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Camera-based single-particle tracking enables quantitative determination of transport properties
and provides nanoscale information about material characteristics such as viscosity and elasticity.
However, static localization noise and the blurring of a particle’s position over camera integration
times introduce artifacts into measurement results even for a particle executing simple diffusion.
Common data analysis methods based on the mean-square displacement do not properly account
for these effects. In this paper, we analyze the statistics of tracking data for freely-diffusing particles
in realistic experimental scenarios. We derive a convenient and asymptotically optimal maximum
likelihood estimator for the diffusion coefficient and for the magnitude of localization noise together
with the corresponding Fisher information, which bounds the performance of all unbiased estimators.
We find that the effect of varying the illumination profile during the camera integration time is
quantified by a motion blur coefficient, R. We also find that a double-pulse illumination sequence
maximizes the information content in some common experimental scenarios. Our results provide a
rigorous theoretical framework and practical experimental recipe for achieving optimal performance
in camera-based single-particle tracking.

I. INTRODUCTION

Since its inception over two decades ago [1, 2], camera-
based single-particle tracking has become a common tool
in many scientific areas, including membrane biophysics
[3], colloid physics [4], and microrheology of complex flu-
ids [5–8]. In a typical experiment, the trajectory of an
individual particle is imaged through a microscope and
recorded with a digital camera at a frame rate ranging
from a few Hz up to a few hundred Hz. The position of
the particle is extracted from a sequence of images [4] rou-
tinely, yet remarkably, with nanometer accuracy [9–11].
Transport properties, particle size and shape, and mate-
rial properties such as viscosities or frequency-dependent
elastic moduli can be determined from measured veloc-
ities and diffusion coefficients, which are extracted from
raw data - a sequence of tracked positions {Xk}. The
quantitative utility of this widespread method relies crit-
ically on the quality of the statistical inference that re-
lates observed trajectories to underlying diffusion coeffi-
cients. However, the estimation of diffusion coefficients
from realistic particle-tracking data is a subtle task, with
several difficulties recognized only recently. In this paper,
we develop a rigorous but practical statistical framework
for overcoming these difficulties.

Estimators of the diffusion coefficient from single-
particle tracking data have traditionally relied on the
mean-square displacement (MSD), a measure of the fluc-
tuations in a particle’s position over specified time in-
tervals. However, unavoidable experimental realities
of camera-based single-particle tracking, such as finite-
resolution imaging and motion blurring due to camera
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integration times, together with technical difficulties aris-
ing from correlations between MSD values calculated at
different time intervals, obscure the statistics of the MSD.
These difficulties commonly result in experimental arti-
facts, inefficient use of data, and possibly incorrect mea-
surement results. In this paper, we resolve these diffi-
culties by presenting a complete statistical description of
camera-based single-particle tracking for particles under-
going pure diffusion. In Section II, we briefly review the
utility and difficulties of using the MSD for single-particle
tracking data analysis. In Section III, we calculate the
full distribution of single-particle tracking measurement
results in the presence of motion blur and Gaussian-
distributed localization noise. Despite its fundamental
importance for data analysis, this distribution has not
previously been presented. In Sections IV and V it is
shown that for large data sets, this distribution is approx-
imately diagonal in the frequency (Fourier) basis so that
the power spectrum of the displacements offers signifi-
cantly simplified statistics while also having a straight-
forward interpretation. With this approximate result, we
compute an asymptotically optimal maximum likelihood
estimator (MLE) of D and σ together with the corre-
sponding Fisher information matrix, which bounds the
variance of any unbiased estimator of D and σ including
those based on the MSD. Finally, in Section VI we show
through numerical simulation that the MLE significantly
outperforms the MSD as a data analysis tool. Possible
extensions of these results to anomalous diffusion and
microrheology of linear viscoelastic materials are briefly
discussed in section VII. In Appendix A, we update pre-
vious literature results on the statistics of the MSD to
include the effects of motion blur and localization noise.
In Appendix B, we give the technical details of an im-
portant mathematical approximation.
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II. THE MEAN-SQUARE DISPLACEMENT

In this section, we review the status of the most com-
mon data analysis tool in single-particle tracking, the
mean-square displacement (MSD). Consider the analysis
of one-dimensional motion in the x-direction from a data
set {Xk}, 1 ≤ k ≤ N + 1. In a fundamental study [12],
Qian et al. analyzed the statistics of the MSD, defined
as

ρn =
1

N − n + 1

N−n+1∑

k=1

(Xk+n −Xk)2 (1)

with 1 ≤ n ≤ N. They calculated both the mean and
variance of ρn, showing that for a particle with diffusion
coefficient D sampled at time intervals ∆t, the expected
value of the MSD is

〈ρn〉 = 2Dn∆t, (2)

where 〈·〉 represents ensemble averaging over repeated re-
alizations of the process. Based on this equation, ρn has
a simple visual interpretation: for a particle undergoing
simple diffusion, the expectation value of a plot of ρn

vs. n should be a straight line with slope 2D∆t. Con-
versely, a non-linear relation between (the expected value
of) ρn and n is taken as an indication of non-Brownian,
anomalous diffusion. The statistical analysis of Ref. [12]
and the intuitive visual interpretation of ρn have led to
widespread adoption of the MSD for data analysis in
single-particle tracking [3].

