
The Policy Machine: A Novel Framework for Access Control Policy

Specification and Enforcement

David Ferraioloa, Vijayalakshmi Atluria,b,∗, Serban Gavrilaa

aNational Institute of Standards and Technology

100 Bureau Dr. Stop 8930 Gaithersburg, MD 20899

dferraiolo@nist.gov, atluri@rutgers.edu,gavrila@nist.gov

bMSIS Department and CIMIC, Rutgers University, USA

Abstract

The ability to control access to sensitive data in accordance with policy is perhaps the most fundamental security
requirement. Despite over four decades of security research, the limited ability for existing access control mechanisms
to generically enforce policy persists. While researchers, practitioners and policy makers have specified a large variety
of access control policies to address real-world security issues, only a relatively small subset of these policies can be
enforced through off-the-shelf technology, and even a smaller subset can be enforced by any one mechanism. In this
paper, we propose an access control framework, referred to as the Policy Machine (PM) that fundamentally changes
the way policy is expressed and enforced. Employing PM helps in building high assurance enforcement mechanisms
in three respects. First, only a relatively small piece of the overall access control mechanism needs to be included
in the host system (e.g., an operating system or application). This significantly reduces the amount of code that
needs to be trusted. Second, it is possible to enforce the precise policies of resource owners, without compromise on
enforcement or resorting to less effective administrative procedures. Third, the PM is capable of generically imposing
confinement constraints that can be used to prevent leakage of information to unauthorized principals within the
context of a variety of policies to include the commonly implemented Discretionary Access Control and Role Based
Access Control models.

Keywords: Security Policy Enforcement Framework, Policy Machine, Access Control

1. Introduction

The ability to control access to sensitive data in accor­
dance with policy is perhaps the most fundamental se­
curity requirement. While over the past four decades se­
curity researchers have proposed a large variety of poli­
cies and policy models to address real-world security
problems, only a small subset of these policies are en­
forceable through commercially available mechanisms,
and even a smaller subset can be enforced by any one
mechanism. Well known examples of access control
models include Discretionary Access Control (DAC)
and Mandatory Access Control (MAC) (1) of the 70s,
Chinese Wall policy (2) of late 80s, Role-based Access
Control (RBAC) (3; 4; 5) of the early 90s, and more
recently XACML-conforming services and applications

∗Corresponding Author: Vijay Atluri, MSIS Department, Rut­
gers University, 1 Washington Park, Newark, NJ 07102, USA,
atluri@rutgers.edu

(6). It is important to recognize that within this progres­
sion of this development, a latter framework does not
necessarily subsume the policy support of a former.

In this paper, we propose an access control frame­
work, referred to as the Policy Machine (PM). The PM
is not an extension of any existing model or framework,
but instead is a redefinition of access control in terms of
a standardized and generic set of relations and functions
that are reusable in the expression and enforcement of
policies. Its objective is to provide a unifying frame­
work to support a wide range of attribute-based policies
or policy combinations through a single mechanism that
requires changes only in its data configuration. PM can
be thought of as a logical “machine” comprising of a
fixed set of data relations, configurable through a fixed
set of administrative operations for the expression of
combinations of many policies, and a fixed set of func­
tions for making access control decisions, and enforcing
policy based on that expression. Under the PM, policies

Paper submitted to Journal of System Architecture March 19, 2010

mailto:atluri@rutgers.edu
mailto:dferraiolo@nist.gov

are enforced through a reference mediation function. In
its simplest and most general form, the PM standard ar­
chitecture is comprised of one or more PM clients, one
or more PM servers, a PM database, and one or more
resource servers.

To enable flexible policy enforcement, PM abides by
the principle of separation of policy from mechanism
that dictates that no policy should be tightly coupled to
its mechanism. The challenge is to identify a minimal
set of primitives that can specify and enforce a large va­
riety of attribute based security policies. We have identi­
fied a surprisingly small set of data, relations and func­
tions that are reusable in the expression and enforce­
ment of a wide range of attribute-based policies. These
include assignment relations, prohibition relations, and
obligations.

Employing PM helps in building high assurance en­
forcement mechanisms in three respects. First, only
a relatively small piece of the overall access control
mechanism needs to be included in the host system (e.g.,
an operating system or application). This significantly
reduces the amount of code that needs to be trusted.

Second, policies are enterprise- and mission-specific.
The enforcement mechanisms offered by commercial
products are typically limited to a few fixed policies.
Organizations therefore have to resort to implementing
the unsupported policies as application code or simply
ignore them. Under the proposed PM framework, the
desired security policy can be enforced independent of
that offered by the vendors. Moreover, it is possible to
protect a resource under multiple security policies si­
multaneously. The actions of users and processes may
be controlled under multiple policies, as well as enter­
prise objects may be protected under multiple policies.

Third, the PM has the ability to generically impose
confinement constraints to not only meet the policy ob­
jectives of Mandatory Access Control, but also to pre­
vent the leakage of information within models that are
typically incapable of imposing such constraints. This
is a particularly important assurance aspect given the
general threat of malware and malicious or complacent
user actions. Specifically, it is well known that DAC
and RBAC are vulnerable to Trojan Horse attacks. In
this paper, we demonstrate how the PM framework can
address such vulnerabilities.

To demonstrate PM’s viability and its flexible policy
support, we have developed a reference implementation.
We can now show, through our reference implementa­
tion, how to configure the PM for the expression and
enforcement of a diverse set of policies to include in­
stances, and combinations of DAC, MAC, RBAC, Chi­
nese wall (2), ORCON (7), history-based SoD, etc.

This paper is organized as follows. In section 2, we
present the PM system architecture. In Section 3, we de­
scribe the PM’s basic data sets, relations and reference
mediation function. In section 4, we show by example
the PM’s ability to express and enforce the control ob­
jectives of a variety of policies, including RBAC, MAC,
DAC and Chinese Wall, through the configuration of
PM relations. It is our hope that the reader can envi­
sion configurations of other policies as well. In section
5 we demonstrate the PM’s natural ability to combine
policies. Section 6 discusses related work, and section
7 concludes the paper by presenting a short discussion
of the future vision, benefits and other functionalities of
the PM.

2. System Architecture

Any access control enforcement framework should
comprise a policy enforcement point (PEP) and a pol­
icy decision point (PDP). Normally, both these func­
tions are performed by the OS or the application soft­
ware. As such, they must be rendered as trusted com­
ponents. As it is evident, since the application and OS
have many other functional components, they tend to be
significantly large, resulting in a large amount of code
that needs to be trusted.

The PM is comprised of a PM server and PM clients,
as shown in Figure 1. The PM server includes a PM
Database, a PDP, a policy administration point (PAP)
and an event processing module. The PM client is com­
prised of a PEP, its application programming interfaces
(API), and PM-aware applications. In our current im­
plementation, the PEP is implemented as a kernel simu­
lator. Because the PEP is simple and straightforward to
implement, establishing trust in the PM client is simpli­
fied. The PM server also needs to be trusted. Because it
could be implemented as a central server that commu­
nicates only with PEPs and only through well defined
interfaces, it has a reduced attack surface. The green
shaded blocks of Figure 1 indicate the untrusted com­
ponents and the orange shaded blocks the trusted com­
ponents.

The PM client or the user environment is the con­
text in which the user’s PM processes run. It can be an
operating system, an application (e.g., a database man­
agement system), a service in a service oriented archi­
tecture, or a virtualized environment. Typically, a PM
user logs on the PM by using a GUI provided by the
PM client. A successful login opens a user session on
the PM client. Within that session, PM presents the
user with a logical view, called “personal object system”
(POS), of all his/her accessible resources (e.g., files,

2

R

PEP

PEP

PDP

PM Server

PM Data base

PAP

Event

processing

Applications

Host System

API

Applications

Host System

PEP
PM Client

PEP

API

PM Client

Resources

Resources

Figure 1: The System Architecture

email messages, work items). As an alternative, PM
may let the user ask for specific accessible resources.
Within the session, the user may create and run vari­
ous PM processes that request access to PM-protected
resources. The PEP within the PM client traps each
access request, and then asks the PDP within the PM
server to decide whether to grant or reject the access re­
quest. The physical location of each object is known
to the PM server (and transparent to the client). In the
case of a granted request, the server response is accom­
panied by the physical location of the object. The PM
client next enforces the server’s decision, granting or re­
jecting the process’ access to the object. For a granted
request the PM client requires the cooperation of a re­
source server in performing the granted operation on the
physical content of an object. The resource server can
reside on the machine that includes the user environ­
ment or on a server that is dedicated the storage of PM
resources. The PM client exposes a standard set of APIs
that can be used to develop PM-aware applications.

