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Abstract 

The ability to control access to sensitive data in accordance with policy is perhaps the most fundamental security 
requirement. Despite over four decades of security research, the limited ability for existing access control mechanisms 
to generically enforce policy persists. While researchers, practitioners and policy makers have specified a large variety 
of access control policies to address real-world security issues, only a relatively small subset of these policies can be 
enforced through off-the-shelf technology, and even a smaller subset can be enforced by any one mechanism. In this 
paper, we propose an access control framework, referred to as the Policy Machine (PM) that fundamentally changes 
the way policy is expressed and enforced. Employing PM helps in building high assurance enforcement mechanisms 
in three respects. First, only a relatively small piece of the overall access control mechanism needs to be included 
in the host system (e.g., an operating system or application). This significantly reduces the amount of code that 
needs to be trusted. Second, it is possible to enforce the precise policies of resource owners, without compromise on 
enforcement or resorting to less effective administrative procedures. Third, the PM is capable of generically imposing 
confinement constraints that can be used to prevent leakage of information to unauthorized principals within the 
context of a variety of policies to include the commonly implemented Discretionary Access Control and Role Based 
Access Control models. 
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1. Introduction 

The ability to control access to sensitive data in accor­
dance with policy is perhaps the most fundamental se­
curity requirement. While over the past four decades se­
curity researchers have proposed a large variety of poli­
cies and policy models to address real-world security 
problems, only a small subset of these policies are en­
forceable through commercially available mechanisms, 
and even a smaller subset can be enforced by any one 
mechanism. Well known examples of access control 
models include Discretionary Access Control (DAC) 
and Mandatory Access Control (MAC) (1) of the 70s, 
Chinese Wall policy (2) of late 80s, Role-based Access 
Control (RBAC) (3; 4; 5) of the early 90s, and more 
recently XACML-conforming services and applications 

∗Corresponding Author: Vijay Atluri, MSIS Department, Rut­
gers University, 1 Washington Park, Newark, NJ 07102, USA, 
atluri@rutgers.edu 

(6). It is important to recognize that within this progres­
sion of this development, a latter framework does not 
necessarily subsume the policy support of a former. 

In this paper, we propose an access control frame­
work, referred to as the Policy Machine (PM). The PM 
is not an extension of any existing model or framework, 
but instead is a redefinition of access control in terms of 
a standardized and generic set of relations and functions 
that are reusable in the expression and enforcement of 
policies. Its objective is to provide a unifying frame­
work to support a wide range of attribute-based policies 
or policy combinations through a single mechanism that 
requires changes only in its data configuration. PM can 
be thought of as a logical “machine” comprising of a 
fixed set of data relations, configurable through a fixed 
set of administrative operations for the expression of 
combinations of many policies, and a fixed set of func­
tions for making access control decisions, and enforcing 
policy based on that expression. Under the PM, policies 
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are enforced through a reference mediation function. In 
its simplest and most general form, the PM standard ar­
chitecture is comprised of one or more PM clients, one 
or more PM servers, a PM database, and one or more 
resource servers. 

To enable flexible policy enforcement, PM abides by 
the principle of separation of policy from mechanism 
that dictates that no policy should be tightly coupled to 
its mechanism. The challenge is to identify a minimal 
set of primitives that can specify and enforce a large va­
riety of attribute based security policies. We have identi­
fied a surprisingly small set of data, relations and func­
tions that are reusable in the expression and enforce­
ment of a wide range of attribute-based policies. These 
include assignment relations, prohibition relations, and 
obligations. 

Employing PM helps in building high assurance en­
forcement mechanisms in three respects. First, only 
a relatively small piece of the overall access control 
mechanism needs to be included in the host system (e.g., 
an operating system or application). This significantly 
reduces the amount of code that needs to be trusted. 

Second, policies are enterprise- and mission-specific. 
The enforcement mechanisms offered by commercial 
products are typically limited to a few fixed policies. 
Organizations therefore have to resort to implementing 
the unsupported policies as application code or simply 
ignore them. Under the proposed PM framework, the 
desired security policy can be enforced independent of 
that offered by the vendors. Moreover, it is possible to 
protect a resource under multiple security policies si­
multaneously. The actions of users and processes may 
be controlled under multiple policies, as well as enter­
prise objects may be protected under multiple policies. 

Third, the PM has the ability to generically impose 
confinement constraints to not only meet the policy ob­
jectives of Mandatory Access Control, but also to pre­
vent the leakage of information within models that are 
typically incapable of imposing such constraints. This 
is a particularly important assurance aspect given the 
general threat of malware and malicious or complacent 
user actions. Specifically, it is well known that DAC 
and RBAC are vulnerable to Trojan Horse attacks. In 
this paper, we demonstrate how the PM framework can 
address such vulnerabilities. 

To demonstrate PM’s viability and its flexible policy 
support, we have developed a reference implementation. 
We can now show, through our reference implementa­
tion, how to configure the PM for the expression and 
enforcement of a diverse set of policies to include in­
stances, and combinations of DAC, MAC, RBAC, Chi­
nese wall (2), ORCON (7), history-based SoD, etc. 

This paper is organized as follows. In section 2, we 
present the PM system architecture. In Section 3, we de­
scribe the PM’s basic data sets, relations and reference 
mediation function. In section 4, we show by example 
the PM’s ability to express and enforce the control ob­
jectives of a variety of policies, including RBAC, MAC, 
DAC and Chinese Wall, through the configuration of 
PM relations. It is our hope that the reader can envi­
sion configurations of other policies as well. In section 
5 we demonstrate the PM’s natural ability to combine 
policies. Section 6 discusses related work, and section 
7 concludes the paper by presenting a short discussion 
of the future vision, benefits and other functionalities of 
the PM. 

2. System Architecture 

Any access control enforcement framework should 
comprise a policy enforcement point (PEP) and a pol­
icy decision point (PDP). Normally, both these func­
tions are performed by the OS or the application soft­
ware. As such, they must be rendered as trusted com­
ponents. As it is evident, since the application and OS 
have many other functional components, they tend to be 
significantly large, resulting in a large amount of code 
that needs to be trusted. 

The PM is comprised of a PM server and PM clients, 
as shown in Figure 1. The PM server includes a PM 
Database, a PDP, a policy administration point (PAP) 
and an event processing module. The PM client is com­
prised of a PEP, its application programming interfaces 
(API), and PM-aware applications. In our current im­
plementation, the PEP is implemented as a kernel simu­
lator. Because the PEP is simple and straightforward to 
implement, establishing trust in the PM client is simpli­
fied. The PM server also needs to be trusted. Because it 
could be implemented as a central server that commu­
nicates only with PEPs and only through well defined 
interfaces, it has a reduced attack surface. The green 
shaded blocks of Figure 1 indicate the untrusted com­
ponents and the orange shaded blocks the trusted com­
ponents. 

The PM client or the user environment is the con­
text in which the user’s PM processes run. It can be an 
operating system, an application (e.g., a database man­
agement system), a service in a service oriented archi­
tecture, or a virtualized environment. Typically, a PM 
user logs on the PM by using a GUI provided by the 
PM client. A successful login opens a user session on 
the PM client. Within that session, PM presents the 
user with a logical view, called “personal object system” 
(POS), of all his/her accessible resources (e.g., files, 
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Figure 1: The System Architecture 

email messages, work items). As an alternative, PM 
may let the user ask for specific accessible resources. 
Within the session, the user may create and run vari­
ous PM processes that request access to PM-protected 
resources. The PEP within the PM client traps each 
access request, and then asks the PDP within the PM 
server to decide whether to grant or reject the access re­
quest. The physical location of each object is known 
to the PM server (and transparent to the client). In the 
case of a granted request, the server response is accom­
panied by the physical location of the object. The PM 
client next enforces the server’s decision, granting or re­
jecting the process’ access to the object. For a granted 
request the PM client requires the cooperation of a re­
source server in performing the granted operation on the 
physical content of an object. The resource server can 
reside on the machine that includes the user environ­
ment or on a server that is dedicated the storage of PM 
resources. The PM client exposes a standard set of APIs 
that can be used to develop PM-aware applications. 