There are two significant difficulties with data analy-
sis based on the MSD. First, the transformation of the
raw data {Xk} into {ρn} results in a complicated, highly
correlated data set. Qian et al. noted this difficulty,
and quantified it through calculation of the covariance
Cmn = 〈ρmρn〉 − 〈ρm〉〈ρn〉. Cnn, the variance in ρn, is
strongly dependent on n, which shows that all data points
in a plot of ρn vs. n cannot be assigned equal statisti-
cal weight. More troubling, when m 6= n, the covariance
Cmn is non-zero because ρn and ρm are derived from the
same underlying data set {Xk} [12]. As a result, the
values of ρn from a single experiment are not symmetri-
cally distributed about the line given in Eq. 2. Follow-
ing up on these observations, Saxton found that even for
pure, unobstructed diffusion, numerical estimates of D
obtained by fitting a line to ρn vs. n depend on subjective
choices such as the range of n over which to perform the
fit. Seemingly satisfactory results were obtained for both
pure and obstructed diffusion using statistical weight co-
efficients proportional to Cnn [13]. The off-diagonal cor-
relations Cmn were not considered.

The second difficulty with the MSD arises because the
statistics of ρn considered above only apply when the
data set {Xk} represents the true trajectory of the parti-
cle. This is not the case in practical scenarios, and conse-
quent difficulties with data analysis based on the mean-
square displacement have been recognized more recently,
and only partially. Martin et al. recognized that static

localization noise - the random error in the measurement
of an immobilized particle’s position - alters the MSD
[14]. They found (in the present notation) that

〈ρn〉 = 2Dn∆t + 2σ2, (3)

where σ is the static localization error, the standard de-
viation in measured positions of an immobile particle
[10, 11]. A log-log plot of ρn vs. n, intended to fer-
ret out deviations from linear scaling, will therefore ex-
hibit a reduced slope at small n and may be incorrectly
attributed to anomalous “sub-diffusion.” In the context
of particle-tracking microrheology, Savin and Doyle [15]
recognized the additional effect of motion blur (“dynamic
error”), wherein a particle’s average position over the
camera frame interval ∆t is measured, rather than its
instantaneous position as tacitly assumed in Eqs. 2 and
3. They found, for averaging of the position over the full
frame, that

〈ρn〉 = 2Dn∆t + 2σ2 − 2
3
D∆t. (4)

Thus, even if static errors are absent (σ = 0), dynamic
errors alter the MSD. Motion blur due to full-frame av-
eraging was also considered in Ref. [16] in the context of
optical-tweezer calibration, in Ref. [17] as it relates specif-
ically to diffusion coefficient estimation, and in Ref. [18]
to determine the static error σ in a three-dimensional
tracking geometry where particle immobilization was im-
practical.

Based on results given below, we find that each of these
formulas is a specific case of

〈ρn〉 = 2Dn∆t + 2σ2 − 4DR∆t , 0 ≤ R ≤ 1
4

(5)

where the “motion blur coefficient” R (discussed in detail
below) characterizes the illumination profile, or equiva-
lently the shutter state, during the camera integration
time. Thus we confirm that Eq. 2 applies when there
is no measurement error (σ = 0) and no motion blur
(R = 0), Eq. 3 applies when there is no motion blur, and
Eq. 4 applies when the motion blur is due to full-frame
averaging (R = 1/6).

Summarizing the present status of the MSD, we find
that consensus has been reached regarding the value of
〈ρn〉, but the full distribution of {ρn} has not been found
even when localization noise and motion blur are ne-
glected. Nevertheless, one can use the knowledge of 〈ρn〉
to form an unbiased estimator of the diffusion coefficient,
by choosing a particular n (usually n = 1), plugging the
observed value of ρn into Eq. (5), and solving for D.
However, such an estimator “wastes” data in the sense
that there exist other estimators that can perform just
as well but with less data. On the other hand, we can
estimate D with the more complicated line-fitting pro-
cedure described in Ref. [13], weighted by the variances
Cnn while presumably a better estimate would also in-
corporate Cmn. However, this fitting procedure yields
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such a complicated function of the data that questions of
bias and efficiency become largely intractable. Further-
more, this procedure cannot be correctly implemented
until the analysis of Ref. [12] is updated to include local-
ization noise and motion blur. In Appendix A, we use
the results of Section III below to accomplish this task
by calculating Cmn for the case of non-zero R and σ.