The PDP receives an access request from (the PEP
of) a PM client, computes a decision to grant or reject
the access request, and returns the result. In this as­
pect, the PM server implements PM’s reference media­
tion function. The decision is based on the identity of
the user/process that issued the request, the requested
operation, the requested resource/object, and the per­

mission and prohibition relations, which are stored in
the PM database. Essentially, a request is granted if and
only if there exist appropriate assignment relations (see
Section 3) and there does not exist a prohibition for that
user or process on the requested object. The event pro­
cessing module of the PM server executes the responses
to events specified in the obligation relations stored in
the PM database, when the events are triggered by a
client’s successful execution of an operation on a PM
object. Finally, the administrative module (called Pol­
icy Administration Point, or PAP), is used to administer
the PM database, i.e., to configure the current policy.
The PM server exposes a standard set of commands that
can be used by clients to solicit its services.

The PM database contains a standard set of data and
relations that represent the current policy configuration.
As already stated, the policy configuration is used by
the PM server’s PDP to compute access control deci­
sions. The policy configuration can be set up and/or up­
dated by a PM administrator using the PM server’s PAP.
The PM server’s event processing module may dynam­
ically update the policy configuration by executing the
responses attached to events that were detected in the
PM clients.

Finally, the PM uses the resource repositories and
servers to store and retrieve the physical contents of
its objects. The repository of each object is obviously

3

known to the PM, but transparent to the user. If a client’s
request to access a resource is granted, this decision ar­
rives at the client’s PEP accompanied by the physical
location of the object. The PM client cooperates with
the resource server in transferring the contents of an ob­
ject from/to a repository to/from the PM user environ­
ment where the requesting process resides. Note that
the resource servers may be implemented as PM client
modules.

The state of the policy machine may dynamically
change as a consequence of successful accesses. A
policy can be created through data configuration alone.
However, PM has the provision to import existing poli­
cies through policy libraries.

3. The Policy Machine

3.1. PM Basic Elements

The PM’s basic elements include authorized users
(U), processes (P), system operations (Op), and objects
(O). Users are unique entities that are either human be­
ings or “system users”. Objects are names that uniquely
specify system entities that are controlled under one or
more policies. Included in the set of objects are PM ac­
cess control data and relations. The set of objects may
pertain to environment specific entities such as files,
ports, clipboards, email messages, records and fields.
The selection of entities included in this set is a matter
of choice determined by the protection requirements of
the system. Operations are unique actions that can be
performed on the contents of objects. Some of these op­
erations are specific to the environment for which the
PM is implemented. For example, common operating
system operations include read (r) and write (w). Oth­
ers pertain to PM administrative operations that create
and delete PM data and relations.

Human users submit access requests through pro­
cesses. Most models treat users and their processes uni­
formly, under the concept of a subject, defined as an
active entity. The PM is different in this regard by treat­
ing users and processes as independent but related en­
tities. The impact is greater user access flexibility and
transparency. A process is a system entity, with mem­
ory, and operates on behalf of a user. Essential prop­
erties of processes are that they issue access requests,
have exclusive access to their own memory and none
to any others, but may communicate and exchange data
with other processes through a physical medium such
as the system clipboard or sockets. A user may be as­
sociated with one or more processes, while a process
is always associated with just one user. We denote by

process user(p) the user associated with process p ∈ P.
We denote by (op, o)p a process access request, where
op ∈ Op, o ∈ O, and p ∈ P.

To afford appropriate mappings of attributes to poli­
cies, we introduce policy classes. We assume PC be the
set of policy classes. A user, object or their respective
attributes may belong to a policy class pc ∈ PC. Note
that an object may be protected under more than one
policy class, and similarly a user may belong to more
than one policy class.

3.2. PM relations
PM relations are of three types - assignments, used to

express and determine privileges, prohibitions that are
expressed as user and process deny relations, and obli­
gations that are defined as event-response relations. The
configuration of assignments and prohibitions define the
access state of users and processes, and the access state
and the obligations together define the overall PM pol­
icy state.
Assignments: A PM privilege is a triple of the form
(u, op, o) where u ∈ U, op ∈ OP, o ∈ O, and where
(op, o) is said to be u’s capability and (u, op) is said to
be o’s access entry. Its meaning is that user u can per­
form operation op on object o. As with other access
control schemes, PM privileges are indirectly managed
through higher level abstractions. The PM includes four
such abstractions, namely user attributes (UA), object
attributes (OA), operation sets, and policy classes (PC),
with a binary assignment relation denoted by →.

For each object o ∈ O, we assume the singleton set
{o} is an object attribute (an element of OA). We will use
the name o to denote this singleton set {o} (the object
attribute) as well as the object o. Note that OA may
contain other object attributes, which, as sets, may be
equal to {o}, but have different names. For simplicity,
with a slight abuse of the notation, we treat O ⊆ OA.

An important PM concept is that all user and object
attributes have common semantics regardless of their
kind. A user attribute is a many-to-many relation that
defines a set of users on one side and a set of capa­
bilities on the other. This definition is consistent with
the formal definition of a role (4). The same semantics
can be used to define other kinds of attributes such as
communities of interest, organizational units, clearance
levels, etc. An object attribute is also a many-to-many
relation that defines a set of objects on one side and a
set of access entries on the other. These many-to-many
relations can be derived from common PM assignment
relations, defined as follows.

A user may be assigned to one or more user attributes
(u → ua). A user attribute may be assigned to another

4

oai

*

user attribute (ua1 → ua2). An object attribute may be
assigned to another object attribute (oa1 → oa2) with
the restriction that the second object attribute may not
be an object. Another restriction is that any chain of
user or object attribute assignments may not be a cy­
cle. We use the notations →∗ and →+ to denote a chain
of 0 or more assignments and a chain of 1 or more as­
signments, respectively. By virtue of these assignments,
both user and object attributes can sometimes be treated
as containers. A user u is said to be “assigned to” or
“in” a user attribute ua iff u →+ ua, and an object o is
said to be “assigned to” or “in” an object attribute oa, iff
o →∗ oa.

User attributes can also be assigned to operation sets,
ua → ops, and operation sets can be assigned to object
attributes, ops → oa, where ops ⊆ Op. An assign­
ment relation within one policy class ua → ops → oa
specifies that all users contained in ua can perform all
operations in ops on all objects contained in oa.

Given the assignment relations described so far, there
are at least two meanings for the user attribute assign­
ment ua1 →

+ ua2. The first, as described above, is
that the set of users of ua1 is contained in ua2. The
second is that the users of ua1 have the capabilities as­
sociated with ua2. The capabilities associated with a
user attribute ua are those obtained through all ua →
ops → oa assignments. Similarly the object attribute
assignment oa1 →

+ oa2 has two meanings. The first is
that the set of objects of oa1 is contained in oa2. The
second is that the objects of oa1 have the access en­
tries associated with oa2. The access entries associated
with an object attribute oa are those obtained through
all ua → ops → oa assignments.

The PM allows for the combination of two or more
policies (e.g., RBAC and MAC). However, not all users
are controlled under all policies, nor are all user at­
tributes and object attributes relevant to all policies. A
user attribute or an object attribute may be assigned
to a policy class, ua → pc or oa → pc, pc ∈ PC.
This type of assignment leads to mappings of users,
user attributes, objects and object attributes to policy
classes. A user u or user attribute ua “belongs to” or
“is in” a policy class pc if there exists a chain of one
or more assignments that start with that user or user at­
tribute and ends with the policy class (i.e., u →+ pc
or ua →+ pc, pc ∈ PC). Similarly, an object o “is
controlled under” or an object attribute oa “belongs
to” or “is in” a policy class pc if there exists a chain
of one or more assignments that start with that object
or object attribute and ends with the policy class (i.e.,
o →+ pc, oa →+ pc, pc ∈ PC).