The PDP receives an access request from (the PEP 
of) a PM client, computes a decision to grant or reject 
the access request, and returns the result. In this as­
pect, the PM server implements PM’s reference media­
tion function. The decision is based on the identity of 
the user/process that issued the request, the requested 
operation, the requested resource/object, and the per­

mission and prohibition relations, which are stored in 
the PM database. Essentially, a request is granted if and 
only if there exist appropriate assignment relations (see 
Section 3) and there does not exist a prohibition for that 
user or process on the requested object. The event pro­
cessing module of the PM server executes the responses 
to events specified in the obligation relations stored in 
the PM database, when the events are triggered by a 
client’s successful execution of an operation on a PM 
object. Finally, the administrative module (called Pol­
icy Administration Point, or PAP), is used to administer 
the PM database, i.e., to configure the current policy. 
The PM server exposes a standard set of commands that 
can be used by clients to solicit its services. 

The PM database contains a standard set of data and 
relations that represent the current policy configuration. 
As already stated, the policy configuration is used by 
the PM server’s PDP to compute access control deci­
sions. The policy configuration can be set up and/or up­
dated by a PM administrator using the PM server’s PAP. 
The PM server’s event processing module may dynam­
ically update the policy configuration by executing the 
responses attached to events that were detected in the 
PM clients. 

Finally, the PM uses the resource repositories and 
servers to store and retrieve the physical contents of 
its objects. The repository of each object is obviously 
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known to the PM, but transparent to the user. If a client’s 
request to access a resource is granted, this decision ar­
rives at the client’s PEP accompanied by the physical 
location of the object. The PM client cooperates with 
the resource server in transferring the contents of an ob­
ject from/to a repository to/from the PM user environ­
ment where the requesting process resides. Note that 
the resource servers may be implemented as PM client 
modules. 

The state of the policy machine may dynamically 
change as a consequence of successful accesses. A 
policy can be created through data configuration alone. 
However, PM has the provision to import existing poli­
cies through policy libraries. 

3. The Policy Machine 

3.1. PM Basic Elements 

The PM’s basic elements include authorized users 
(U), processes (P), system operations (Op), and objects 
(O). Users are unique entities that are either human be­
ings or “system users”. Objects are names that uniquely 
specify system entities that are controlled under one or 
more policies. Included in the set of objects are PM ac­
cess control data and relations. The set of objects may 
pertain to environment specific entities such as files, 
ports, clipboards, email messages, records and fields. 
The selection of entities included in this set is a matter 
of choice determined by the protection requirements of 
the system. Operations are unique actions that can be 
performed on the contents of objects. Some of these op­
erations are specific to the environment for which the 
PM is implemented. For example, common operating 
system operations include read (r) and write (w). Oth­
ers pertain to PM administrative operations that create 
and delete PM data and relations. 

Human users submit access requests through pro­
cesses. Most models treat users and their processes uni­
formly, under the concept of a subject, defined as an 
active entity. The PM is different in this regard by treat­
ing users and processes as independent but related en­
tities. The impact is greater user access flexibility and 
transparency. A process is a system entity, with mem­
ory, and operates on behalf of a user. Essential prop­
erties of processes are that they issue access requests, 
have exclusive access to their own memory and none 
to any others, but may communicate and exchange data 
with other processes through a physical medium such 
as the system clipboard or sockets. A user may be as­
sociated with one or more processes, while a process 
is always associated with just one user. We denote by 

process user(p) the user associated with process p ∈ P. 
We denote by (op, o)p a process access request, where 
op ∈ Op, o ∈ O, and p ∈ P. 

To afford appropriate mappings of attributes to poli­
cies, we introduce policy classes. We assume PC be the 
set of policy classes. A user, object or their respective 
attributes may belong to a policy class pc ∈ PC. Note 
that an object may be protected under more than one 
policy class, and similarly a user may belong to more 
than one policy class. 

3.2. PM relations 
PM relations are of three types - assignments, used to 

express and determine privileges, prohibitions that are 
expressed as user and process deny relations, and obli­
gations that are defined as event-response relations. The 
configuration of assignments and prohibitions define the 
access state of users and processes, and the access state 
and the obligations together define the overall PM pol­
icy state. 
Assignments: A PM privilege is a triple of the form 
(u, op, o) where u ∈ U, op ∈ OP, o ∈ O, and where 
(op, o) is said to be u’s capability and (u, op) is said to 
be o’s access entry. Its meaning is that user u can per­
form operation op on object o. As with other access 
control schemes, PM privileges are indirectly managed 
through higher level abstractions. The PM includes four 
such abstractions, namely user attributes (UA), object 
attributes (OA), operation sets, and policy classes (PC), 
with a binary assignment relation denoted by →. 

For each object o ∈ O, we assume the singleton set 
{o} is an object attribute (an element of OA). We will use 
the name o to denote this singleton set {o} (the object 
attribute) as well as the object o. Note that OA may 
contain other object attributes, which, as sets, may be 
equal to {o}, but have different names. For simplicity, 
with a slight abuse of the notation, we treat O ⊆ OA. 

An important PM concept is that all user and object 
attributes have common semantics regardless of their 
kind. A user attribute is a many-to-many relation that 
defines a set of users on one side and a set of capa­
bilities on the other. This definition is consistent with 
the formal definition of a role (4). The same semantics 
can be used to define other kinds of attributes such as 
communities of interest, organizational units, clearance 
levels, etc. An object attribute is also a many-to-many 
relation that defines a set of objects on one side and a 
set of access entries on the other. These many-to-many 
relations can be derived from common PM assignment 
relations, defined as follows. 

A user may be assigned to one or more user attributes 
(u → ua). A user attribute may be assigned to another 
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user attribute (ua1 → ua2). An object attribute may be 
assigned to another object attribute (oa1 → oa2) with 
the restriction that the second object attribute may not 
be an object. Another restriction is that any chain of 
user or object attribute assignments may not be a cy­
cle. We use the notations →∗ and →+ to denote a chain 
of 0 or more assignments and a chain of 1 or more as­
signments, respectively. By virtue of these assignments, 
both user and object attributes can sometimes be treated 
as containers. A user u is said to be “assigned to” or 
“in” a user attribute ua iff u →+ ua, and an object o is 
said to be “assigned to” or “in” an object attribute oa, iff 
o →∗ oa. 

User attributes can also be assigned to operation sets, 
ua → ops, and operation sets can be assigned to object 
attributes, ops → oa, where ops ⊆ Op. An assign­
ment relation within one policy class ua → ops → oa 
specifies that all users contained in ua can perform all 
operations in ops on all objects contained in oa. 

Given the assignment relations described so far, there 
are at least two meanings for the user attribute assign­
ment ua1 →

+ ua2. The first, as described above, is 
that the set of users of ua1 is contained in ua2. The 
second is that the users of ua1 have the capabilities as­
sociated with ua2. The capabilities associated with a 
user attribute ua are those obtained through all ua → 
ops → oa assignments. Similarly the object attribute 
assignment oa1 →

+ oa2 has two meanings. The first is 
that the set of objects of oa1 is contained in oa2. The 
second is that the objects of oa1 have the access en­
tries associated with oa2. The access entries associated 
with an object attribute oa are those obtained through 
all ua → ops → oa assignments. 

The PM allows for the combination of two or more 
policies (e.g., RBAC and MAC). However, not all users 
are controlled under all policies, nor are all user at­
tributes and object attributes relevant to all policies. A 
user attribute or an object attribute may be assigned 
to a policy class, ua → pc or oa → pc, pc ∈ PC. 
This type of assignment leads to mappings of users, 
user attributes, objects and object attributes to policy 
classes. A user u or user attribute ua “belongs to” or 
“is in” a policy class pc if there exists a chain of one 
or more assignments that start with that user or user at­
tribute and ends with the policy class (i.e., u →+ pc 
or ua →+ pc, pc ∈ PC). Similarly, an object o “is 
controlled under” or an object attribute oa “belongs 
to” or “is in” a policy class pc if there exists a chain 
of one or more assignments that start with that object 
or object attribute and ends with the policy class (i.e., 
o →+ pc, oa →+ pc, pc ∈ PC). 