III. DISTRIBUTION OF MEASUREMENT
RESULTS

In view of the difficulties described in Sect. II, a new
data analysis method is desired that, like the MSD, has a
simple interpretation but a firmer statistical footing. We
begin by establishing a model of single-particle tracking
and using it to derive the distribution of measurement
results.

Suppose that a particle moving in one dimension by
pure Brownian motion with diffusion coefficient D is im-
aged by a camera with frame integration time ∆t. During
the frame time ∆t, the camera shutter may be opened or
closed for a variable interval or, equivalently, the illumi-
nating intensity may be varied during the frame. The
observed position of the particle is then the average of
its position weighted by a “shutter function” s(t), a non-
negative function whose integral over the frame is unity.
Finally, each individual frame is corrupted by additive
measurement noise ε. For the kth frame ending at time
t = k∆t, the observed position Xk is given by

Xk =
∫ k∆t

(k−1)∆t

s [t′ − (k − 1)∆t] Xtrue(t′)dt′ + εk, (6)

where Xtrue(t′) is the true position of the particle at time
t′ and εk is the value of the additive localization noise in
frame k. Next, we assume that εk can be approximated
as zero-mean Gaussian measurement noise with 〈εjεk〉 =
σ2δjk. Note that σ is the measurement resolution for a
static particle, which can be as small as a few nanometers
under realistic experimental conditions [9–11].

From Eq. 6 and the Brownian motion property [19]

〈Xtrue(t′)Xtrue(t′′)〉 = Xtrue(0)2 + 2Dmin(t′, t′′),

we find that the measured displacements ∆k = Xk+1 −
Xk are distributed according to a multivariate Gaussian
distribution with

〈∆k〉 = 0 (7)

〈∆j∆k〉 =





2D∆t− 2(2DR∆t− σ2) , j = k
2DR∆t− σ2 , j = k ± 1

0 , otherwise

(8)

where the motion blur coefficient R summarizes the effect

of motion blur:

R =
1

∆t

[∫ ∆t

0

dt′
∫ ∆t

0

dt′′s(t′)s(t′′)min(t′, t′′)

−
∫ ∆t

0

t′s(t′)dt′
]

(9)

=
1

∆t

∫ ∆t

0

S(t) [1− S(t)] dt. (10)

Here,

S(t) =
∫ t

0

s(t′)dt′ (11)

is the fraction of the total illumination occurring before
time t (within the frame), a nondecreasing function rang-
ing from S(0) = 0 to S(∆t) = 1. The integrand in Eq. 10
lies between 0 and 1/4, so we find

0 ≤ R ≤ 1/4,

a result that holds for any arbitrary variation of the il-
lumination intensity. R is zero if and only if the shutter
function s(t) consists of a single vanishingly narrow peak
(a delta function) at any point within the frame, in which
case there is no motion blur. For uniform illumination,
s(t) = 1/∆t and R = 1/6. Interestingly, these are not
the limiting cases for R; rather, a double-pulse sequence
with a narrow pulse at the start and end of the frame
gives the maximum R = 1/4.

The above considerations lead us to an important ob-
servation: although a free Brownian particle moves with
uncorrelated displacements, Eq. 8 shows that motion blur
and static localization noise induce correlations between
observed displacements. Localization errors σ induce a
negative correlation, which is understood by noting that
∆k−1 = Xk −Xk−1 and ∆k = Xk+1−Xk depend on the
same noise value εk (cf. Eq. 6) incorporated with op-
posite sign. Motion blur induces a positive correlation,
which is a familiar effect when averaging over the frame
is thought of as a low-pass filter acting on the underlying
motion [15]. Because of this correlation, measurement re-
sults are not independently distributed, and the appro-
priate framework for statistical inference is time series
analysis [20, 21].

