokker Planck equation describing the orientation error

It is possible to theoretically estimate the variation of the RMS error in orientation,

termed RMStheor, with respect to the size and the aspect ratio of the ellipsoid as

RMStheor =
√

2

(

1 + e2

1 − e2

) (

Dθ

σmax

)

≡
√

2

(

1 + e2

1 − e2

) (

kT

µ

) (

g(e)

a3
1

) (

1

σmax

)

(17)

where RMStheor is in radians, σmax is the maximum rotational velocity with which one

can turn the ellipsoid and Dθ ≡
(

kT
µ

)

g(e)
a3

1

(see [36] and expressions for the rotational

diffusion coefficient in Section B of the Supplementary Information to see that Dθ is

inversely proportional to a3
1). The value of σmax equals the maximum allowable fluid

shear that can be actuated by the electrodes under the constraint that the applied
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Figure 11. Effect of aspect ratio and rotational Peclet number on RMS orientation

error: The parameter e∗1, which corresponds to the semi-major axis length of the

ellipsoid, was fixed at the value 0.05. For each (Peθ, e), the plotted values are the

average of 10 runs of the simulation with the ellipsoid being nominally trapped at 0◦.

The error bar for each average is plotted on the graph, while a surface is fitted to the

data to guide the eye. Increasing values of Peθ means that more shear is available to

compensate the perturbation due to the rotational Brownian motion of the ellipsoid,

thus decreasing the error. For a fixed Peθ, there is a sharp increase in error as the

shape of the ellipsoid approaches that of the sphere (aspect ratio ≈ 1.1). This effect is

explained in the text.

voltages do not exceed ηsat. In terms of Peθ, Eqn. 17 can be rewritten as

RMStheor =
√

2

(

1 + e2

1 − e2

) (

1

σ∗

maxPeθ

)

(18)

where σ∗

max is the non-dimensional maximum shear that only depends on the shape of

the device, i.e., on the number of channels and the device geometry parameter cdev

rdev
.

A derivation of the expression in Eqn. 17 makes use of two observations noted in the

simulations. First, the controller spends most of its control authority in maintaining

the ellipsoid’s orientation at θ = 0◦ and relatively less authority on position control.

Second, as seen in the bottom panel of Fig. 12 (which corresponds to e∗1 = .05,

e = .02, and Peθ = 30), the controller exerts this authority by maintaining the

value of the shear component
(

∂û
∂ŷ

)

∗

at the maximum of ±1.6 for most time steps

after t∗ ≈ 1.1 (when it is first oriented at θ∗ = 0◦). It abruptly switches between

±1.6 as needed in order to counter the rotational Brownian motion of the ellipsoid.

Thus the controller essentially executes a simple bang-bang-type control law [44] for

maintaining the ellipsoid’s orientation at θ∗ = 0◦: it checks whether the ellipsoid has
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Figure 12. The top panel shows the temporal trace of the ellipsoid’s orientation as it is

being turned by 90◦. The bottom panel shows the temporal trace of the ‘unperturbed’

fluid shear rates, (∂û
∂ŷ

)∗ in red and (∂v̂
∂ŷ

)∗ in blue, computed at the geometric center of

the ellipsoid. For most of the time steps after t∗ = 1.2, the controller can be seen to

maintain the value of the shear component (∂û
∂ŷ

)∗ at the maximum it can create, ±1.62,

or it abruptly switches between these values. This switching counters the rotational

Brownian motion of the ellipsoid and maintains its orientation at θ∗ = 0◦.

positive orientation θ∗ > 0◦, or negative orientation, θ∗ < 0◦, and attempts to apply the

maximum allowable shear (σ∗

max = 1.6), that can rotate the ellipsoid back to θ∗ = 0◦.

The associated Fokker-Planck equation for the probability distribution function of θ

that arises from the stochastic differential equation that describes the above simplified

control law yields Eqn. 17, as explained in detail in Section C of the Supplementary

Information.

In Fig. 13 we compare RMStheorand and RMSsim for a range of ellipsoid sizes

a1 and aspect ratios a1

a2

(note: e = a2

a1

). The simulations for computing RMSsim were

performed with the flow parameters stated in Table 1, with the ellipsoid being trapped

by EOF control at the center of the control region. For plotting RMStheor we set the

maximum shear, which is a property of the device/controller and not the ellipsoid, as

σmax = 0.94 rad/s (corresponding to σ∗

max = 1.6 shown in Fig. 12). Given that we

disregard any loss of control authority for position control in the simple model of the

control law that was used to derive RMStheor, the good match between RMSsim and

RMStheor for the range of particle sizes and aspect ratios under consideration verifies

that most of the controller’s authority is indeed spent in controlling the orientation

rather than the position of the ellipsoid.