With the assignments in place, we are able to deter-

uu oo 
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+ 

+ 

+
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uai {op,…} 
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Figure 2: (u, op, o) is a PM privilege 

mine the existence of a PM privilege. A triple (u, op, o) 
where u is a user, op is an operation, and o is an ob­
ject, is a PM privilege iff for each policy class pck under 
which o is controlled, user u has an attribute uak in pck, 
object o has an attribute oak in pck, and there exists an 
operation set ops containing op that is assigned to both 
uak and oak, as shown in Figure 2. In this and other 
illustrations depicting assignment relations, we use dot­
ted arrows to represent user attribute to operation set 
to object attribute assignment relations. We do this to 
avoid confusing these relations with other types of as­
signment relations. 
Prohibitions: There are two types of prohibitions, user-
deny and process deny. We denote by u deny(u, ops, os) 
a user-based deny relation, where u ∈ U, ops ∈ 2OP, and 
os ∈ 2O . Its meaning is that a process executing on 
behalf of user u cannot perform the operations in ops 
on the objects in os. By specifying os as its comple­
ment, denoted by ¬, the meaning of u deny(u, ops, ¬os) 
is that a process executing on behalf of user u can 
only perform the operations in ops on the objects in 
os. Similarly, a process-based deny relation is a triple 
p deny(p, ops, os), where p ∈ P, ops ∈ 2OP, and os ∈ 
2O. Its meaning is that the process p cannot perform op­
erations in ops on the objects in os, and the meaning of 
p deny(u, ops, ¬os) is that the process can only perform 
the operations in ops on objects in os. User and process 
denies are generally referred to as prohibitions because 
they represent exceptions to privileges. 
Obligations: 

These obligations, also known as Event pat­
tern/response relations, define conditions and methods 
under which policy state data is obligated to change. An 
event pattern/response relation is a pair (ep, r) (usually 
denoted when ep, do r), where ep is an event pattern 
and r is a sequence of administrative operations, called 
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a response. The event pattern specifies conditions that if 
matched by the context surrounding a process’ success­
ful execution of an operation on an object (an event), the 
administrative operations of the associated response are 
immediately executed, thereby changing the state of the 
policy. The context may pertain to and the event pattern 
may specify parameters like the user of the process, the 
operation executed, and the container(s) in which the 
object is included. Note that the possible formal pa­
rameters of the administrative operations comprised in 
the response are replaced by the appropriate values ex­
tracted from the event context. Responses are obliga­
tions performed by the PM, and as such, their execu­
tion is not predicated on privileges. Although the term 
obligation is used in a number of other access control 
frameworks such as XACML and Ponder (6; 8), these 
frameworks either do not apply obligations in altering 
the state of the policy (6) and/or do not alter the access 
space of a process that, as we show in section 4, is in­
strumental in the enforcement of a number of policies. 

3.3. Administrative Commands 

The question remains, how are policy state data ele­
ments and relations initially created and altered in meet­
ing policy demands. The short answer is by administra­
tors through administrative commands. An administra­
tive operation is specified as a parameterized procedure, 
whose body describes how a data set or relation (de­
noted by R) changes to R′ : 

opname(x1, . . . , xk) { 
R′ = f (R, x1, . . . , xk) 

} 

For example, consider the following administrative 
operation CreateUser: 

CreateUser(u) { 
′U = U ∪ {u} 

} 

An administrative command is a parameterized se­
quence of administrative operations prefixed by a con­
dition and has the format: 

cmdname(x1,,. . . ,xk) 
if (condition) then 

aop1 

. . . 
aopn 

end, 

where x1, . . . , xk(k ≥ 0) are (formal) parameters and 
aop1, aopn (n ≥ 0) are administrative operations which 
may use x1, . . . , xk as their parameters. The condi­
tion tests, in general, whether the user who requested 
the execution of the command is authorized to execute 
the command (i.e., the composing administrative opera­
tions), as well as the validity of the actual parameters. If 
the condition evaluates to false, then the command fails. 

3.4. Reference Mediation 

The current access state is enforced by a reference 
mediation function. Under reference mediation, a pro­
cess access request (op, o)p is granted iff there ex­
ists a privilege (u, op, o) where u = process user(p), 
and capability (op, o) has not been denied for either 
u or p. It should be noted that if the PM privilege 
(u, op, o) exists, and if p deny(p, ops, os) exists, where 
u = process user(p), op ∈ ops, and o ∈ os, user u may 
be able to perform capability (op, o) through a differ­
ent process p ′, if u = process user(p ′). However, if 
u deny(u, ops, os) and privilege (u, op, o) exists where, 
op ∈ ops, and o ∈ os, no process of u (and therefore u) 
will be able to perform capability (op, o). This discus­
sion shows how the PM resolves potential authorization 
conflicts: denies have precedence over privileges. Re­
garding potential conflicts between policies that protect 
an object, PM applies an “and” combination algorithm. 

3.5. Consideration of Inter-process Communication 

Although inter-process communication is not in real­
ity a PM component, its consideration in a protection 
scheme is essential. In this section we describe the 
PM’s treatment of process-to-process communication. 
In general, operating systems provide mechanisms for 
facilitating communications and data sharing between 
applications that provide opportunities to leak data as 
well. These mechanisms include but are not limited to 
clipboards, pipes, sockets, remote procedure calls, and 
messages. They all conform to a common abstraction: 
one process produces/creates data and inserts it into the 
mechanism’s physical medium; the other process con-
sumes/reads the data from the physical medium. A syn­
chronization mechanism must also exist. 

By treating the communication medium as a PM ob­
ject, the PM offers strategies to support data transfer 
that is in compliance with the policy. For example, the 
producer process could create a PM object that repre­
sents the physical medium/support of the data transfer 
mechanism. This new object will be assigned attributes 
in accordance to a predefined and policy-specific set of 
conditions. These conditions can be specified via the 
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event-response relations. The consumer process must 
be able to read the PM object that represents the phys­
ical medium under the rules of the reference media­
tion. A practical example presented in section 4.1.3 per­
tains to the system clipboard that is used in performing 
copy/cut and paste operations. 

3.6. Preventing Illegal Information Flow 
With few exceptions, existing access control mecha­

nisms share fundamental weaknesses. One well-known 
weakness is the inability to prevent the “leakage” of 
data to unauthorized principals through malware, or 
malicious or complacent user actions. To illustrate 
this weakness, assume the following three privileges: 
(u1, r, o1), (u1, w, o2), and (u2, r, o2). Considering these 
privileges alone, it is impossible to determine if u2 can 
read the content of o1. Under one scenario, u1 can read 
and subsequently write the contents of o1 to o2. Even if 
the enforcement of policy were predicated on “trust in 
users”, we must all but assume the existence of malware 
that can easily thwart the policy. This threat exists be­
cause, in reality, users do not perform operations on ob­
jects, but under a user’s capabilities, processes perform 
operations on the content of objects. Therefore, a pro­
gram executed by u1, can read the contents of o1, and 
without u1’s further action or knowledge, write those 
contents to o2. Note that one cannot prevent this leak­
age even by adding a negative privilege, ¬(u2, r, o1). 

The importance of preventing inappropriate leakage 
of data (often called confinement) has been recognized 
as early as the 70s, with the establishment of the Bell 
and LaPadula security model (9) and the Mandatory Ac­
cess Control (MAC) policy (1). Although MAC com­
pliant systems go beyond traditional DAC and RBAC 
products in preventing inappropriate leakage of data, 
these systems are limited to multi-level security, and 
are not general enough to support numerous other pol­
icy objectives that also depend on confinement. With­
out this general support, commercially available prod­
ucts are arguably incapable of enforcement of a wide 
variety of policies, to include some instances of RBAC, 
e.g., “only doctors can read medical records”, ORCON 
and Privacy (7), e.g., “I know who can currently read 
my data or personal information”, or conflict-of-interest 
(2), e.g., “a user with knowledge of information within 
one dataset cannot read information in another dataset”. 