IV. APPROXIMATION OF THE LIKELIHOOD
FUNCTION

We can use the distribution of measurement results,
∆k, to construct estimators of the diffusion coefficient D
and static localization noise σ. We choose the maximum-
likelihood estimator since it has a simple form and
asymptotically optimal properties in many situations
[22]. Let ∆ be the N -component column vector of ob-
served displacements ∆k, and let Σ be the N × N co-
variance matrix defined by Eq. 8. Denoting the nonzero
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elements of Σ by

α = 2D∆t− 2(2DR∆t− σ2) (12)
β = 2DR∆t− σ2, (13)

we can write the (log) likelihood function of the data ∆
as (dropping an irrelevant constant term)

L(∆) = −1
2

log |Σ| − 1
2
∆TΣ−1∆. (14)

From Eq. 14, one can already implement a maximum-
likelihood estimator by plugging in the observed displace-
ments ∆ and numerically maximizing L(∆) considered
as a function of D and σ. However, this procedure re-
quires calculating the determinant and inverse of the
N×N covariance matrix Σ at each value of D and σ dur-
ing the numerical search. For measurements consisting
of hundreds or thousands of points, this becomes a nu-
merical inconvenience or impossibility. Furthermore, to
facilitate calculation of quantities such as the Fisher in-
formation, a simpler closed-form expression for the likeli-
hood function is desired. Closed-form expressions for the
determinant and inverse of Σ are available [23], but the
results are not particularly simple. Fortunately, a stan-
dard approximation leads to significant simplification of
the problem. In this approximation [24], we replace Σ
with a more convenient matrix defined by setting the
corner elements Σ1,N and ΣN,1 equal to β. The rows of
this new matrix, denoted Σc, are cyclic permutations (it
is “circulant”), which immediately implies that it is di-
agonal in the frequency (Fourier) domain - a very conve-
nient property indeed. As N becomes large, Σc becomes
a very good approximation to Σ; further details and tech-
nical justification are given in Appendix B. Under this
approximation, the frequency components

∆̃k =
1√
N

N∑

j=1

∆je
2πi
N (j−1)(k−1) (15)

are (complex) Gaussian distributed with

〈∆̃j∆̃∗
k〉 = ψkδjk (16)

ψk = α + 2β cos
(

2π

N
(k − 1)

)
. (17)

ψk are the eigenvalues of Σc while ∆̃k is the kth com-
ponent of the discrete Fourier transform of ∆; in other
words, Σc is diagonal in the discrete Fourier transform
(frequency) basis for all values of α and β, or equivalently
D and σ. We can now write the likelihood function in
the frequency domain as

L(∆) ≈ Lp(∆) = −1
2

N∑

k=1

(
log ψk +

1
N

|∆̃k|2
ψk

)
. (18)

The choice of subscript “p” is explained in Appendix B.
This equation is convenient for numerical maximization,

since it is a simple weighted sum over the power spectrum
[or periodogram [20]] of the data |∆̃k|2, found from a dis-
crete Fourier transform of the observed displacements ∆.
Equation 18 is the main result of this section; it facilitates
simple calculation of the maximum likelihood estimate of
D and σ and is simple enough to accommodate thorough
analysis.

V. FISHER INFORMATION IN D AND σ

From the simple form of Lp(∆) provided by Eq. 18, we
can calculate the Fisher information matrix IDσ in the
parameters D and σ. IDσ is a measure of the information
about D and σ contained in a sample, and its inverse I−1

Dσ
gives the Cramer-Rao bound on the covariance matrix of
all unbiased estimators [22]. Although the MLE is not
necessarly an unbiased estimator, under certain condi-
tions (satisfied here [22]), it asymptotically approaches
the Cramer-Rao bound as the number of data points N
becomes large; that is, the MLE of one or several parame-
ters becomes asymptotically normal (multivariate Gaus-
sian distributed) with covariance matrix given by I−1

Dσ.
In this way, the Fisher information matrix characterizes
the optimal performance of all unbiased estimators and
also characterizes the asymptotic behavior of the partic-
ular estimator derived above, the MLE. In this section,
we calculate the Fisher information in D and σ and use
it to find the best possible performance in estimates of
D and σ for realistic particle tracking experiments.

We begin by calculating the Fisher information ma-
trix Iαβ in the more convenient parameters α and β. A
simple transformation converts these into the desired re-
sult for D and σ. For a zero-mean multivariate Gaussian
distribution, the (j, k) matrix element of the Fisher in-
formation between two parameters, θ1 and θ2, is given
by

(Iθ1θ2)jk =
1
2

N∑

l=1

1
ψ2

l

∂ψl

∂θj

∂ψl

∂θk
(19)

where ψl is the lth eigenvalue of the covariance matrix.
When N is large, we can approximate the sum over l as
an integral (see Appendix B) to find the matrix elements
[25]

(Iαβ)11 =
N

2
1
2π

∫ 2π

0

du

(α + 2β cos u)2
=

N

2
α

(α2 − 4β2)3/2

(Iαβ)12 =
N

2
1
2π

∫ 2π

0

2 cos u du

(α + 2β cos u)2
=

N

2
2β

(α2 − 4β2)3/2

(Iαβ)22 =
N

2
1
2π

∫ 2π

0

4 cos2 u du

(α + 2β cos u)2

=
N

2

(
1
β2

+
8α− α3/β2

(α2 − 4β2)3/2

)
.