With the assignments in place, we are able to deter-

uu oo

oaj

+

+

+

*

uai {op,…}

uaj {op,…}
+

+

+ pci

...

pcj

Figure 2: (u, op, o) is a PM privilege

mine the existence of a PM privilege. A triple (u, op, o)
where u is a user, op is an operation, and o is an ob­
ject, is a PM privilege iff for each policy class pck under
which o is controlled, user u has an attribute uak in pck,
object o has an attribute oak in pck, and there exists an
operation set ops containing op that is assigned to both
uak and oak, as shown in Figure 2. In this and other
illustrations depicting assignment relations, we use dot­
ted arrows to represent user attribute to operation set
to object attribute assignment relations. We do this to
avoid confusing these relations with other types of as­
signment relations.
Prohibitions: There are two types of prohibitions, user-
deny and process deny. We denote by u deny(u, ops, os)
a user-based deny relation, where u ∈ U, ops ∈ 2OP, and
os ∈ 2O . Its meaning is that a process executing on
behalf of user u cannot perform the operations in ops
on the objects in os. By specifying os as its comple­
ment, denoted by ¬, the meaning of u deny(u, ops, ¬os)
is that a process executing on behalf of user u can
only perform the operations in ops on the objects in
os. Similarly, a process-based deny relation is a triple
p deny(p, ops, os), where p ∈ P, ops ∈ 2OP, and os ∈
2O. Its meaning is that the process p cannot perform op­
erations in ops on the objects in os, and the meaning of
p deny(u, ops, ¬os) is that the process can only perform
the operations in ops on objects in os. User and process
denies are generally referred to as prohibitions because
they represent exceptions to privileges.
Obligations:

These obligations, also known as Event pat­
tern/response relations, define conditions and methods
under which policy state data is obligated to change. An
event pattern/response relation is a pair (ep, r) (usually
denoted when ep, do r), where ep is an event pattern
and r is a sequence of administrative operations, called

5

a response. The event pattern specifies conditions that if
matched by the context surrounding a process’ success­
ful execution of an operation on an object (an event), the
administrative operations of the associated response are
immediately executed, thereby changing the state of the
policy. The context may pertain to and the event pattern
may specify parameters like the user of the process, the
operation executed, and the container(s) in which the
object is included. Note that the possible formal pa­
rameters of the administrative operations comprised in
the response are replaced by the appropriate values ex­
tracted from the event context. Responses are obliga­
tions performed by the PM, and as such, their execu­
tion is not predicated on privileges. Although the term
obligation is used in a number of other access control
frameworks such as XACML and Ponder (6; 8), these
frameworks either do not apply obligations in altering
the state of the policy (6) and/or do not alter the access
space of a process that, as we show in section 4, is in­
strumental in the enforcement of a number of policies.

3.3. Administrative Commands

The question remains, how are policy state data ele­
ments and relations initially created and altered in meet­
ing policy demands. The short answer is by administra­
tors through administrative commands. An administra­
tive operation is specified as a parameterized procedure,
whose body describes how a data set or relation (de­
noted by R) changes to R′ :

opname(x1, . . . , xk) {
R′ = f (R, x1, . . . , xk)

}

For example, consider the following administrative
operation CreateUser:

CreateUser(u) {
′U = U ∪ {u}

}

An administrative command is a parameterized se­
quence of administrative operations prefixed by a con­
dition and has the format:

cmdname(x1,,. . . ,xk)
if (condition) then

aop1

. . .
aopn

end,

where x1, . . . , xk(k ≥ 0) are (formal) parameters and
aop1, aopn (n ≥ 0) are administrative operations which
may use x1, . . . , xk as their parameters. The condi­
tion tests, in general, whether the user who requested
the execution of the command is authorized to execute
the command (i.e., the composing administrative opera­
tions), as well as the validity of the actual parameters. If
the condition evaluates to false, then the command fails.

3.4. Reference Mediation

The current access state is enforced by a reference
mediation function. Under reference mediation, a pro­
cess access request (op, o)p is granted iff there ex­
ists a privilege (u, op, o) where u = process user(p),
and capability (op, o) has not been denied for either
u or p. It should be noted that if the PM privilege
(u, op, o) exists, and if p deny(p, ops, os) exists, where
u = process user(p), op ∈ ops, and o ∈ os, user u may
be able to perform capability (op, o) through a differ­
ent process p ′, if u = process user(p ′). However, if
u deny(u, ops, os) and privilege (u, op, o) exists where,
op ∈ ops, and o ∈ os, no process of u (and therefore u)
will be able to perform capability (op, o). This discus­
sion shows how the PM resolves potential authorization
conflicts: denies have precedence over privileges. Re­
garding potential conflicts between policies that protect
an object, PM applies an “and” combination algorithm.

3.5. Consideration of Inter-process Communication

Although inter-process communication is not in real­
ity a PM component, its consideration in a protection
scheme is essential. In this section we describe the
PM’s treatment of process-to-process communication.
In general, operating systems provide mechanisms for
facilitating communications and data sharing between
applications that provide opportunities to leak data as
well. These mechanisms include but are not limited to
clipboards, pipes, sockets, remote procedure calls, and
messages. They all conform to a common abstraction:
one process produces/creates data and inserts it into the
mechanism’s physical medium; the other process con-
sumes/reads the data from the physical medium. A syn­
chronization mechanism must also exist.

By treating the communication medium as a PM ob­
ject, the PM offers strategies to support data transfer
that is in compliance with the policy. For example, the
producer process could create a PM object that repre­
sents the physical medium/support of the data transfer
mechanism. This new object will be assigned attributes
in accordance to a predefined and policy-specific set of
conditions. These conditions can be specified via the

6

event-response relations. The consumer process must
be able to read the PM object that represents the phys­
ical medium under the rules of the reference media­
tion. A practical example presented in section 4.1.3 per­
tains to the system clipboard that is used in performing
copy/cut and paste operations.

3.6. Preventing Illegal Information Flow
With few exceptions, existing access control mecha­

nisms share fundamental weaknesses. One well-known
weakness is the inability to prevent the “leakage” of
data to unauthorized principals through malware, or
malicious or complacent user actions. To illustrate
this weakness, assume the following three privileges:
(u1, r, o1), (u1, w, o2), and (u2, r, o2). Considering these
privileges alone, it is impossible to determine if u2 can
read the content of o1. Under one scenario, u1 can read
and subsequently write the contents of o1 to o2. Even if
the enforcement of policy were predicated on “trust in
users”, we must all but assume the existence of malware
that can easily thwart the policy. This threat exists be­
cause, in reality, users do not perform operations on ob­
jects, but under a user’s capabilities, processes perform
operations on the content of objects. Therefore, a pro­
gram executed by u1, can read the contents of o1, and
without u1’s further action or knowledge, write those
contents to o2. Note that one cannot prevent this leak­
age even by adding a negative privilege, ¬(u2, r, o1).

The importance of preventing inappropriate leakage
of data (often called confinement) has been recognized
as early as the 70s, with the establishment of the Bell
and LaPadula security model (9) and the Mandatory Ac­
cess Control (MAC) policy (1). Although MAC com­
pliant systems go beyond traditional DAC and RBAC
products in preventing inappropriate leakage of data,
these systems are limited to multi-level security, and
are not general enough to support numerous other pol­
icy objectives that also depend on confinement. With­
out this general support, commercially available prod­
ucts are arguably incapable of enforcement of a wide
variety of policies, to include some instances of RBAC,
e.g., “only doctors can read medical records”, ORCON
and Privacy (7), e.g., “I know who can currently read
my data or personal information”, or conflict-of-interest
(2), e.g., “a user with knowledge of information within
one dataset cannot read information in another dataset”.

Not all advanced policies pertain to the prevention
of data leakage to unauthorized principals. One such
policy is Separation of Duty (SoD). While RBAC is
noted for its support of SoD principles, real-world prod­
ucts enforce only the simplest forms (e.g., Static and
dynamic-based SoD), and as we later discuss, with great

trepidation. Simon and Zurko, in their seminal paper on
SoD (10), describe history-based SoD as the most ac­
commodating form of SoD, subsuming the policy objec­
tives of these other simpler forms. Other history-based
policies pertain to two person control, workflow, and
conflict of interest, but regardless of their importance
in deterring fraud or combating other threats, enforcing
history-based policies in a static privilege management
environment is difficult or even impossible.

To address some of the above issues, a number of
extensions to the commonly deployed access control
frameworks have been proposed (11; 12; 13). We
feel this approach is flawed, amounting to further con­
struction on a weak foundation (in one respect or an­
other), to only address a specific problem. Others have
proposed policy specification languages that provide a
means of mapping policy onto existing access control
mechanisms. Paramount among these languages is Pon­
der (8). Although Ponder may be rich in its expression,
the enforcement of policy is limited by the context that
is made available by the underlying mechanisms.