Not all advanced policies pertain to the prevention 
of data leakage to unauthorized principals. One such 
policy is Separation of Duty (SoD). While RBAC is 
noted for its support of SoD principles, real-world prod­
ucts enforce only the simplest forms (e.g., Static and 
dynamic-based SoD), and as we later discuss, with great 

trepidation. Simon and Zurko, in their seminal paper on 
SoD (10), describe history-based SoD as the most ac­
commodating form of SoD, subsuming the policy objec­
tives of these other simpler forms. Other history-based 
policies pertain to two person control, workflow, and 
conflict of interest, but regardless of their importance 
in deterring fraud or combating other threats, enforcing 
history-based policies in a static privilege management 
environment is difficult or even impossible. 

To address some of the above issues, a number of 
extensions to the commonly deployed access control 
frameworks have been proposed (11; 12; 13). We 
feel this approach is flawed, amounting to further con­
struction on a weak foundation (in one respect or an­
other), to only address a specific problem. Others have 
proposed policy specification languages that provide a 
means of mapping policy onto existing access control 
mechanisms. Paramount among these languages is Pon­
der (8). Although Ponder may be rich in its expression, 
the enforcement of policy is limited by the context that 
is made available by the underlying mechanisms. 

The PM addresses these and other policy issues 
through its ability to dynamically alter its policy state 
based on a rich set of events pertaining to processes 
successfully accessing protected object contents. The 
PM prevents leakage of sensitive data to unauthorized 
principals by first recognizing the reading of sensitive 
information by a process and subsequently constraining 
that process or its user from writing to objects acces­
sible to those unauthorized principals. This approach 
is general enough to support, with a reasonable degree 
of assurance, a large variety of policies that depend on 
the absence of leakage. Separation of duty and other 
history-based policies can be supported through a simi­
lar approach. 

4. Example Policy Configurations 

In this section, we demonstrate the PM’s ability to ex­
press and enforce the policy objectives of RBAC, Chi­
nese wall, MAC and DAC models. It is important to 
note that when we say that the PM is able to express 
or enforce the policy objectives of a particular model 
we are not necessarily suggesting that we emulate the 
specific rules or relations of the model. Instead, the 
PM is able to implement the same policy objective of 
the model through a specific configuration strategy of 
its prescribed data sets and relations and its reference 
mediation function. 
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4.1. RBAC 

Over the past decade and half, a number of RBAC 
models and RBAC extensions have been proposed (3; 
4; 5). In defining RBAC requirements, we refer to the 
RBAC standard (4), considered to be the culmination 
of the prominent RBAC models and implementations of 
the day. 

4.1.1. RBAC Specification 

A major objective of RBAC is to streamline autho­
rization management over identity-based access control 
schemes by defining roles as relations between users 
and capabilities. (The PM’s notion of a capability is of­
ten referred to as permission in RBAC). These relations 
are achieved by assigning users to roles on one side and 
assigning capabilities to roles on the other side. By as­
signing a user to a role, that user acquires the capabili­
ties that are assigned to the role. 

Another important RBAC feature is the ability to de­
fine a role hierarchy, i.e., an inheritance relation be­
tween roles, whereby senior roles acquire the capabil­
ities of their juniors. By assigning a user to a role, the 
user is also (indirectly) associated with the capabilities 
of that role’s junior roles. 

In addition to these administrative features, standard 
RBAC provides features to address Separation of Duty 
(SoD). SoD is a security principle used to formulate 
multi-person control policies, to reduce the likelihood 
of the occurrence of fraud, by requiring that two or 
more different people be responsible for the comple­
tion of a sensitive task or set of related tasks. Although 
the SoD principle predates RBAC (14), SoD is com­
monly defined in terms of roles and role relations. The 
RBAC standard includes two types of relations for the 
enforcement of separation of duties - static separation 
of duty (SSD) and dynamic separation of duty (DSD). 
SSD relations place constraints on the assignments of 
users to roles, whereby membership in one role may 
prevent the user from being a member of another role, 
and thereby presumably forcing the involvement of two 
or more users in performing a sensitive task that would 
involve the capabilities spread over both roles. Dynamic 
separation of duty relations, like SSD relations, limit the 
capabilities that are available to a user, while adding op­
erational flexibility, by placing constraints on roles that 
can be activated within a user’s sessions. As such, a 
user may be a member of two roles in DSD, but unable 
to execute the capabilities that span both roles within a 
single session. 
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Figure 3: Example RBAC assignment configuration 

4.1.2. PM Configuration of RBAC 
The PM retains and in many respects exceeds the ad­

ministrative and policy objectives of RBAC. To help il­
lustrate these points, consider the PM assignments de­
picted in figure 3. In this figure, Doctor, Intern, and 
Consultant are roles represented by instances of user at­
tributes, where Doctor is assigned to Intern. Also in­
cluded in the configuration are objects (o1 . . . o7) that 
are assigned to object attributes (e.g., o1 and o2 are as­
signed to Med Records). User attributes are also as­
signed to operation sets, and operation sets are assigned 
to object attributes. For example, Doctor → {w} → 
Med Records. Finally, all users, objects, and user and 
object attributes are mapped to the single policy class, 
RBAC. For reader’s convenience, in table 1, we list the 
set of privileges that can be derived from this configu­
ration by applying the definition at the end of section 
3.2. 

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o3), 
(u1, w, o3), (u1, r, o4), (u1, w, o4), (u1, r, o5), (u1, w, o5), 
(u1, r, o6), (u1, w, o6), (u1, r, o7), (u1, w, o7), (u2, r, o3), 
(u2, w, o3), (u2, r, o4), (u2, w, o4), (u2, r, o5), (u2, w, o5), 
(u2, r, o6), (u2, w, o6), (u2, r, o7), (u2, w, o7), (u3, r, o3), 
(u3, w, o3), (u3, r, o4), (u3, w, o4), (u3, r, o5), (u3, w, o5), 
(u3, r, o6), (u3, w, o6), (u3, r, o7), (u3, w, o7), (u4, r, o1), (u4, r, o2) 

Table 1: The list of derived privileges as a consequence of the assign­
ments depicted in figure 3 

Roles 
User attributes indeed share the semantics of an 

RBAC role; by assigning a user to a user attribute, the 



user is indirectly associated with capabilities via the 
user attribute. For instance through the u1 → Doc­
tor assignment, u1 is associated with the capabilities 
(w, o1) and (w, o2). Note the existence of the privileges 
(u1, w, o1) and (u1, w, o2) in table 1. While RBAC is 
well noted for its administrative efficiency in associat­
ing users with capabilities, PM offers even greater effi­
ciency (and is more intuitive) as a consequence of its op­
eration set and object attribute abstractions. That is, for 
each ua → ops → oa relation, where ua ∈ UA, ops ∈ 
2OP 
, oa ∈ OA, ua and any user assigned to ua is as­

sociated with capabilities equal to the number of oper­
ations in ops times the number of objects in oa. Un­
der RBAC, capabilities are directly and individually as­
signed to roles. Furthermore, through these same re­
lations, PM allows for a similarly efficient association 
of objects with access entries (e.g., o2 is associated with 
(u1, r) and (u1, w) via o2 →Med Records), while RBAC 
offers no similar semantics. 

Role Hierarchies 
With regard to role hierarchies, the PM offers seman­

tics similar to RBAC through user attribute to user at­
tribute assignments. With respect to figure 3, in ad­
dition to u1 having the capabilities to write to the ob­
jects in Med Records through the u1 → Doctor assign­
ment, u1 also has the capabilities to read the objects in 
Med Records through the Doctor → Intern assignment. 
In addition, the PM provides for the inheritance of ac­
cess entries between object attributes (not depicted in 
figure 3), while again RBAC offers no semantics in this 
regard. 