(20)
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IDσ VDσ

R = 0 T

(
1

2D2∆t
σ

D2∆t2

· 3σ2

D2∆t3

)
1
T

(
6D2∆t − 2D2∆t2

σ

· D2∆t3

σ2

)

R = 1
6

T

(
1

2D2∆t
2.2σ

D2∆t2

· 18σ2

D2∆t3

)
1
T

(
4.3D2∆t − 0.53D2∆t2

σ

· 0.12D2∆t3

σ2

)

R = 1
4

T




1
2D2∆t

1√
2D3∆t3

·
√

2
Dσ2∆t3


 1

T

(
2D2∆t −Dσ∆t

·
√

Dσ2∆t3

2

)

TABLE I: Table of Fisher information matrices IDσ and corresponding covariance matrices VDσ = I−1
Dσ in the small noise

(ε À 1) limit.

The Fisher matrix Iαβ is converted into IDσ by the for-
mula [22]

IDσ = JTIαβJ , J =

(
∂α
∂D

∂α
∂σ

∂β
∂D

∂β
∂σ

)
. (21)

When N is large, Equations 20-21 give the Fisher infor-
mation for any values of diffusion coefficient D and static
localization noise σ, while accounting for motion blur
through R. When the number of samples becomes large
enough, the distribution of a joint maximum-likelihood
estimate of D and σ is Gaussian with 2×2 covariance ma-
trix VDσ = I−1

Dσ. If σ is known and D is estimated, the
asymptotic variance of the MLE is given by 1/(IDσ)11;
similarly, if D is known and σ is estimated, the asymp-
totic variance of the MLE is 1/(IDσ)22. These formulas
cover the general cases, but they are rather complicated,
so we will break them down into two categories depend-
ing on whether the static localization noise σ is large
or small compared to the characteristic diffusion length
within a frame.

A. Large localization noise σ À
√

D∆t/2

First, consider the case where the localization noise is
large compared to the diffusion length during the camera
frame, σ À

√
D∆t/2. In this case, we can approximate

the Fisher information matrix and its inverse by expand-
ing in the small parameter ε =

√
D∆t/(2σ2). To facili-

tate comparison of different frame intervals ∆t, we sup-
pose that the total measurement time is T so the number
of data points is N ≈ T/∆t. Keeping the lowest-order
term for each matrix element, we find (using · to denote

symmetric off-diagonal terms)

IDσ ≈ T

∆t

(
ε

4D2
ε2√

2D3∆t

· 4ε2

D∆t

)

= T

(
1
4

1√
2D3σ2∆t

1
2σ2

1√
2D∆t

· 2
σ2∆t

) (22)

and

VDσ ≈ ∆t

T

(
4D2

ε − 1
ε

√
D3∆t

2

· D∆t
4ε2

)

=
1
T

(
4
√

2D3σ2∆t −Dσ∆t

· σ2∆t
2

)
.

(23)

Note the important feature that the diagonal elements of
IDσ and VDσ are reciprocals of each other; this indicates
that in the large noise limit, the variance of an estimate of
D when σ is known asymptotically approaches the vari-
ance of D when σ is unknown but estimated jointly with
D. A similar result holds for estimation of σ when D is
known. In other words, whenever the localization noise is
large, σ À

√
D∆t/2, with sufficiently long measurement

time, D can be estimated equally well whether or not the
value of the localization noise σ is known prior to the ex-
periment. As expected, motion blur has no contribution
in this large-noise case.

B. Small localization noise σ ¿
√

D∆t/2

In the case of small localization noise, we expand in
the small parameter 1/ε =

√
2σ2/(D∆t). In this case,

motion blur is a significant factor, and we will consider
its effects for R = 0 (short-pulse excitation), R = 1/6



6

Large noise (ε ¿ 1)
Small noise (ε À 1)