The PM addresses these and other policy issues
through its ability to dynamically alter its policy state
based on a rich set of events pertaining to processes
successfully accessing protected object contents. The
PM prevents leakage of sensitive data to unauthorized
principals by first recognizing the reading of sensitive
information by a process and subsequently constraining
that process or its user from writing to objects acces­
sible to those unauthorized principals. This approach
is general enough to support, with a reasonable degree
of assurance, a large variety of policies that depend on
the absence of leakage. Separation of duty and other
history-based policies can be supported through a simi­
lar approach.

4. Example Policy Configurations

In this section, we demonstrate the PM’s ability to ex­
press and enforce the policy objectives of RBAC, Chi­
nese wall, MAC and DAC models. It is important to
note that when we say that the PM is able to express
or enforce the policy objectives of a particular model
we are not necessarily suggesting that we emulate the
specific rules or relations of the model. Instead, the
PM is able to implement the same policy objective of
the model through a specific configuration strategy of
its prescribed data sets and relations and its reference
mediation function.

7

e ecor s 1 2 3{w}

Intern

4.1. RBAC

Over the past decade and half, a number of RBAC
models and RBAC extensions have been proposed (3;
4; 5). In defining RBAC requirements, we refer to the
RBAC standard (4), considered to be the culmination
of the prominent RBAC models and implementations of
the day.

4.1.1. RBAC Specification

A major objective of RBAC is to streamline autho­
rization management over identity-based access control
schemes by defining roles as relations between users
and capabilities. (The PM’s notion of a capability is of­
ten referred to as permission in RBAC). These relations
are achieved by assigning users to roles on one side and
assigning capabilities to roles on the other side. By as­
signing a user to a role, that user acquires the capabili­
ties that are assigned to the role.

Another important RBAC feature is the ability to de­
fine a role hierarchy, i.e., an inheritance relation be­
tween roles, whereby senior roles acquire the capabil­
ities of their juniors. By assigning a user to a role, the
user is also (indirectly) associated with the capabilities
of that role’s junior roles.

In addition to these administrative features, standard
RBAC provides features to address Separation of Duty
(SoD). SoD is a security principle used to formulate
multi-person control policies, to reduce the likelihood
of the occurrence of fraud, by requiring that two or
more different people be responsible for the comple­
tion of a sensitive task or set of related tasks. Although
the SoD principle predates RBAC (14), SoD is com­
monly defined in terms of roles and role relations. The
RBAC standard includes two types of relations for the
enforcement of separation of duties - static separation
of duty (SSD) and dynamic separation of duty (DSD).
SSD relations place constraints on the assignments of
users to roles, whereby membership in one role may
prevent the user from being a member of another role,
and thereby presumably forcing the involvement of two
or more users in performing a sensitive task that would
involve the capabilities spread over both roles. Dynamic
separation of duty relations, like SSD relations, limit the
capabilities that are available to a user, while adding op­
erational flexibility, by placing constraints on roles that
can be activated within a user’s sessions. As such, a
user may be a member of two roles in DSD, but unable
to execute the capabilities that span both roles within a
single session.

8

Doctor M d_R d C C C C4

{r}
u4

Consultant

u2 u3

Proposals

COI2COI1

{r,w}

u1 o1 o2 o3 o4 o5 o6 o7

RBAC

Figure 3: Example RBAC assignment configuration

4.1.2. PM Configuration of RBAC
The PM retains and in many respects exceeds the ad­

ministrative and policy objectives of RBAC. To help il­
lustrate these points, consider the PM assignments de­
picted in figure 3. In this figure, Doctor, Intern, and
Consultant are roles represented by instances of user at­
tributes, where Doctor is assigned to Intern. Also in­
cluded in the configuration are objects (o1 . . . o7) that
are assigned to object attributes (e.g., o1 and o2 are as­
signed to Med Records). User attributes are also as­
signed to operation sets, and operation sets are assigned
to object attributes. For example, Doctor → {w} →
Med Records. Finally, all users, objects, and user and
object attributes are mapped to the single policy class,
RBAC. For reader’s convenience, in table 1, we list the
set of privileges that can be derived from this configu­
ration by applying the definition at the end of section
3.2.

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o3),
(u1, w, o3), (u1, r, o4), (u1, w, o4), (u1, r, o5), (u1, w, o5),
(u1, r, o6), (u1, w, o6), (u1, r, o7), (u1, w, o7), (u2, r, o3),
(u2, w, o3), (u2, r, o4), (u2, w, o4), (u2, r, o5), (u2, w, o5),
(u2, r, o6), (u2, w, o6), (u2, r, o7), (u2, w, o7), (u3, r, o3),
(u3, w, o3), (u3, r, o4), (u3, w, o4), (u3, r, o5), (u3, w, o5),
(u3, r, o6), (u3, w, o6), (u3, r, o7), (u3, w, o7), (u4, r, o1), (u4, r, o2)

Table 1: The list of derived privileges as a consequence of the assign­
ments depicted in figure 3

Roles
User attributes indeed share the semantics of an

RBAC role; by assigning a user to a user attribute, the

user is indirectly associated with capabilities via the
user attribute. For instance through the u1 → Doc­
tor assignment, u1 is associated with the capabilities
(w, o1) and (w, o2). Note the existence of the privileges
(u1, w, o1) and (u1, w, o2) in table 1. While RBAC is
well noted for its administrative efficiency in associat­
ing users with capabilities, PM offers even greater effi­
ciency (and is more intuitive) as a consequence of its op­
eration set and object attribute abstractions. That is, for
each ua → ops → oa relation, where ua ∈ UA, ops ∈
2OP
, oa ∈ OA, ua and any user assigned to ua is as­

sociated with capabilities equal to the number of oper­
ations in ops times the number of objects in oa. Un­
der RBAC, capabilities are directly and individually as­
signed to roles. Furthermore, through these same re­
lations, PM allows for a similarly efficient association
of objects with access entries (e.g., o2 is associated with
(u1, r) and (u1, w) via o2 →Med Records), while RBAC
offers no similar semantics.

Role Hierarchies
With regard to role hierarchies, the PM offers seman­

tics similar to RBAC through user attribute to user at­
tribute assignments. With respect to figure 3, in ad­
dition to u1 having the capabilities to write to the ob­
jects in Med Records through the u1 → Doctor assign­
ment, u1 also has the capabilities to read the objects in
Med Records through the Doctor → Intern assignment.
In addition, the PM provides for the inheritance of ac­
cess entries between object attributes (not depicted in
figure 3), while again RBAC offers no semantics in this
regard.

Separation of duty
Although RBAC SSD and DSD relations offer some

advancement in control over identity-based systems, se­
curity issues remain. To illustrate this point, assume
that a conflict of interest would arise if a single user
were able to execute capability (op1, o1) and capabil­
ity (op2, o2). Under RBAC, these capabilities could be
assigned to different roles (say r1 and r2) and an SSD re­
lation could be imposed on those roles and thus prevent
any user from being simultaneously assigned to both
roles. However, while any user u, assigned to r1, would
be prevented from executing (op2, o2) through denial of
membership to r2, nothing in the SSD relation prevents
(op2, o2) from being assigned to some role r3 and u be­
ing assigned to r3. Now assume an RBAC environment
where r1 and r2 are in DSD. Again, nothing prevents ca­
pability (op1, o1) and/or capability (op2, o2) from being
assigned to some r3 where r3 is not considered in any
DSD relation. Also, if a user is able to activate r1 and r2

in different sessions, either concurrently or sequentially,
that user could execute capability (op1, o1) and capabil­
ity (op2, o2).

The PM is able to meet the policy objectives of SSD
and DSD, while alleviating these security issues. Again,
assume that a conflict of interest would arise if a single
user were able to execute capability (op1, o1) and capa­
bility (op2, o2). Now, consider the following PM event-
pattern response relations:
(1) when process p performs (op1, o1) do create u deny
(process user(p), {op2}, {o2});
(2) when process p performs (op2, o2) do create u deny
(process user(p), {op1}, {o1}).