Separation of duty 
Although RBAC SSD and DSD relations offer some 

advancement in control over identity-based systems, se­
curity issues remain. To illustrate this point, assume 
that a conflict of interest would arise if a single user 
were able to execute capability (op1, o1) and capabil­
ity (op2, o2). Under RBAC, these capabilities could be 
assigned to different roles (say r1 and r2) and an SSD re­
lation could be imposed on those roles and thus prevent 
any user from being simultaneously assigned to both 
roles. However, while any user u, assigned to r1, would 
be prevented from executing (op2, o2) through denial of 
membership to r2, nothing in the SSD relation prevents 
(op2, o2) from being assigned to some role r3 and u be­
ing assigned to r3. Now assume an RBAC environment 
where r1 and r2 are in DSD. Again, nothing prevents ca­
pability (op1, o1) and/or capability (op2, o2) from being 
assigned to some r3 where r3 is not considered in any 
DSD relation. Also, if a user is able to activate r1 and r2 

in different sessions, either concurrently or sequentially, 
that user could execute capability (op1, o1) and capabil­
ity (op2, o2). 

The PM is able to meet the policy objectives of SSD 
and DSD, while alleviating these security issues. Again, 
assume that a conflict of interest would arise if a single 
user were able to execute capability (op1, o1) and capa­
bility (op2, o2). Now, consider the following PM event-
pattern response relations: 
(1) when process p performs (op1, o1) do create u deny 
(process user(p), {op2}, {o2}); 
(2) when process p performs (op2, o2) do create u deny 
(process user(p), {op1}, {o1}). 

Through relations (1) and (2) any process that suc­
cessfully executes (op1, o1) would effectively deny the 
user of the process the ability to successfully execute 
(op2, o2) in the future and vice-versa. As such, a sen­
sitive task consisting of (op1, o1) and (op2, o2) would 
require the independent actions of a minimum of two 
users to complete. Furthermore, this separation would 
hold independent of any privilege configuration (erro­
neous or otherwise), and independent of the sessions 
under which any process executed a capability of con­
cern. 

Perhaps the most operationally flexible and compre­
hensive form of SoD is history-based (10). Under 
history-based SoD, if a user performs an operation on 
an object, that user can’t perform a second operation 
(the same or different operation) on the same object. A 
simple example is a user both requesting and approving 
a purchase order. This form of SoD can easily be re­
alized by the PM. For instance consider the following 
relation: 
(3) when process p performs (op1, o1) do create u deny
 
(process user(p), {op2}, {o1})
 
that specifies, if any user performs op1 on object o1, that
 
user can no longer perform op2 on o1.
 

4.1.3. Preventing data leakage in RBAC 
RBAC is not designed to prevent unauthorized leak­

ing of data. For example, with respect to figure 3, the 
RBAC policy specifies that doctors and interns can read 
medical information, and this suggests to many that 
only doctors and interns can read medical information. 
Under this configuration, nothing prevents u1 from read­
ing or copying the contents of an object in Med Records 
and writing or pasting it to an object in Proposals, and 
thus enabling u2, who is not a Doctor, the ability to read 
medical information. Even if we were to trust doctors 
not to perform such actions, a malicious process acting 
on u1’s behalf could read medical information and write 
it to any object in Proposals without u1’s knowledge. 

9 



In order to prevent such a leakage, consider the fol­
lowing PM event-response relations 
(4) when process p performs (r, o) where o →+
 

Med Records
 
do create p deny (p, {w}, ¬Med Records).
 

Relation (4) will prevent a single process from read­
ing contents of any medical record (e.g., o1) and subse­
quently writing it to any object outside the Med Records 
container (e.g., o3). Even with the existence of relation 
(4), two processes could cooperate in leaking data. With 
respect to the specific case of the copy/paste operation, 
one process could read data, e.g., a medical record, fol­
lowed by a copy/paste operation from the memory of 
the first process to the memory of the second process 
followed by the second process writing the data to an­
other object, making the data available to users that are 
not authorized to read the data. To prevent this method 
of leakage, assume the following relation is added to our 
configuration: 
(5) when copy object o do assign clipboard to attributes 
of o. 

Relations (4) and (5) together prevent copying of an 
object in Med Records and the subsequent pasting of its 
contents into an object that is not in Med Records. That 
is, the copy operation would place the clipboard into 
Med Records, according to relation (5), and according 
to relation (4) any subsequent process that reads from 
the clipboard (e.g., paste) would be prevented from writ­
ing to any object (e.g., o3) that is not in Med Records. 

As shown below, the same technique used to enforce 
confinement in RBAC can be applied to enforce con­
finement in context of any other model to include meet­
ing the policy objectives of MAC. 

4.2. Mandatory Access Control 

In this section, we describe the policy objectives of 
MAC and present a PM configuration that meets these 
objective. 

4.2.1. MAC Specification 
The objective of the MAC (9) security policy is to 

prevent the unauthorized reading of classified informa­
tion. Traditionally, this policy objective has been spec­
ified and often implemented in terms of the simple se­
curity property, *-property (also referred to as the con­
finement property), and tranquility property of the Bell 
& LaPadula (9) security model, hereafter referred to 
as BLP. Under BLP, security levels, organized under a 
dominance relation, are assigned to subjects (users and 
their processes) and objects. We say that security level x 
dominates security level y if x is greater than or equal to 

y. The simple security property specifies that a subject 
is permitted read access to an object only if the subject’s 
security level dominates the object’s security level, and 
the *-property specifies that a subject is permitted write 
access to an object only if the object’s security level 
dominates the subject’s security level. Indirectly, the *­
property prevents the transfer of data from an object of 
a higher level to an object of a lower classification. The 
security objective of these two rules is to prevent the di­
rect and indirect reading of information at a level higher 
than the user’s level. As commonly implemented, the 
security level of a process takes on the level of the ses­
sion for which it belongs. The security level of a session 
(usually established at session creation time) can take 
on any single security level dominated by the clearance 
level of its user, but once assumed must remain fixed for 
the duration of the session. This condition is referred 
to as the tranquility property. The tranquility property 
serves two purposes. First it associates a process with 
a security level. Second it prevents, for example a pro­
cess from reading Top Secret data, storing the data in 
memory, switching its level to Secret, and writing the 
contents of its memory to a Secret object. 

4.2.2. PM Configuration of MAC 
Figure 4 is an example that illustrates PM assignment 

relations that serve as the basis for meeting the security 
objectives of BLP. Figure 4 assumes top-secret domi­
nates secret. It further specifies that users cleared to the 
levels of top-secret and secret are respectively assigned 
to the TS and S user attributes, and objects that are clas­
sified at the top-secret and secret levels are respectively 
assigned to the TS and S object attributes. With respect 
to these assignment relations, users (and their processes) 
that are assigned to TS are only able to perform read op­
erations on objects classified at the levels top secret and 
secret. Users (and their processes) that are cleared se­
cret are only able to perform read operations on objects 
classified at the level secret, thus showing support for 
the security objectives of the simple security property. 
For the readers’ convenience, table 2 lists the set of priv­
ileges that can be derived from the assignment relations 
depicted in figure 4. 

However, under these assignment relations, a user 
like u1 for example, could read top secret data and sub­
sequently write that data to a secret object. To prevent 
this leakage assume the following two event pattern-
response relations: 
(6) when process p reads o →+ TS do create 
p deny(p, {w}, ¬TS); 
(7) when process p reads o →+ S do create 
p deny(p, {w}, ¬(S ∪ TS)). 
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Figure 5: A general MAC Configuration 

Relation (6) specifies that once a process successfully 
reads a top-secret object, the process can only write to 
objects that are in the TS container. Similarly, relation 
(7) specifies that once a process successfully reads a se­
cret object, the process can only write to objects that are 
in S or TS containers. 