R = 0 R = 1/6 R = 1/4

〈δD2〉
D2 (σ known) 4

T

√
2σ2∆t

D
2∆t
T

2∆t
T

2∆t
T

〈δD2〉
D2 (σ unknown) 4

T

√
2σ2∆t

D
6∆t
T

4.3∆t
T

2∆t
T

〈δσ2〉
σ2 (D known) ∆t

2T
0.33D2∆t3

σ4T
0.06D2∆t3

σ4T
∆t
T

√
D∆t
2σ2

〈δσ2〉
σ2 (D unknown) ∆t

2T
D2∆t3

σ4T
0.12D2∆t3

σ4T
∆t
T

√
D∆t
2σ2

TABLE II: Table of squared noise-to-signal ratios for a range of experimental scenarios. As an example of how to read the
table, consider the first row: 〈δD2〉 = (VDσ)11 is the variance in an estimate of diffusion coefficient D, and (σ known) refers
to the case that the localization noise σ is known prior to the experiment through a separate measurement. The squared
noise-to-signal ratio, 〈δD2〉/D2 is then recorded for large and small localization noise and, in the latter case, several cases of
varying motion blur.

(full-frame averaging) and R = 1/4 (double-pulse exci-
tation). As above, we take N ≈ T/∆t. The analysis
is complicated by the fact that the lowest order term in
1/ε may be dominated by a higher order (in 1/ε) quantity
multiplied by a large or even divergent R-dependent term
near R = 1/4. Mathematically, we can avoid divergence
problems by plugging in values for R prior to expanding
in 1/ε, but we must keep in mind that the results may
only hold in practical cases where (R−1/4) is very small
- smaller even than high-order terms in 1/ε. Of course,
the exact expressions of Eqs. 20-21 hold asymptotically
in all cases and are simple to evaluate numerically. Re-
sults for this small localization noise case are quoted in
Table I.

C. Summary table of results

In Table II, we summarize the asymptotically optimal
noise-to-signal ratio in estimating D and σ, by recording
appropriate values from matrices IDσ and VDσ. From
the table, several useful facts can be gleaned. First,
in the common experimental scenario where D is esti-
mated and σ is small and known prior to the experi-
ment, motion blur has no effect on the asymptotic effi-
ciency of estimating D. Note that motion blur still af-
fects the statistics of the measurement through R, but
the maximum-likelihood estimator of Eq. 18 fully ac-
counts for the altered statistics, making the final estimate
immune to motion blur artifacts. Second, for a typical
resolution-calibration experiment with an immobile par-
ticle D, the variance in estimating σ tends to σ2/(2N)
where N = T/∆t is the number of data points. Finally,
a surprising result can be seen in the second row of the
table: when the diffusion coefficient is estimated and the
localization noise is unknown (that is, both D and σ are
free parameters in the maximum-likelihood search), the
variance in D and σ are each improved by engineering the
experiment to exhibit maximum motion-blur, R = 1/4.
For this case, an estimate of D can in principle be just as
accurate as in case where σ is known. It is important to

keep in mind that in many experimental cases, the mea-
surement noise σ may not be independent of the frame
time ∆t or the motion blur parameter R. For example,
achieving R = 0 or R = 1/4 requires very short pulsing
of the excitation intensity. If the localization noise σ is
photon-limited, moving to shorter pulses will increase the
noise σ, and intermediate values of R and σ may be nec-
essary to achieve the minimum variance in estimating D.
These cases will not fall neatly into the summary table,
but can be treated with the exact results in Eq. 20-21.

VI. NUMERICAL SIMULATIONS

To investigate the performance of the MLE, we numer-
ical simulated a one-dimensional tracking experiment on
a freely-diffusing particle, including the effects of motion
blur and localization noise. For each simulation, we gen-
erated an (N +1)-element set of positions {Xk}, specify-
ing D, ∆t, σ, and the shutter function s(t), from which
a motion blur coefficient R was calculated according to
equation (10). From each data set, we estimated D and
σ using two estimators, the MLE derived above and a
variance-weighted fit to the MSD. For the latter case, we
calculated ρn from {Xk} according to Eq. (1) and esti-
mated D and σ by least-squares fitting to Eq. (5). We
accounted for the non-uniform statistical weight of each
ρn by weighting each point ρn by 1/Cnn as calculated
in Appendix A. This weighted-MSD estimator roughly
corresponds to the procedures of Refs. [12] and [13], up-
dated to incorporate localization noise and motion blur.
As in those references, the off-diagonal correlations Cmn

were not considered.
In Figure 1 we show the effect of the localization noise

on estimates of D. Similarly, in Figure 2, we show the
effect of varied diffusion coefficients on estimates of σ. In
the figures, we show the 10th and 90th percentile in es-
timating one of the parameters, and compare this to the
same percentiles for an optimal estimator that achieves
the Cramer-Rao bound (shaded regions in both figures).
The MLE clearly outperforms the estimator based on
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FIG. 1: (Color online) 10th and 90th percentiles in estimating
D. For each simulation, D = 1 µm2/s, ∆t = 1 s, N = 500,
and the shutter function s(t) was constant over the frame time
(R = 1/6). For each value of measurement noise σ, 100 indi-
vidual simulations were performed and the values of D and σ
were estimated using the MLE and MSD. For each estimator,
the 10th and 90th percentile of D estimates is shown (MLE:
filled circles, red online; MSD: filled squares, blue online); in
other words, at each value of σ, the region between the upper
and lower point contains 80 % of the D estimates. The same
percentiles for an optimal unbiased estimator, with covari-
ance matrix equal to I−1