Through relations (1) and (2) any process that suc­
cessfully executes (op1, o1) would effectively deny the
user of the process the ability to successfully execute
(op2, o2) in the future and vice-versa. As such, a sen­
sitive task consisting of (op1, o1) and (op2, o2) would
require the independent actions of a minimum of two
users to complete. Furthermore, this separation would
hold independent of any privilege configuration (erro­
neous or otherwise), and independent of the sessions
under which any process executed a capability of con­
cern.

Perhaps the most operationally flexible and compre­
hensive form of SoD is history-based (10). Under
history-based SoD, if a user performs an operation on
an object, that user can’t perform a second operation
(the same or different operation) on the same object. A
simple example is a user both requesting and approving
a purchase order. This form of SoD can easily be re­
alized by the PM. For instance consider the following
relation:
(3) when process p performs (op1, o1) do create u deny

(process user(p), {op2}, {o1})

that specifies, if any user performs op1 on object o1, that

user can no longer perform op2 on o1.

4.1.3. Preventing data leakage in RBAC
RBAC is not designed to prevent unauthorized leak­

ing of data. For example, with respect to figure 3, the
RBAC policy specifies that doctors and interns can read
medical information, and this suggests to many that
only doctors and interns can read medical information.
Under this configuration, nothing prevents u1 from read­
ing or copying the contents of an object in Med Records
and writing or pasting it to an object in Proposals, and
thus enabling u2, who is not a Doctor, the ability to read
medical information. Even if we were to trust doctors
not to perform such actions, a malicious process acting
on u1’s behalf could read medical information and write
it to any object in Proposals without u1’s knowledge.

9

In order to prevent such a leakage, consider the fol­
lowing PM event-response relations
(4) when process p performs (r, o) where o →+

Med Records

do create p deny (p, {w}, ¬Med Records).

Relation (4) will prevent a single process from read­
ing contents of any medical record (e.g., o1) and subse­
quently writing it to any object outside the Med Records
container (e.g., o3). Even with the existence of relation
(4), two processes could cooperate in leaking data. With
respect to the specific case of the copy/paste operation,
one process could read data, e.g., a medical record, fol­
lowed by a copy/paste operation from the memory of
the first process to the memory of the second process
followed by the second process writing the data to an­
other object, making the data available to users that are
not authorized to read the data. To prevent this method
of leakage, assume the following relation is added to our
configuration:
(5) when copy object o do assign clipboard to attributes
of o.

Relations (4) and (5) together prevent copying of an
object in Med Records and the subsequent pasting of its
contents into an object that is not in Med Records. That
is, the copy operation would place the clipboard into
Med Records, according to relation (5), and according
to relation (4) any subsequent process that reads from
the clipboard (e.g., paste) would be prevented from writ­
ing to any object (e.g., o3) that is not in Med Records.

As shown below, the same technique used to enforce
confinement in RBAC can be applied to enforce con­
finement in context of any other model to include meet­
ing the policy objectives of MAC.

4.2. Mandatory Access Control

In this section, we describe the policy objectives of
MAC and present a PM configuration that meets these
objective.

4.2.1. MAC Specification
The objective of the MAC (9) security policy is to

prevent the unauthorized reading of classified informa­
tion. Traditionally, this policy objective has been spec­
ified and often implemented in terms of the simple se­
curity property, *-property (also referred to as the con­
finement property), and tranquility property of the Bell
& LaPadula (9) security model, hereafter referred to
as BLP. Under BLP, security levels, organized under a
dominance relation, are assigned to subjects (users and
their processes) and objects. We say that security level x
dominates security level y if x is greater than or equal to

y. The simple security property specifies that a subject
is permitted read access to an object only if the subject’s
security level dominates the object’s security level, and
the *-property specifies that a subject is permitted write
access to an object only if the object’s security level
dominates the subject’s security level. Indirectly, the *­
property prevents the transfer of data from an object of
a higher level to an object of a lower classification. The
security objective of these two rules is to prevent the di­
rect and indirect reading of information at a level higher
than the user’s level. As commonly implemented, the
security level of a process takes on the level of the ses­
sion for which it belongs. The security level of a session
(usually established at session creation time) can take
on any single security level dominated by the clearance
level of its user, but once assumed must remain fixed for
the duration of the session. This condition is referred
to as the tranquility property. The tranquility property
serves two purposes. First it associates a process with
a security level. Second it prevents, for example a pro­
cess from reading Top Secret data, storing the data in
memory, switching its level to Secret, and writing the
contents of its memory to a Secret object.

4.2.2. PM Configuration of MAC
Figure 4 is an example that illustrates PM assignment

relations that serve as the basis for meeting the security
objectives of BLP. Figure 4 assumes top-secret domi­
nates secret. It further specifies that users cleared to the
levels of top-secret and secret are respectively assigned
to the TS and S user attributes, and objects that are clas­
sified at the top-secret and secret levels are respectively
assigned to the TS and S object attributes. With respect
to these assignment relations, users (and their processes)
that are assigned to TS are only able to perform read op­
erations on objects classified at the levels top secret and
secret. Users (and their processes) that are cleared se­
cret are only able to perform read operations on objects
classified at the level secret, thus showing support for
the security objectives of the simple security property.
For the readers’ convenience, table 2 lists the set of priv­
ileges that can be derived from the assignment relations
depicted in figure 4.

However, under these assignment relations, a user
like u1 for example, could read top secret data and sub­
sequently write that data to a secret object. To prevent
this leakage assume the following two event pattern-
response relations:
(6) when process p reads o →+ TS do create
p deny(p, {w}, ¬TS);
(7) when process p reads o →+ S do create
p deny(p, {w}, ¬(S ∪ TS)).

10

u w
o

TS

o1 o4u1

{r} TS

o22{ }{w} u2

S {r, w} S

MAC

Figure 4: Example MAC Assignment Configuration

{r} Ln Ln

.

.

.

.

.

.

.

.

.

{r} L2 L2

{w}

{w}

{r, w} L1 L1

MAC

Figure 5: A general MAC Configuration

Relation (6) specifies that once a process successfully
reads a top-secret object, the process can only write to
objects that are in the TS container. Similarly, relation
(7) specifies that once a process successfully reads a se­
cret object, the process can only write to objects that are
in S or TS containers.

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o4),
(u1, w, o4), (u2, w, o1), (u2, r, o2), (u2, w, o2), (u2, w, o4)

Table 2: Derived privileges from the MAC assignments configuration
of Figure 4

Under this configuration, a process with its user
cleared to a particular level (say top secret), can read
objects at levels at or below the user’s clearance level

(i.e., top secret, or secret). However, once a process has
read data at a particular level (say top secret), that pro­
cess can no longer write to objects below that particular
level (i.e., secret). These observations demonstrate ad­
herence to the security objectives of the simple security,
the *-property, and the tranquility property of the BLP
security model, and thus the MAC Policy. Figure 5 il­
lustrates a construction strategy for the attributes and
assignment relations of a MAC policy with n security
levels L1, . . . , Ln where Lk+1 dominates Lk for k = 1 to
n − 1. The obligation relations that pertain to this con­
struction are:
when process p reads o →+ Ln do create
p deny(p, {w}, ¬Ln);
when process p reads o →+ Ln − 1 do create p deny
(p, {w}, ¬(Ln ∪ Ln−1));
. . .
when process p reads o →+ L1 do create p deny
(p, {w}, ¬(Ln ∪ Ln−1 . . . ∪ L1));

It is important to recognize that our PM MAC con­
figuration does not only meet the policy objectives of
MAC, it does so with greater user transparency than that
of common BLP implementations. Under these imple­
mentations, all processes running in a session are la­
beled at the same level as the session. This condition has
the effect of imposing undue restrictions on the session
user. For example, a user cleared to top secret in a top
secret session can’t write to a secret object. Under the
PM framework and our MAC configuration, restrictions
are dynamically imposed at the process level, thus al­
lowing the user, through multiple processes, the ability
to execute his/her full range of authorized capabilities
within a single session. A user can read top secret data,
and subsequently write to secret data through different
processes running in the same session. Also, note that
the MAC PM configuration does not specify unclassi­
fied user or object attributes, yet, relations (6) and (7)
ensure that classified information cannot be leaked to
unclassified objects (which are all objects not included
in S or TS).

For the non-hierarchical component of a MAC policy,
there exist efficient PM configurations. Given the space
limitations, we favored the specification of other policy
configurations.

4.3. Discretionary Access Control

In this section we describe the control objectives of
DAC, and present a PM configuration that meets these
objectives.