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o4), 
(u1, w, o4), (u2, w, o1), (u2, r, o2), (u2, w, o2), (u2, w, o4) 

Table 2: Derived privileges from the MAC assignments configuration 
of Figure 4 

Under this configuration, a process with its user 
cleared to a particular level (say top secret), can read 
objects at levels at or below the user’s clearance level 

(i.e., top secret, or secret). However, once a process has 
read data at a particular level (say top secret), that pro­
cess can no longer write to objects below that particular 
level (i.e., secret). These observations demonstrate ad­
herence to the security objectives of the simple security, 
the *-property, and the tranquility property of the BLP 
security model, and thus the MAC Policy. Figure 5 il­
lustrates a construction strategy for the attributes and 
assignment relations of a MAC policy with n security 
levels L1, . . . , Ln where Lk+1 dominates Lk for k = 1 to 
n − 1. The obligation relations that pertain to this con­
struction are: 
when process p reads o →+ Ln do create 
p deny(p, {w}, ¬Ln); 
when process p reads o →+ Ln − 1 do create p deny 
(p, {w}, ¬(Ln ∪ Ln−1)); 
. . . 
when process p reads o →+ L1 do create p deny 
(p, {w}, ¬(Ln ∪ Ln−1 . . . ∪ L1)); 

It is important to recognize that our PM MAC con­
figuration does not only meet the policy objectives of 
MAC, it does so with greater user transparency than that 
of common BLP implementations. Under these imple­
mentations, all processes running in a session are la­
beled at the same level as the session. This condition has 
the effect of imposing undue restrictions on the session 
user. For example, a user cleared to top secret in a top 
secret session can’t write to a secret object. Under the 
PM framework and our MAC configuration, restrictions 
are dynamically imposed at the process level, thus al­
lowing the user, through multiple processes, the ability 
to execute his/her full range of authorized capabilities 
within a single session. A user can read top secret data, 
and subsequently write to secret data through different 
processes running in the same session. Also, note that 
the MAC PM configuration does not specify unclassi­
fied user or object attributes, yet, relations (6) and (7) 
ensure that classified information cannot be leaked to 
unclassified objects (which are all objects not included 
in S or TS). 

For the non-hierarchical component of a MAC policy, 
there exist efficient PM configurations. Given the space 
limitations, we favored the specification of other policy 
configurations. 

4.3. Discretionary Access Control 

In this section we describe the control objectives of 
DAC, and present a PM configuration that meets these 
objectives. 
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Figure 6: A partial DAC configuration 

4.3.1. DAC Specification 
Central to Discretionary Access Control (DAC) (1) 

are the concepts of object ownership and control. The 
owner of an object is a user that possesses administra­
tive capabilities to grant/revoke other users or groups 
of users, access to the object (i.e., creation and modi­
fication of access entries for the object). The owner of 
an object is typically the user that created the object. 
Control pertains to the set of administrative capabilities 
that enables the creation and modification of access con­
trol entries associated with owned objects. Control may 
also pertain to the transfer of ownership to another user. 
Ownership of an object also implies capabilities to read 
and write the object. 

4.3.2. PM Configuration of DAC 
The PM offers a number of strategies for the configu­

ration of DAC policies. Under our strategy a user’s iden­
tity is represented through a user attribute that specifies 
the name or identity of the user (i.e., the user in ques­
tion is the only user assigned to this user attribute). We 
call this attribute the “name attribute”, or the “identity 
attribute”. Similarly, group identities are represented as 
user attributes that contains only the users that are mem­
bers of that group. Figure 6, which partially illustrates a 
PM DAC configuration, where the user attribute “Alice 
Smith” is user alice’s name attribute, while the “DAC 
users” user attribute represents the collection of all users 
included in the DAC policy class. 

User’s ownership and capabilities over an “owned” 
object can be specified under this PM configuration by 
placing the object in a container specially created for 
that user. We refer to this container as the user’s home. 

In figure 6, the object attribute “alice home” denotes the 
home container for user alice. The creation of a user’s 
home is accompanied by setting up three categories of 
capabilities for the user: (a) capabilities to access ob­
jects in the home container; (b) capabilities to perform 
administrative operations on the elements and relations 
comprising the home container for the organization of 
its contents (e.g., object attribute to object attribute as­
signments, creation of new object attributes); and (c) 
capabilities to transfer ownership or grant/revoke other 
users’ access to the objects inside the home container. 
The user, his/her home container and the capabilities 
(a), (b), and (c) could be conveniently created through a 
single administrative command - create dac user (user 
id, user name). Typically, under DAC a user initially 
obtains ownership and control over an object as a con­
sequence of object creation. This can be achieved by 
defining an event-response relation where the event is 
the object creation and the response is the assignment 
of the new object to the user’s home container. 

Using the policy configuration described above, 
transferring the ownership of an object to another user 
may be achieved by assigning the object to the other 
user’s home container and optionally deleting its assign­
ment to the original owner’s home. Note that the trans­
fer requires the privilege to assign objects from the orig­
inal owner home to another user’s home container. 

Granting another user or group of users access to an 
object o may be achieved by creation of the assignment 
g → {r, w} → o where g is a user attribute that rep­
resents the other user or group of users in the DAC 
users. Figure 7 shows how alice could grant user bob 
read/write access to one of her objects by using such 
assignments to bob’s name attribute “Bob Dean”. 

4.4. Chinese wall policy 

While the purpose of SoD is to reduce the likeli­
hood of fraud, the purpose of the Chinese Wall pol­
icy, as modeled by Brewer and Nash (2), is to address 
conflict-of-interest issues related to business practices. 
Consultants or advisors are naturally given access to 
proprietary information to provide a service for their 
clients. When a consultant gains access, for example 
to the competitive practices of two banks, the consul­
tant gains knowledge amounting to insider information 
that can undermine the competitive advantage of one or 
both institutions or can be used for personal profit. The 
objective of the Chinese Wall policy and its associated 
model is to identify and prevent user accesses as well as 
the possibility for the flow of information that can give 
rise to such conflicts. 
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Figure 7: Alice grants bob read/write access to proposal1 

4.4.1. Chinese wall Specification 
Under the Brewer and Nash model, company sen­

sitive information is categorized into mutually disjoint 
conflict of interest categories (COIs). Each company 
belongs to only one COI and each COI has two or more 
member companies. The membership within a COI in­
cludes companies whereby a consultant obtaining sensi­
tive information regarding one company would consti­
tute a conflict of interest if the consultant were to obtain 
sensitive information in regard to another. Several COIs 
may co-exist. For example, one COI may pertain to 
Banks, while another COI may pertain to Energy Com­
panies. Brewer-Nash defines two rules, one for reading 
and one for writing: 

•	 Read Rule: Subject s can read object o only if: 

–	 o is in the same company dataset as some ob­
ject previously read by s, or 

–	 o belongs to a COI class for which s has yet 
to read an object. 

• Write Rule: Subject s can write object o only if 

–	 s can read o under the read rule, and 

–	 No object can be read within a different com­
pany dataset than the one for which write ac­
cess is requested. 

It is important to recognize that the Brewer-Nash 
rules consider subjects to include both users and the pro­
cesses that are acting on behalf of the users, and the rule 
for writing takes into consideration the possibility of a 
Trojan horse that can leak sensitive data outside a given 
company dataset. 

The Brewer-Nash model begins with the recognition 
of objects each belonging to a single company dataset. 
Our strategy and example of the enforcement of the Chi­
nese wall policy begins with the select assignment of 
objects o3 . . . o7 to company data sets represented by 
containers C1 . . . C4 in the context of the RBAC as­
signment relations of figure 3. As per the Brewer-Nash 
model, company datasets are further categorized into 
conflict of interest (COI) classes. Our configuration, vis. 
Figure 3, includes two such COIs, COI1 and COI2, that 
are assigned to the container Proposals, and the Consul­
tant role that has read and write access to all objects in 
Proposals. 

In addition to the assignment configuration of figure 
3, we meet the objectives of the Chinese wall policy 
through the following event pattern-response relation: 
(8) when process p performs (r, o), where o →+ Propos­
als do
 
create u deny(process user(p), {r}, {oa2 ∩ ¬oa1}),
 
create p-deny(p, {r, w}, {¬oa1}),
 
where o → oa1 → oa2 → Proposals.
 