For a fixed aspect ratio, the rotational diffusion coefficient varies inversely as a3
1
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Figure 13. Comparison of RMS errors in orientation between the theoretical estimate

RMStheor (Eqn. 17) and the simulation based estimate RMSsim (Eqn. 16) for flow

parameters stated in Table 1. For each ellipsoid size and aspect ratio, the plotted value

of RMSsim is the average of 10 runs of the simulation with each run lasting 50 seconds

while the ellipsoid was trapped at the center of the control region. The error bars for

the simulation based estimate RMSsim are shown in the inset for a1 = 2 µm, while the

error bars for other values of a1 are too small to depict on the plot. The plot shows the

increase in RMS error due to the increase in the diffusion coefficient as the ellipsoid size

(a1) decreases. For a fixed a1, the plot shows an increase in RMS error at the highest

and lowest values of the aspect ratios (a1

a2

) with a dip in RMS error at a1

a2

≈ 2. The

diffusion coefficient increases weakly with aspect ratio. Consequently, for a fixed size

a1, there is a comparatively slow increase in RMS error seen for values a1

a2

> 5 in the

plot. As the aspect ratio decreases (a1

a2

→ 1), there is a sharper increase in RMS error

due to the term 1+e2

1−e2 in Eqn. 17. This effect is noticeable for smaller ellipsoids (a1 ≤ 3

µm). The good match between RMStheor and RMSsim shows that orientation control

is harder to achieve and so the controller spends most of its authority in controlling

orientation rather than position. The ellipsoid size a1 = 3 µm and the aspect ratio
a1

a2

= 1.2 are seen to be lower bounds for maintaining an RMS error of 5◦.

(as opposed to the translational diffusion coefficient which is inversely proportional to

a1). Hence as a1 decreases, the RMS error should increase as seen in Fig. 13. The

increase in aspect ratio (a1

a2

), for fixed a1, causes a comparatively weaker increase in the

diffusion coefficient, and consequently in the RMS error. For a fixed a1, the aspect ratio

dependent term 1+e2

1−e2 (in Eqn. 17) increases the RMS error as e → 1. This is observed

in Fig. 13, more noticeably for smaller particles, at a1

a2

= 1.1. This increase in RMS

error reflects the loss in the ability of a curl-free flow to rotate a near-spherical shaped

particle.
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In other work by our group [6], we have been able to experimentally show position

control of nanoscopic particles by EOF based position control in a highly viscous fluid.

This was possible because the actuation was not saturated while trying to control the

particle position but the increased viscosity reduced the translation diffusion coefficient.

However this avenue is not feasible for orientation control because the actuation does

saturate while trying to compensate for rotational diffusion. Thus the effectiveness

of rotational control is set by actuator saturation. The rotational Peclet number Peθ

is independent of fluid viscosity. Seen in dimensional terms, the rotational diffusion

coefficient Dθ as well as the maximum shear σmax (which was set as the maximum value

of the fluid shear ∂
∂ŷ

(û) observed in Fig. 12) are both inversely proportional to the fluid

viscosity (see Eqn. 11 in Section B of the Supplementary information for an expression

of the diffusion coefficient and Eqn. 6 in the main text for the shear field). Hence

increasing the fluid viscosity does not decrease the value of the RMS error in orientation

(since RMStheor ≈ Dθ

σmax
). Thus, in the control model described in this paper, for the

flow parameters stated in Table 1, even though slender particles (where a2 = 100 nm for

example) can be controlled, a1 = 3 µm and a1

a2

= 1.2 are seen to be lower bounds on the

particle size and aspect ratio for maintaining RMS errors in orientation of around 5◦,

irrespective of the fluid viscosity. Since the control voltages are not allowed to exceed

ηsat, penalizing the orientation error in Eqn. 10 by indefinitely increasing the control

gain Kθ does not reduce the orientation error below what is allowable by the maximum

shear σmax. Instead one could reduce electrolysis at the electrodes by protecting them

with a film of nafion [45]. This would allow for an increased value of ηsat, and hence

an increased value of σmax, thus reducing the RMS error. This will be investigated in

future experiments.