11

alice

ops alice home Alice Smith

DAC users

DAC

Figure 6: A partial DAC configuration

4.3.1. DAC Specification
Central to Discretionary Access Control (DAC) (1)

are the concepts of object ownership and control. The
owner of an object is a user that possesses administra­
tive capabilities to grant/revoke other users or groups
of users, access to the object (i.e., creation and modi­
fication of access entries for the object). The owner of
an object is typically the user that created the object.
Control pertains to the set of administrative capabilities
that enables the creation and modification of access con­
trol entries associated with owned objects. Control may
also pertain to the transfer of ownership to another user.
Ownership of an object also implies capabilities to read
and write the object.

4.3.2. PM Configuration of DAC
The PM offers a number of strategies for the configu­

ration of DAC policies. Under our strategy a user’s iden­
tity is represented through a user attribute that specifies
the name or identity of the user (i.e., the user in ques­
tion is the only user assigned to this user attribute). We
call this attribute the “name attribute”, or the “identity
attribute”. Similarly, group identities are represented as
user attributes that contains only the users that are mem­
bers of that group. Figure 6, which partially illustrates a
PM DAC configuration, where the user attribute “Alice
Smith” is user alice’s name attribute, while the “DAC
users” user attribute represents the collection of all users
included in the DAC policy class.

User’s ownership and capabilities over an “owned”
object can be specified under this PM configuration by
placing the object in a container specially created for
that user. We refer to this container as the user’s home.

In figure 6, the object attribute “alice home” denotes the
home container for user alice. The creation of a user’s
home is accompanied by setting up three categories of
capabilities for the user: (a) capabilities to access ob­
jects in the home container; (b) capabilities to perform
administrative operations on the elements and relations
comprising the home container for the organization of
its contents (e.g., object attribute to object attribute as­
signments, creation of new object attributes); and (c)
capabilities to transfer ownership or grant/revoke other
users’ access to the objects inside the home container.
The user, his/her home container and the capabilities
(a), (b), and (c) could be conveniently created through a
single administrative command - create dac user (user
id, user name). Typically, under DAC a user initially
obtains ownership and control over an object as a con­
sequence of object creation. This can be achieved by
defining an event-response relation where the event is
the object creation and the response is the assignment
of the new object to the user’s home container.

Using the policy configuration described above,
transferring the ownership of an object to another user
may be achieved by assigning the object to the other
user’s home container and optionally deleting its assign­
ment to the original owner’s home. Note that the trans­
fer requires the privilege to assign objects from the orig­
inal owner home to another user’s home container.

Granting another user or group of users access to an
object o may be achieved by creation of the assignment
g → {r, w} → o where g is a user attribute that rep­
resents the other user or group of users in the DAC
users. Figure 7 shows how alice could grant user bob
read/write access to one of her objects by using such
assignments to bob’s name attribute “Bob Dean”.

4.4. Chinese wall policy

While the purpose of SoD is to reduce the likeli­
hood of fraud, the purpose of the Chinese Wall pol­
icy, as modeled by Brewer and Nash (2), is to address
conflict-of-interest issues related to business practices.
Consultants or advisors are naturally given access to
proprietary information to provide a service for their
clients. When a consultant gains access, for example
to the competitive practices of two banks, the consul­
tant gains knowledge amounting to insider information
that can undermine the competitive advantage of one or
both institutions or can be used for personal profit. The
objective of the Chinese Wall policy and its associated
model is to identify and prevent user accesses as well as
the possibility for the flow of information that can give
rise to such conflicts.

12

4.4.2. PM Configuration of Chinese wall
alice bob

Bob Dean {r,w} proposal1

ops Alice Smith alice home

DAC users

DAC DAC

Figure 7: Alice grants bob read/write access to proposal1

4.4.1. Chinese wall Specification
Under the Brewer and Nash model, company sen­

sitive information is categorized into mutually disjoint
conflict of interest categories (COIs). Each company
belongs to only one COI and each COI has two or more
member companies. The membership within a COI in­
cludes companies whereby a consultant obtaining sensi­
tive information regarding one company would consti­
tute a conflict of interest if the consultant were to obtain
sensitive information in regard to another. Several COIs
may co-exist. For example, one COI may pertain to
Banks, while another COI may pertain to Energy Com­
panies. Brewer-Nash defines two rules, one for reading
and one for writing:

•	 Read Rule: Subject s can read object o only if:

–	 o is in the same company dataset as some ob­
ject previously read by s, or

–	 o belongs to a COI class for which s has yet
to read an object.

• Write Rule: Subject s can write object o only if

–	 s can read o under the read rule, and

–	 No object can be read within a different com­
pany dataset than the one for which write ac­
cess is requested.

It is important to recognize that the Brewer-Nash
rules consider subjects to include both users and the pro­
cesses that are acting on behalf of the users, and the rule
for writing takes into consideration the possibility of a
Trojan horse that can leak sensitive data outside a given
company dataset.

The Brewer-Nash model begins with the recognition
of objects each belonging to a single company dataset.
Our strategy and example of the enforcement of the Chi­
nese wall policy begins with the select assignment of
objects o3 . . . o7 to company data sets represented by
containers C1 . . . C4 in the context of the RBAC as­
signment relations of figure 3. As per the Brewer-Nash
model, company datasets are further categorized into
conflict of interest (COI) classes. Our configuration, vis.
Figure 3, includes two such COIs, COI1 and COI2, that
are assigned to the container Proposals, and the Consul­
tant role that has read and write access to all objects in
Proposals.

In addition to the assignment configuration of figure
3, we meet the objectives of the Chinese wall policy
through the following event pattern-response relation:
(8) when process p performs (r, o), where o →+ Propos­
als do

create u deny(process user(p), {r}, {oa2 ∩ ¬oa1}),

create p-deny(p, {r, w}, {¬oa1}),

where o → oa1 → oa2 → Proposals.

Relation (8) is valid under the assumption that for
every object o, such that o →+ Proposals, there ex­
ists unique object attributes oa1 and oa2 such that o →
oa1 → oa2 → Proposals. Indeed, in our configuration
oa1 is a company dataset, and oa2 is a COI. Relation (8)
specifies that whenever a process performs a read oper­
ation on an object contained in Proposals, a user deny
and a process deny relation are created. The user deny
relation prohibits the user of the process that had read
the object o, the capability to subsequently read objects
that are contained in the COI of o but not in the com­
pany data set of o. For example, if a process with u2 as
its user reads object o5, u2 could still read any object in
C2 (e.g., o4 and o5), but can no longer read an object in
COI1 that is not in C2 (e.g., o3 in C1). Also, under this
example, u2 can still read any object in Proposals that
is not in C1. Note that this aspect of relation (8) meets
both requirements of the Brewer-Nash rule for reading.
The created process deny relation prohibits a process
that had read an object o in Proposals the capability to
write to any object outside of company dataset of o, or
to read an object from outside company dataset of o.
Note that although the user of the process may be able
to read objects outside the company dataset for which it
has write access, the process would be prevented from
doing so. This second aspect of relation (8) meets both
requirements of the Brewer-Nash rule for writing.

13

5. Combining Policies

In this section we describe the PM’s natural ability
to control user and process access to objects under the
combination of two or more policies. Consider the com­
bination of the RBAC and MAC policy configurations
as specified above. First assume the assignment config­
urations of figures 3 and 4. Again, for the readers’ con­
venience we list the derived privileges that can be de­
rived through combination of the assignment relations
of these figures in table 3.