Dσ, are also shown (hatched region). A
single set of MLE estimator results with σ = 1 µm is shown
(open circles, red online). The MLE achieves nearly optimal
performance, and significantly outperforms the MSD.

the mean-square displacement, approximating an opti-
mal unbiased estimator in many cases. Note that, be-
cause the MLE is normal (Gaussian) and unbiased only
in the asymptotic limit N → ∞, some cases in the fig-
ure show biased performance with variances below the
Cramer-Rao bound.

Finally, in Figure 3, we show the effect of varying the
shutter function over the full range of motion blur co-
efficients 0 ≤ R ≤ 1/4, in the moderately low noise
regime corresponding to 1/ε ≈ 0.14. Estimates of D are
slightly improved by increasing R (the standard devia-
tion decreases by about 10 %) while the sensitivity to σ
is greatly improved with increasing R. In experimental
scenarios, this fact may be used to increase sensitivity of
calibration experiments on moving particles by tailoring
the temporal profile of the illumination intensity. Anec-
dotally, we find that the maximum likelihood estimator
is significantly easier to implement in computer code and
executes much faster than the MSD estimator, primar-
ily due to the difficulty of calculating new weight factors
1/Cnn at each point in the numerical search.

0 0.1 0.2 0.3 0.4 0.5
10
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10
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10
0

σ [µm]

D
 [
µ
m
2
/s
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FIG. 2: (Color online) 10th and 90th percentiles in estimat-
ing σ. For each simulation, σ = 0.1 µm, ∆t = 1 s, N = 500.
The shutter function s(t) was constant over the frame time
(R = 1/6). For each value of D, 100 individual simulations
were performed and the values of D and σ were estimated
using the MLE and MSD. For each estimator, the 10th and
90th percentile of D estimates is shown (MLE: filled circles,
red online; MSD: filled squares, blue); in other words, at each
value of D, the region between the left and right point con-
tains 80 % of the σ estimates. The same percentiles for an
optimal unbiased estimator, with covariance matrix equal to
I−1

Dσ, are also shown (hatched region). A single set of MLE
estimator results with D = 0.1 µm2/s is shown (open circles,
red online). The MLE achieves nearly optimal performance,
and significantly outperforms the MSD.

VII. CONCLUSIONS

We have derived the full statistics of single particle
tracking measurements on freely diffusing particles, prop-
erly accounting for the effects of localization noise and
motion blur. We defined a motion blur coefficient R that
fully accounts for the latter effect. We derived a compu-
tationally simple maximum-likelihood estimator and also
derived information-theoretic limits on the measurement
sensitivities of separate or joint measurements of the dif-
fusion coefficient D and localization noise σ. We showed
by numerical simulation that the MLE approaches opti-
mality on data sets consisting of a few hundred points,
and that the MSD is significantly sub-optimal. In Ap-
pendix A, we give updated expressions for the mean,
variance, and covariance values of the mean-square dis-
placement when measurement noise and motion blur are
considered.

In future work, a linear viscoelastic response can be
included in the analysis in order to facilitate proper sta-
tistical estimation in particle-tracking microrheology or
linear materials [5–8]. For linear materials, the dynam-
ics of the displacement increments will be more compli-
cated but remain multivariate Gaussian distributed, so
that results from time series spectral analysis will likely
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FIG. 3: (Color online) Comparison of maximum-likelihood es-
timates for different motion blur coefficients R. For each case,
N = 1000 data points were simulated with D = 10 µm2/s,
∆t = 0.1 s, and σ = 0.1 µm. Three different shutter func-
tions were used (top row) giving, from left to right, R = 0.01,
R = 0.17, and R = 0.24. A scatter plot of the resulting
maximum-likelihood estimates are in the D − σ plane (bot-
tom row). Increasing R has little effect on D estimates, but
significantly improves the estimate of σ.

be similarly useful in that context. In cases of anoma-
lous diffusion, the displacement statistics will no longer
be Gaussian distributed, but observation of a smoothed
power spectrum of displacements may nevertheless pro-
vide a visual symptom similar to the deviations from lin-
earity of the MSD. Such an effect can be investigated
through numerical simulation.