Relation (8) is valid under the assumption that for 
every object o, such that o →+ Proposals, there ex­
ists unique object attributes oa1 and oa2 such that o → 
oa1 → oa2 → Proposals. Indeed, in our configuration 
oa1 is a company dataset, and oa2 is a COI. Relation (8) 
specifies that whenever a process performs a read oper­
ation on an object contained in Proposals, a user deny 
and a process deny relation are created. The user deny 
relation prohibits the user of the process that had read 
the object o, the capability to subsequently read objects 
that are contained in the COI of o but not in the com­
pany data set of o. For example, if a process with u2 as 
its user reads object o5, u2 could still read any object in 
C2 (e.g., o4 and o5), but can no longer read an object in 
COI1 that is not in C2 (e.g., o3 in C1). Also, under this 
example, u2 can still read any object in Proposals that 
is not in C1. Note that this aspect of relation (8) meets 
both requirements of the Brewer-Nash rule for reading. 
The created process deny relation prohibits a process 
that had read an object o in Proposals the capability to 
write to any object outside of company dataset of o, or 
to read an object from outside company dataset of o. 
Note that although the user of the process may be able 
to read objects outside the company dataset for which it 
has write access, the process would be prevented from 
doing so. This second aspect of relation (8) meets both 
requirements of the Brewer-Nash rule for writing. 
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5. Combining Policies 

In this section we describe the PM’s natural ability 
to control user and process access to objects under the 
combination of two or more policies. Consider the com­
bination of the RBAC and MAC policy configurations 
as specified above. First assume the assignment config­
urations of figures 3 and 4. Again, for the readers’ con­
venience we list the derived privileges that can be de­
rived through combination of the assignment relations 
of these figures in table 3. 

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u1, w, o2), (u1, r, o3), 
(u1, w, o3), (u1, r, o4), (u1, w, o4), (u1, r, o5), (u1, w, o5), 
(u1, r, o6), (u1, w, o6), (u1, r, o7), (u1, w, o7), (u2, r, o3), 
(u2, w, o3), (u2, w, o4), (u2, r, o5), (u2, w, o5), (u2, r, o6), 
(u2, w, o6), (u2, r, o7), (u2, w, o7), (u3, r, o3), (u3, w, o3), 
(u3, w, o4), (u3, r, o5), (u3, w, o5), (u3, r, o6), (u3, w, o6), 
(u3, r, o7), (u3, w, o7) 

Table 3: The list of privileges that can be derived though the combina­
tion of assignment relations of the RBAC policy assignment relations 
depicted in figure 3 and the MAC policy assignment relations depicted 
in figure 4 

Note that not all users or objects are in both policy 
classes. For instance, u3, o3, o5, o6 and o7 are only in 
RBAC, but all objects in MAC are also in RBAC. Re­
gardless of the number of policies under which an object 
is protected, the same rules for reference mediation ap­
ply. That is, a process access request (op, o)p is granted 
iff there exists a PM privilege (u, op, o) where u= pro­
cess user(p), and (op, o) has not been denied for either 
u or p. Reference mediation begins with the determi­
nation of a PM privilege. See definition of a PM priv­
ilege in section 3. Note that with respect to the com­
bination of configurations of figures 3 and 4, the triple 
(u1, w, o1) is a PM privilege, because (1) o1 is in both 
RBAC and MLS, (2) both Doctor and S are u1’s user at­
tributes, where Doctor is in RBAC and S is in MLS, (3) 
TS and Med Records are object attributes of o1, where 
Med Records is in RBAC and TS is in MLS, and (4) 
the operation set containing w is assigned to Doctor and 
Med Records, and S and TS. The triple (u2, r, o3) is also 
a privilege because o3 is only in RBAC and (u2, r, o3) is 
a PM privilege in RBAC. In contrast, (u2, r, o2) is not a 
privilege, because o2 is in both RBAC and MAC, Con­
sultant is the only attribute of u2 in RBAC, but Consul­
tant cannot read o2 in RBAC. 

Implicit to our definition of a privilege is the notion of 
need-to-know. Under need-to-know restrictions, even if 
a user has all the necessary official approvals (such as a 
clearance) to access certain information under one pol­

icy, the user would not be given access to the informa­
tion unless the user has a specific need to know; that is, 
access to the information must be necessary for the con­
duct of one’s official duties. Although the need-to-know 
principle has its origins in limiting access to classified 
information under the combination of both MAC and 
DAC, this principle can and often does apply to combi­
nations of other policy classes as well. 

For instance, although a user may be a Doctor, and 
thus can read patient medical records under an RBAC 
policy, the user is denied the ability to read a particu­
lar medical record, unless the user can read the medical 
record by virtue of being assigned to a particular ward, 
under an organization based policy. Another explana­
tion as to why (u2, r, o2) is not a privilege is that, al­
though u2 is cleared secret and o2 is secret, o2 is a medi­
cal record that can be accessed by Doctors or Interns and 
u2 is neither. In other words, u2 does not have a need-
to-know. On the other hand, regarding (u1, w, o1), o1 is 
classified TS and is a medical record, and u1 is cleared 
to top secret and is also a doctor, therefore u1 can write 
o1 under the need-to-know principle. 

Another interesting property is that not all objects 
need to be included in a policy class that supports an 
overall policy, in order to be included in the scope of 
control of the policy. For the remainder of this section, 
assume the existence of the assignment relations of fig­
ures 3 and 4, and relations (4) - (8) are also in place. 
Although o3 (presumed unclassified) is not included in 
the MAC policy class, o3 is included in MAC’s scope of 
control. Indeed, if process p reads object o1 (top secret), 
p is then denied, through relation (6), write access to o3. 
It is also the case that if process p first reads object o3, 
p can write to o1. In general, relations (6) and (7) pre­
vent a process from writing to an object at a level less 
than the level of any object that it had previously read. 
Relation (5) with (6) and (7) prevent the transfer of clas­
sified information through a copy and paste operation to 
an unclassified object. In contrast, in keeping with BLP, 
for a user to access an object, the object (classified or 
unclassified must be labeled. In this respect, the PM’s 
is more efficient in the embodiment of the MAC policy 
than that of BLP. 

We now consider the combination of the MAC and 
Chinese wall policies, where the Chinese wall policy 
has no policy class of its own. Note that o4 is classified 
TS, and is also in the company dataset C2, along with o5 

that is not classified. According to the Chinese wall pol­
icy once a user has read an object in a company dataset 
that user is free to read and write to other objects in the 
same company dataset. Indeed, in accordance with our 
configuration, once a user has read o4, that user can read 
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o5, and in fact that user can write to o5, using a different 
process than the one used for reading o4. In addition, 
a user can copy the contents of o5 and paste it into o4, 
but at the same time, the user cannot copy any portion 
of o4 and paste it into o5. If there existed another object 
also classified TS, in a different company dataset, but in 
the same COI as o4 the contents of o4 can’t be written 
or pasted into the object. This is precisely the behavior 
one would expect under the combinations of MAC and 
Chinese wall. 

It is important to note that all properties that pertain to 
policy combinations are achieved without the need for 
any further configuration beyond those configurations 
of the constituent policies. 

6. Related Work 

Although the PM may exhibit features similar to 
those of other access control frameworks, as noted in 
section 1, the PM is neither a new access control model, 
nor an extension or adaptation of any existing access 
control model or mechanism. The PM is a redefinition 
of access control enforcement for providing a unifying 
framework to support a wide range of policies under a 
single mechanism. The PM is not unique in this pur­
suit of generalizing access control and offering policy 
flexibility. Therefore, we do not review the many access 
control models and their extensions proposed in the lit­
erature, but only review the attempts to generalizing ac­
cess control. 