6. Additional considerations towards experiments

In this section we consider additional features that will be important for future

experiments and applications. We first consider the effect of the size and shape of more

general objects for flow control. For other types of orthotropic particles, for example a

cylinder, there will be a different constant, instead of 1−e2

1+e2 , that determines the rotational

velocity of the particle in Eqn. 4. This constant can be computed by simulating

the flow around the cylinder with the Stokes flow equations (described in Section A

of the Supplementary Information) and integrating the resulting shear and pressure

distributions on the surface of the cylinder. The cylinder’s motion can be controlled

using a similar control law modified with this new constant. Also in experiments, the

exact size of the cylinder can only be known to a certain precision. Since the control

voltages depends on the object size (through the P(x̂, ŷ) matrix in Eqn. 9) as well as

on the gain matrix Kprop in Eqn. 10, one could compensate for the imprecise knowledge

of the object size by experimenting with the value of Kprop until a suitable performance

is achieved.

For non-orthotropic particles, since translation and rotation are coupled, the
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structure of the P(x̂, ŷ) matrix will change. In particular, some of the elements of

the matrix that premultiplies A(x̂, ŷ) in Eqn. 9 will have a non zero value. However one

can still compute the pseudo-inverse of P(x̂, ŷ) and obtain the control voltages, after

one makes an appropriate choice of Kprop. In this case Kprop should be chosen to be

non-diagonal to ensure that orientation and position errors are penalized in a manner

that accounts for the coupling between translation and rotation.

We have shown simulations in which the object is being controlled in two

dimensions, however the translational diffusion of the object in the z direction and

the rotational ‘pitching’ diffusion about the body-fixed y axis can bring the object in

contact with (and thus might make it stick to) the glass and PDMS surfaces that form

the floor and ceiling of the device respectively. However, the object may have a natural

electrostatic repulsion to the wall and if not, coatings can be applied to the device

that will prevent sticking of the object to the device [46]. With such coatings and by

considering devices that are thin with respect to the object length one can mitigate the

tendency of the object to pitch out of the plane in which it is being controlled. Even

when the object pitches out of plane, one does not completely lose the ability to control

the rod in the plane of the device. As long as the pitching angle is small, one should

expect to control the rotation about ẑ (normal to the device plane) with the same control

law as proposed in this paper, with a modified rotational gain Kθ (see Eqn. 8).

Our control algorithm assumes that the object velocity exhibits a linear dependence

on the electric field (see Eqns. 2 and 4). However, the object itself might have a charged

Debye layer at its interface with the surrounding fluid. In the presence of an applied

electric field, the ions in the Debye layer will move the local fluid surrounding the

object, which can in turn impart an unintended translational and rotational velocity to

the object. Such an electrophoretic motion of the particle, due to its own (uniform)

zeta potential, is linearly dependent on the electric field [47] and can be readily

accommodated within our control law as explained in Section D of the supplementary

information.

However, depending on whether the object is strongly polarizable, one could observe

a quadratic dependence of the velocity on the electric field, as opposed to the strictly

linear dependence described in the previous section. This quadratic dependence is

induced charge electrophoresis (ICEP) [48, 49, 50, 51]. This effect is explained in Section

D of the supplementary information where we show that the magnitude of the rotational

velocity of the ellipsoid due to ICEP using the approximations used by Saintillan et al.

[51] is negligible (less than 6 % of that due to EOF) due to the low electric field strengths

(less than 7 V/cm) at the ellipsoid’s location in the control region. The translational

velocity of the ellipsoid due to ICEP is identically zero [51]. This matches well with

experimental results [52], where the rotational velocity of a comparably sized object (6

µm × 300 nm) in water due to ICEP was noticeable only at electric field strengths that

were greater than 30 V/cm. Hence this nonlinear effect can be safely neglected in our

simulations.
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7. Conclusion

We have described the physics that shows how a planar electro-osmotic flow translates

and rotates an object that is immersed in it. The map describing this physics can

be inverted to obtain a control law that allows one to manipulate the position and

orientation of the object by electrically actuating the flow. Our simulations and

theoretical model show how the performance of the algorithm scales with the size and

aspect ratio of an ellipsoidal object and we have explained how this approach can be

extended to objects of more general shapes. In order to realize what we have discussed

experimentally, we need to extend our vision algorithm to also estimate the orientation

of objects. The vision algorithm has to be robust to the uncertainty in measurement due

to pixelation in the camera sensor, dark noise from the camera, low photon counts if

the objects are dimly fluorescent, or measurement noise due to imperfect estimation

of a small metallic object’s orientation from its scattered light. We are currently

developing the needed vision algorithms as well as implementing our control methods in

hardware, to demonstrate position and orientation control of one and multiple objects

simultaneously in experiments. These results will be reported in future publications.
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