Software for calculating the Fisher information ma-
trix, the covariance of the MSD, and implementing the
maximum-likelihood estimator is available from the au-
thor on request.
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APPENDIX A: STATISTICS OF THE
MEAN-SQUARE DISPLACEMENT

In this appendix, we give the mean and covariance
Cmn = 〈ρnρm〉 − 〈ρn〉〈ρm〉 of the MSD incorporating
static localization noise and motion blur. In the main
text, we calculated the Gaussian statistics of ∆. We can

write ρn as a quadratic form on ∆:

ρn = ∆TAn∆

where An is a symmetric N × N matrix found from
examining Eq. 1. A standard theorem [26] states that
ρn and ρm are independently distributed if and only
if AnΣAm = 0. This condition is not satisfied in the
present case, owing to the strong correlation of ρn and
ρm.

To calculate the mean and covariance Cmn, we use the
fact that [26]

Cmn = 2Tr (AmΣAnΣ)

where Tr denotes the trace. After a lengthy calculation,
one finds that

〈ρn〉 = Tr (AnΣ) = n(α + 2β)− 2β, (A1)

which is Eq. 5, and for m ≥ n

Cmn =
2

KmKn

[
α2Z0,0

m,n + 4αβZ0,1
m,n + 2β2

(
Z1,1

m,n + Z1,−1
m,n

)]

(A2)

where

Za,b
m,n =

s+∑
s=s−

{
[Km + min(0, s, m− n− s)]

× [n + min(0, s + a, m− n− s− a)]

× [n + min(0, s− b, m− n− s + b)]
}

(A3)

with

s− = max(m−N, 1− n− a, 1− n + b)
s+ = min(N − n,m− 1− a,m− 1 + b)

Km = N + m − 1 and Kn = N + n − 1. The use of
min and max functions conveniently summarizes many
contingencies that depend on the values of N , m, n, a,
and b. Once a set has been chosen, the summation can be
explicitly computed. The variance and covariance results
of Ref. [12], neglecting the effects of static localization
errors and motion blur (β = 0) are recovered from the
Z0,0

m,n term.

APPENDIX B: APPROXIMATION OF THE
LIKELIHOOD FUNCTION

In this appendix, a discussion of the approximate like-
lihood function is presented.

There are two ways to justify the approximate form
of the likelihood function in Eq. 18. First, as discussed
briefly in the main text, we can view Eq. 18 as arising
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from the approximation of Σ by Σc. However, it is gener-
ally not the case that one can simply alter a few elements
of a matrix and expect to retain similar values of, for
example, its eigenvalues, determinant, or inverse. Some
mathematical justification is therefore required: the “cir-
culant approximation” used here is a well-studied tech-
nique in applied mathematics - the standard reference is
[24]. Application of results in Ref. [24] to the present con-
text reveal that Σ ∼ Σc and Σ−1 ∼ Σ−1

c as N grows to
infinity, where “∼” denotes the matrix weak norm. This
indicates a certain “average” equivalence of these matri-
ces, but does not imply that their individual entries are
close together. Further justification for the approxima-
tion comes from that observation that the eigenvalues
of Σ and Σc are asymptotically absolutely equally dis-
tributed, which means that in the limit N → ∞, the
eigenvalues (and all functions of them, including the de-
terminant) are equal [24].

While these results suggest a good matrix approxima-
tion, they do not strictly imply that L(∆) ≈ Lp(∆). To
see this, Eq. 18 should be viewed a second way, as an
application of Whittle’s approximation [21, 27] in which
the likelihood function is approximated by its “principal
part,” given here by:

Lp(∆) =

N

2

[
1
2π

∫ 2π

0

log 2πf(λ)dλ +
1
2π

∫ π

−π

IN (λ,∆)
f(λ)

dλ

]
,

(B1)

where f(λ) = (1/2π)(α+2β cosλ) is the spectral density
of the (exact) covariance matrix Σ and

IN (λ,∆) =
1

2πN

∣∣∣∣∣
N∑

k=1

∆ke−iλk

∣∣∣∣∣

2

.

When N is large, we can approximate the integral over
λ as a Riemann sum over the convenient grid of points
λs = 2πs/N , s = 0 · · ·N − 1, in which case Eq. B1 be-
comes Eq. 18 after some manipulation of indices. Whit-
tle’s approximation is well-characterized [21], in particu-
lar it is known that the approximate likelihood converges
to the true likelihood in probability and is asymptoti-
cally normally distributed according to the inverse of the
Fisher information matrix given by Eqs. 21.
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