One partial solution to meet general policy needs is 
an OASIS’ standard eXtensible Access Control Markup 
Language (XACML) (6) and the Ponder policy spec­
ification language (8). XACML describes both a 
policy language and an access control decision re­
quest/response language (both encoded in XML). The 
policy language describes general access control re­
quirements. The request/response language allows for 
queries to ask whether a given action should be allowed 
and interpret the result. A similarity between XACML 
and the PM is their ability to afford policy combinations 
with respect to privileges. One drawback of XACML is 
that it does not specify or enforce policies that pertain to 
processes in isolation to their users, thereby disallowing 
the specification and enforcement of a wide variety of 
related policies. Another drawback of XACML is that 
its Policy Decision Point is stateless, which place limita­
tions on the policies that can be specified and enforced. 
Although XACML includes the concept of an obliga­
tion, it is not used to alter the state of the policy. Ponder 
is declarative object oriented language for specifying 
security and management policy for distributed object 

systems. Under Ponder policy is expressed through the 
use of their language and is enforced through mappings 
onto various access control mechanisms, thus separat­
ing policy from the implementation of the system. The 
PM is a logical and complete “machine” in that the con­
figuration of its relations expresses policies which are 
enforced through a reference mediation function that is 
part of the machine. The policies that are enforceable 
by Ponder are limited by the underlying mechanisms. 
For example, we have shown that placing prohibitions 
through obligations on processes to be an instrumental 
component in the enforcement of confinement policies. 
Although Ponder includes the concept of obligations, 
we doubt that Ponder can afford similar control. 

Although products that protect objects under an MLS 
policy traditionally also protect these same objects un­
der a need-to-know policy, such products afford these 
policy combinations through the deployment of two 
separate mechanisms, one in support of the MLS pol­
icy and the other in support of the need-to-know policy. 
PM is different in this regard in its ability to enforce 
multiple arbitrary policies through the application of a 
single mechanism. 

Another partial solution would be to use various con­
figurations of Role-Based Access Control relations to 
simulate Mandatory Access Control and Discretionary 
Access Control policies. This was demonstrated by Os-
born, et al. (15), using the RBAC96 model (5). One 
drawback to this approach is that Osborn at al. applied 
a series of obligation constraints in the configuration of 
these policies that can only exist in theory, and are not 
specified in the RBAC96 model. Although RBAC96 
alludes to a variety of possible constraints, an imple­
mentation of RBAC96 would not necessarily include the 
specialized obligation constraints that were applied in 
the construction of the MAC policy. Simulating MAC 
in (15) requires for each object the explicit creation of 
two capabilities (using PM terminology), each assigned 
to a role. In PM each object is naturally assigned to 
an object attribute that represents the object’s classifica­
tion. Although we did not present a strategy for address­
ing categories, while Osborn did, we can point out that 
our requirements are linear in the number of represented 
categories. A drawback of their strategy for simulating 
DAC requires the creation of a multitude of roles that 
would exceed the number of objects in the system. In 
our configuration for each user, the user is assigned to 
his/her user name attribute, and user capabilities to af­
ford DAC responsibilities are achieved by assigning the 
user name attribute to a predefined operation set that is 
assigned to an object attribute (the home of a user) that 
contains all objects for which a user has DAC control 

15 



and ownership. This suggests that the PM’s MAC and 
DAC configurations are more natural embodiment than 
that of RBAC’s configuration. 

As an extension to the RBAC model, Crampton (11) 
proposes the use of “blacklists” as a means of enforc­
ing history-based SoD constraints. This use of black­
lists is analogous to the PM’s concept of dynamically 
creating a user deny relation in the context of an event-
response relation. Although Crampton is able to enforce 
a wide variety of SoD policies, his method is limited in 
comparison to the PM. Through the event-response rela­
tions, the PM is capable of not only dynamically creat­
ing user deny relations, but also process deny relations, 
and in general can create and delete any type of relation 
through any series of administrative operations. 

Another partial solution is an early and incomplete 
description of the PM (16). A drawback of this solu­
tion is the limitation and inefficiency in specifying and 
enforcing policy. The proposed framework required the 
costly computation and activation of a set of user at­
tributes for a set of processes running in a session, in 
order to gain access to a resource. Further drawbacks in­
clude the lack of control at the individual process level, 
the lack of constraints on users and processes, and the 
inability to dynamically alter the policy state of the ma­
chine in support of the specification and enforcement of 
policy. 

The PM presented in this paper is more closely re­
lated to the meta-model for specifying and enforcing a 
generic access control model. Recently, the need for 
a meta-model has been argued by Ferraiolo and Atluri 
(17). Responding to these discussions, Barker (18) has 
proposed a meta-model of access control and presents 
a logic language for describing the meta-model. He 
shows how arbitrary access control policy requirements 
can be represented in the proposed meta-model by mak­
ing small changes to the core concepts of the meta­
model. He demonstrates how a range of existing ac­
cess control models can be viewed as instances of this 
meta-model. Several similar proposals have been made 
in the desire to define a general, declarative framework 
for specifying a wide range of access control policies 
including the RT family of role-trust models (19), FAF 
language (20) and SecPAL (21). While these proposals 
provide a unifying model, the PM additionally offers a 
mechanism for implementing the unifying model. 

7. Conclusions and Vision 

In this paper, we have presented an access control 
framework, referred to as the Policy Machine (PM), that 
fundamentally changes the way in which access control 

mechanisms are developed. The PM framework aids 
in developing high assurance systems because of three 
fundamental reasons. First, it minimizes the amount of 
code to be trusted as it decouples security enforcement 
from the host system. Second, it allows the precise poli­
cies of the resource owners independent of that offered 
by the vendors, which therefore does not require un­
supported policies implemented as separate application 
code. Third, it prevents illegal information flow in com­
monly used DAC and RBAC models. 

Both users of the PM as well as the developers of the 
host systems enjoy several benefits. From the user per­
spective, PM can be employed as a general purpose pro­
tection machine as one mechanism can configure many 
types of access control policies. PM offers a large li­
brary of policies available for immediate configuration. 
Since access control is enforced at the enterprise level 
encompassing the different OS and applications in use 
within the organization, and the users need to login 
only to the PM, it naturally provides interoperability and 
single sign-on. Moreover, it offers fine-grained, flexi­
ble and comprehensive protection to the enterprise re­
sources. Since the security policy enforcement is sep­
arated from that of the functional components such as 
the OS and application software, the part that needs to 
be trusted is smaller, which results in higher operational 
assurance. Additionally, there is no policy enforcement 
or decision making done at the application. As shown 
in Section 4, PM can render many Trojan horse attacks 
harmless. Although not discussed in this paper, many 
applications such as email and workflow management 
can be implemented by merely configuring the PM as 
they can be seen as extensions to access control. As a 
result, sensitive data can be protected from being leaked 
to unintended recipients. Currently, this can be accom­
plished only through the trusted behavior of the users. 
Under PM, an unauthorized principal cannot gain ac­
cess to a sensitive file even if it was emailed to him as 
the email file sharing is mediated via PM. Additionally, 
sharing of data across other secondary storage devices 
(e.g., hard-drives, memory sticks) can all me controlled 
under PM. 

From the vendor perspective, vendors need not pro­
duce different versions or change their systems to ac­
commodate the policy de jour, and there is no need to 
cater to special needs of different user communities. 
The vendor products need not implement the access 
control decision modules and maintain or manage ac­
cess control data. The same applies to any application 
being used within the organization. Specifically, appli­
cation developers need to focus on implementing only 
the functionality of their application rather than the ac­
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cess control. The big winner would be the customer that 
gets to implement their individual and precise policy re­
quirements through acquiring PM components and the 
translation of those requirements into a PM data config­
uration. To facilitate this translation, standard configu­
rations for a variety of policies can be made available as 
a library of parameterized policy configurations. This 
reduces the burden on administrators in specifying and 
configuring policies. 

In addition to providing a high assurance access con­
trol enforcement framework, PM can be utilized to im­
plement a number of applications such as e-mail and 
workflow management. Although not normally con­
sidered in the realm of access control, both e-mail and 
workflow management falls into this application class, 
in that email affords the sharing of information through 
the discretionary distribution of messages and attach­
ments, and workflow prescribes sequences of user ac­
cesses to documents. These can be simply realized 
through PM as they can be viewed as extensions of ac­
cess control. 
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