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o3),
(u1, w, o3), (u1, r, o4), (u1, w, o4), (u1, r, o5), (u1, w, o5),
(u1, r, o6), (u1, w, o6), (u1, r, o7), (u1, w, o7), (u2, r, o3),
(u2, w, o3), (u2, w, o4), (u2, r, o5), (u2, w, o5), (u2, r, o6),
(u2, w, o6), (u2, r, o7), (u2, w, o7), (u3, r, o3), (u3, w, o3),
(u3, w, o4), (u3, r, o5), (u3, w, o5), (u3, r, o6), (u3, w, o6),
(u3, r, o7), (u3, w, o7)

Table 3: The list of privileges that can be derived though the combina­
tion of assignment relations of the RBAC policy assignment relations
depicted in figure 3 and the MAC policy assignment relations depicted
in figure 4

Note that not all users or objects are in both policy
classes. For instance, u3, o3, o5, o6 and o7 are only in
RBAC, but all objects in MAC are also in RBAC. Re­
gardless of the number of policies under which an object
is protected, the same rules for reference mediation ap­
ply. That is, a process access request (op, o)p is granted
iff there exists a PM privilege (u, op, o) where u= pro­
cess user(p), and (op, o) has not been denied for either
u or p. Reference mediation begins with the determi­
nation of a PM privilege. See definition of a PM priv­
ilege in section 3. Note that with respect to the com­
bination of configurations of figures 3 and 4, the triple
(u1, w, o1) is a PM privilege, because (1) o1 is in both
RBAC and MLS, (2) both Doctor and S are u1’s user at­
tributes, where Doctor is in RBAC and S is in MLS, (3)
TS and Med Records are object attributes of o1, where
Med Records is in RBAC and TS is in MLS, and (4)
the operation set containing w is assigned to Doctor and
Med Records, and S and TS. The triple (u2, r, o3) is also
a privilege because o3 is only in RBAC and (u2, r, o3) is
a PM privilege in RBAC. In contrast, (u2, r, o2) is not a
privilege, because o2 is in both RBAC and MAC, Con­
sultant is the only attribute of u2 in RBAC, but Consul­
tant cannot read o2 in RBAC.

Implicit to our definition of a privilege is the notion of
need-to-know. Under need-to-know restrictions, even if
a user has all the necessary official approvals (such as a
clearance) to access certain information under one pol­

icy, the user would not be given access to the informa­
tion unless the user has a specific need to know; that is,
access to the information must be necessary for the con­
duct of one’s official duties. Although the need-to-know
principle has its origins in limiting access to classified
information under the combination of both MAC and
DAC, this principle can and often does apply to combi­
nations of other policy classes as well.

For instance, although a user may be a Doctor, and
thus can read patient medical records under an RBAC
policy, the user is denied the ability to read a particu­
lar medical record, unless the user can read the medical
record by virtue of being assigned to a particular ward,
under an organization based policy. Another explana­
tion as to why (u2, r, o2) is not a privilege is that, al­
though u2 is cleared secret and o2 is secret, o2 is a medi­
cal record that can be accessed by Doctors or Interns and
u2 is neither. In other words, u2 does not have a need-
to-know. On the other hand, regarding (u1, w, o1), o1 is
classified TS and is a medical record, and u1 is cleared
to top secret and is also a doctor, therefore u1 can write
o1 under the need-to-know principle.

Another interesting property is that not all objects
need to be included in a policy class that supports an
overall policy, in order to be included in the scope of
control of the policy. For the remainder of this section,
assume the existence of the assignment relations of fig­
ures 3 and 4, and relations (4) - (8) are also in place.
Although o3 (presumed unclassified) is not included in
the MAC policy class, o3 is included in MAC’s scope of
control. Indeed, if process p reads object o1 (top secret),
p is then denied, through relation (6), write access to o3.
It is also the case that if process p first reads object o3,
p can write to o1. In general, relations (6) and (7) pre­
vent a process from writing to an object at a level less
than the level of any object that it had previously read.
Relation (5) with (6) and (7) prevent the transfer of clas­
sified information through a copy and paste operation to
an unclassified object. In contrast, in keeping with BLP,
for a user to access an object, the object (classified or
unclassified must be labeled. In this respect, the PM’s
is more efficient in the embodiment of the MAC policy
than that of BLP.

We now consider the combination of the MAC and
Chinese wall policies, where the Chinese wall policy
has no policy class of its own. Note that o4 is classified
TS, and is also in the company dataset C2, along with o5

that is not classified. According to the Chinese wall pol­
icy once a user has read an object in a company dataset
that user is free to read and write to other objects in the
same company dataset. Indeed, in accordance with our
configuration, once a user has read o4, that user can read

14

o5, and in fact that user can write to o5, using a different
process than the one used for reading o4. In addition,
a user can copy the contents of o5 and paste it into o4,
but at the same time, the user cannot copy any portion
of o4 and paste it into o5. If there existed another object
also classified TS, in a different company dataset, but in
the same COI as o4 the contents of o4 can’t be written
or pasted into the object. This is precisely the behavior
one would expect under the combinations of MAC and
Chinese wall.

It is important to note that all properties that pertain to
policy combinations are achieved without the need for
any further configuration beyond those configurations
of the constituent policies.

6. Related Work

Although the PM may exhibit features similar to
those of other access control frameworks, as noted in
section 1, the PM is neither a new access control model,
nor an extension or adaptation of any existing access
control model or mechanism. The PM is a redefinition
of access control enforcement for providing a unifying
framework to support a wide range of policies under a
single mechanism. The PM is not unique in this pur­
suit of generalizing access control and offering policy
flexibility. Therefore, we do not review the many access
control models and their extensions proposed in the lit­
erature, but only review the attempts to generalizing ac­
cess control.

One partial solution to meet general policy needs is
an OASIS’ standard eXtensible Access Control Markup
Language (XACML) (6) and the Ponder policy spec­
ification language (8). XACML describes both a
policy language and an access control decision re­
quest/response language (both encoded in XML). The
policy language describes general access control re­
quirements. The request/response language allows for
queries to ask whether a given action should be allowed
and interpret the result. A similarity between XACML
and the PM is their ability to afford policy combinations
with respect to privileges. One drawback of XACML is
that it does not specify or enforce policies that pertain to
processes in isolation to their users, thereby disallowing
the specification and enforcement of a wide variety of
related policies. Another drawback of XACML is that
its Policy Decision Point is stateless, which place limita­
tions on the policies that can be specified and enforced.
Although XACML includes the concept of an obliga­
tion, it is not used to alter the state of the policy. Ponder
is declarative object oriented language for specifying
security and management policy for distributed object

systems. Under Ponder policy is expressed through the
use of their language and is enforced through mappings
onto various access control mechanisms, thus separat­
ing policy from the implementation of the system. The
PM is a logical and complete “machine” in that the con­
figuration of its relations expresses policies which are
enforced through a reference mediation function that is
part of the machine. The policies that are enforceable
by Ponder are limited by the underlying mechanisms.
For example, we have shown that placing prohibitions
through obligations on processes to be an instrumental
component in the enforcement of confinement policies.
Although Ponder includes the concept of obligations,
we doubt that Ponder can afford similar control.

Although products that protect objects under an MLS
policy traditionally also protect these same objects un­
der a need-to-know policy, such products afford these
policy combinations through the deployment of two
separate mechanisms, one in support of the MLS pol­
icy and the other in support of the need-to-know policy.
PM is different in this regard in its ability to enforce
multiple arbitrary policies through the application of a
single mechanism.

Another partial solution would be to use various con­
figurations of Role-Based Access Control relations to
simulate Mandatory Access Control and Discretionary
Access Control policies. This was demonstrated by Os-
born, et al. (15), using the RBAC96 model (5). One
drawback to this approach is that Osborn at al. applied
a series of obligation constraints in the configuration of
these policies that can only exist in theory, and are not
specified in the RBAC96 model. Although RBAC96
alludes to a variety of possible constraints, an imple­
mentation of RBAC96 would not necessarily include the
specialized obligation constraints that were applied in
the construction of the MAC policy. Simulating MAC
in (15) requires for each object the explicit creation of
two capabilities (using PM terminology), each assigned
to a role. In PM each object is naturally assigned to
an object attribute that represents the object’s classifica­
tion. Although we did not present a strategy for address­
ing categories, while Osborn did, we can point out that
our requirements are linear in the number of represented
categories. A drawback of their strategy for simulating
DAC requires the creation of a multitude of roles that
would exceed the number of objects in the system. In
our configuration for each user, the user is assigned to
his/her user name attribute, and user capabilities to af­
ford DAC responsibilities are achieved by assigning the
user name attribute to a predefined operation set that is
assigned to an object attribute (the home of a user) that
contains all objects for which a user has DAC control

15

and ownership. This suggests that the PM’s MAC and
DAC configurations are more natural embodiment than
that of RBAC’s configuration.

As an extension to the RBAC model, Crampton (11)
proposes the use of “blacklists” as a means of enforc­
ing history-based SoD constraints. This use of black­
lists is analogous to the PM’s concept of dynamically
creating a user deny relation in the context of an event-
response relation. Although Crampton is able to enforce
a wide variety of SoD policies, his method is limited in
comparison to the PM. Through the event-response rela­
tions, the PM is capable of not only dynamically creat­
ing user deny relations, but also process deny relations,
and in general can create and delete any type of relation
through any series of administrative operations.

Another partial solution is an early and incomplete
description of the PM (16). A drawback of this solu­
tion is the limitation and inefficiency in specifying and
enforcing policy. The proposed framework required the
costly computation and activation of a set of user at­
tributes for a set of processes running in a session, in
order to gain access to a resource. Further drawbacks in­
clude the lack of control at the individual process level,
the lack of constraints on users and processes, and the
inability to dynamically alter the policy state of the ma­
chine in support of the specification and enforcement of
policy.

The PM presented in this paper is more closely re­
lated to the meta-model for specifying and enforcing a
generic access control model. Recently, the need for
a meta-model has been argued by Ferraiolo and Atluri
(17). Responding to these discussions, Barker (18) has
proposed a meta-model of access control and presents
a logic language for describing the meta-model. He
shows how arbitrary access control policy requirements
can be represented in the proposed meta-model by mak­
ing small changes to the core concepts of the meta­
model. He demonstrates how a range of existing ac­
cess control models can be viewed as instances of this
meta-model. Several similar proposals have been made
in the desire to define a general, declarative framework
for specifying a wide range of access control policies
including the RT family of role-trust models (19), FAF
language (20) and SecPAL (21). While these proposals
provide a unifying model, the PM additionally offers a
mechanism for implementing the unifying model.

7. Conclusions and Vision

In this paper, we have presented an access control
framework, referred to as the Policy Machine (PM), that
fundamentally changes the way in which access control

mechanisms are developed. The PM framework aids
in developing high assurance systems because of three
fundamental reasons. First, it minimizes the amount of
code to be trusted as it decouples security enforcement
from the host system. Second, it allows the precise poli­
cies of the resource owners independent of that offered
by the vendors, which therefore does not require un­
supported policies implemented as separate application
code. Third, it prevents illegal information flow in com­
monly used DAC and RBAC models.

Both users of the PM as well as the developers of the
host systems enjoy several benefits. From the user per­
spective, PM can be employed as a general purpose pro­
tection machine as one mechanism can configure many
types of access control policies. PM offers a large li­
brary of policies available for immediate configuration.
Since access control is enforced at the enterprise level
encompassing the different OS and applications in use
within the organization, and the users need to login
only to the PM, it naturally provides interoperability and
single sign-on. Moreover, it offers fine-grained, flexi­
ble and comprehensive protection to the enterprise re­
sources. Since the security policy enforcement is sep­
arated from that of the functional components such as
the OS and application software, the part that needs to
be trusted is smaller, which results in higher operational
assurance. Additionally, there is no policy enforcement
or decision making done at the application. As shown
in Section 4, PM can render many Trojan horse attacks
harmless. Although not discussed in this paper, many
applications such as email and workflow management
can be implemented by merely configuring the PM as
they can be seen as extensions to access control. As a
result, sensitive data can be protected from being leaked
to unintended recipients. Currently, this can be accom­
plished only through the trusted behavior of the users.
Under PM, an unauthorized principal cannot gain ac­
cess to a sensitive file even if it was emailed to him as
the email file sharing is mediated via PM. Additionally,
sharing of data across other secondary storage devices
(e.g., hard-drives, memory sticks) can all me controlled
under PM.

From the vendor perspective, vendors need not pro­
duce different versions or change their systems to ac­
commodate the policy de jour, and there is no need to
cater to special needs of different user communities.
The vendor products need not implement the access
control decision modules and maintain or manage ac­
cess control data. The same applies to any application
being used within the organization. Specifically, appli­
cation developers need to focus on implementing only
the functionality of their application rather than the ac­

16

cess control. The big winner would be the customer that
gets to implement their individual and precise policy re­
quirements through acquiring PM components and the
translation of those requirements into a PM data config­
uration. To facilitate this translation, standard configu­
rations for a variety of policies can be made available as
a library of parameterized policy configurations. This
reduces the burden on administrators in specifying and
configuring policies.

In addition to providing a high assurance access con­
trol enforcement framework, PM can be utilized to im­
plement a number of applications such as e-mail and
workflow management. Although not normally con­
sidered in the realm of access control, both e-mail and
workflow management falls into this application class,
in that email affords the sharing of information through
the discretionary distribution of messages and attach­
ments, and workflow prescribes sequences of user ac­
cesses to documents. These can be simply realized
through PM as they can be viewed as extensions of ac­
cess control.

References

[1]	 DoD Computer Security Center, Trusted Computer System
Evaluation Criteria (December 1985).

[2]	 D. Brewer, M. J. Nash, The chinese wall security policy, in: Pro­
ceedings of IEEE Symposium on Security and Privacy, 1989,
pp. 206 –214.

[3]	 D. Ferraiolo, R. Kuhn, Role-Based Access Control, in: Proc.
15th NIST-NCSC Computer Security Conf., Washington, D.C.,
1992, pp. 554–563.

[4]	 D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
R. Chandramouli, Proposed nist standard for role-
based access control, ACM Transactions on Information
and System Security (TISSEC) 4 (3) (2001) 224–274.
doi:http://doi.acm.org/10.1145/501978.501980.

[5]	 R. Sandhu, E. Coyne, H. Feinstein, C. Youman, Role-based Ac­
cess Control Models, IEEE Computer (1996) 38–47.

[6]	 X. TC, Oasis extensible access control markup language (xacml)
version 2.0.

[7]	 R. Graubart, On the need for a third form of access control,
in: Proceedings of the National Computer Security Conference,
1989, pp. 296 –304.

[8]	 N. Damianou, N. Dulay, E. Lupu, M. Sloman, The ponder pol­
icy specification language, in: Proceedings of the Workshop on
Policies for Distributed Systems and Networks, 2001, pp. 18–
39.

[9]	 D. Bell, L. LaPadula, Secure computer systems: Unified exposi­
tion and MULTICS interpretation, Technical Report MTR-2997,
The Mitre Corporation, Bedford, MA (March 1976).

[10]	 R. Simon, M. Zurko, Separation of duty in role based access
control environments, in: Proc. of the New Security Paradigms
Workshop, 1997.

[11]	 J. Crampton, Specifying and enforcing constraints in role based
access control, in: Proceedings of ACM Symposium on Access
Control Models and Technologies, 2003, pp. 43–50.

[12]	 R. Ferrini, E. Bertino, Supporting rbac with xacml+owl, in: Pro­
ceedings of ACM Symposium on Access Control Models and
Technologies, 2009.

[13]	 Z. Mao, N. Li, H. Chen, X. Jiang, Trojan horse resistant discre­
tionary access control, in: Proceedings of ACM Symposium on
Access Control Models and Technologies, 2009.

[14]	 J. Saltzer, M. Schroeder, The protection of information in com­
puter systems, Proceedings of the IEEE 63 (9) (1975) 1278–
1308.

[15]	 S. Osborn, R. Sandhu, Q. Munawer, Configuring role-based ac­
cess control to enforce mandatory and discretionary access con­
trol policies, ACM Transactions on Information Systems Secu­
rity 3 (2).

[16]	 D. Ferraiolo, S. Gavrila, V. Hu, R. Kuhn, Composing and com­
bining policies under the policy machine, in: Proceedings of
ACM Symposium on Access Control Models and Technologies,
2005, pp. 11–20.

[17]	 D. Ferraiolo, V. Atluri, A meta model for access control: Why is
it needed and is it even possible to achieve?, in: Proceedings of
the 13th ACM symposium on Access control models and tech­
nologies, 2008, pp. 153–154.

[18]	 S. Barker, The next 700 access control models or a unifying
meta-model?, in: Proceedings of the 14th ACM symposium on
Access control models and technologies, 2009, pp. 187–196.

[19]	 N. Li, J. Mitchell, W. Winsborough, Design of a role-based
trust-management framework, in: Proceedings of the 2002 IEEE
Symposium on Security and Privacy, 2002, p. 114.

[20]	 S. Jajodia, P. Samarati, M. L. Sapino, V. S. Subrahmanian, Flex­
ible support for multiple access control policies, ACM Transac­
tions on Database Systems 26 (2) (2001) 214–260.

[21]	 M. Becker, C. Fournet, A. Gordon, Design and semantics of
a decentralized authorization language, in: Proceedings of the
20th IEEE Computer Security Foundations Symposium, 2007,
pp. 3–15.

17

