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Abstract A widely used approach to image segmentation is to define corresponding seg-
mentation energies and to compute shapes that are minimizers of these energies. In this
work, we introduce a flexible and efficient numerical framework for minimization of such
energies. The framework enables use of various gradient descent flows, including H1 flows
that are fast and stable. For this, we model the geometry explicitly and make use of shape
differential calculus. We discretize the resulting partial differential equations using finite
elements and obtain linear systems that can be solved efficiently. Incorporating spatial
adaptivity, time step controls, topological changes results in a robust practical method.
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1 Introduction

Image segmentation is the problem of finding distinct regions that are uniform with respect
to certain image features in given images. It is a fundamental problem in image processing and
a large body of work addressing this problem exists. After the seminal work of Kass et al [10],
variational approaches to image segmentation have gained popularity and are now widely used.

Typically the key to a variational image segmentation algorithm is the definition of a suitable
segmentation energy over a set of shape candidates, such as curves in 2d or surfaces in 3d. Then
an optimization method, such as gradient descent, can be used to compute the minimum of the
segmentation energy. In this approach, one starts with an non-optimal initial shape and deforms it
in a way that decreases its energy. Ideally the optimal shape obtained at the end of this procedure
should coincide with the boundaries of the regions sought in the image.

There are a few critical components to an effective implementation of a variational segmen-
tation method. One is the numerical representation of the shape and ensuring the accuracy and
efficiency of the representation. Options are Lagrangian representations (parametric methods,
triangulations) and Eulerian representations (level sets); each have their own weaknesses and
strengths. Another critical component is the computation of energy-decreasing updates or descent
direction at each iteration of shape evolution. In this work, we address both aspects of variational
image segmentation and introduce an efficient and flexible numerical framework that enables us
to compute a large class of advantageous descent directions. It has the following key features:

• Parameter-free Lagrangian representation: The shape representation is Lagrangian, namely
curves are represented as polygons, surfaces as triangulations. The shapes are not parametrized;
only a list of their simplices is needed for computation.

• Choice of good descent directions: The L2 gradient descent commonly used in the minimiza-
tion procedure is typically slow and not very stable. We provide the ability to compute
various H1 gradient descent flows, which are more stable and result in smoother flows.
Moreover, using second order derivatives, we can speed up the convergence of the iterations.



• Spatial adaptivity : We maintain a coarse representation of the shape, where resolution is not
needed, and a fine representation with higher node density, where the shape and the image
vary more. This is very beneficial for both accuracy and efficiency.

• Discretization with finite elements: The geometric relationships and the resulting partial
differential equations (PDE) are discretized using the finite element method. This results in
well-defined linear systems, which can be solved efficiently. The discretization is intrinsic, it
does not depend on a parametrization of the shape.

We also incorporate appropriate time step selection procedures and topological changes in 2d.

2 Segmentation Energies and Shape Calculus

The shape energies used in image processing typically have the following form

J(Γ) =
∫

Γ

g(x,Γ)dS +
∫

Ω1

f1(x,Ω1)dx +
∫

Ω2

f2(x,Ω2)dx, (1)

where Γ denotes a surface in Rd, Ω1 is the domain enclosed by Γ and Ω2 is the domain outside Γ.
The functions g(x,Γ), f1(x,Ω1), f2(x,Ω2) are image-dependent weight functions and are crucial in
defining a successful segmentation energy. They may depend on the surface Γ and/or the domains
Ω1,Ω2. For example, we may have g = g(x, ν), where ν is the outer unit normal of Γ, or we may
have f1 = f1(x, cΩ1), where cΩ1 = 1

|Ω1|
∫
Ω1

I(x)dx is average of image intensity I(x) in Ω1.

Starting with an initial surface Γ, we would like to compute a gradient descent velocity ~V to
deform Γ in a way that decreases its energy (1). For this, we need to quantify the effect of a
candidate velocity ~V on the energy (1). A given velocity ~V would evolve the surface Γ through a
set of ordinary differential equations: Γt = {x(t, x0) : dx

dt = ~V (x(t)), x(0) = x0, x0 ∈ Γ}.
Using this, we define the first shape derivative of J(Γ) at Γ with respect to given velocity ~V

[4]: dJ(Γ; ~V ) = limt↓0
1
t (J(Γt) − J(Γ)). Similarly we can define the second shape derivative:

d2J(Γ; ~V , ~W ) = d(dJ(Γ; ~V ))(Γ; ~W ). The second shape derivative provides second order variation
information and can be used to implement faster Newton-type minimization algorithms.

Now we introduce two examples of shape energies used for image segmentation. The first is the
geodesic active contour model [1] and is given by weighted surface integral JGAC(Γ). The second
example is the Mumford-Shah functional JMS(Γ) [2], which incorporates domain information and
can be used to segment noisy images into piecewise smooth regions.

JGAC(Γ) =
∫

Γ

g(x)dS, JMS(Γ) =
2∑

i=1

1
2

(∫
Ωi

(ui − I)2 + µ|∇ui|2
)

dx + γ

∫
Γ

dS.

In JGAC(Γ), g(x) = 1/(1 + |∇I(x)|2
λ2 ) is edge indicator function defined by image gradient ∇I(x).

Functions ui in JMS(Γ) are obtained from −µ∆ui + ui = I in Ωi,
∂ui

∂νi
= 0 on ∂Ωi.

The first shape derivatives of JGAC , JMS are given by [8, 9]

dJGAC(Γ; ~V ) =
∫

Γ

(
gκ +

∂g

∂ν

)
V dS, dJMS(Γ; ~V ) =

∫
Γ

(1
2

[[
|u − I|2

]]
+

µ

2
[[
|∇Γu|2

]]
+ γκ

)
V dS,

where ν is the outer unit normal to Γ, κ is the mean curvature of Γ, [[f ]] = f1 − f2 denotes the
jump of f across Γ and V = ~V · ν is the normal component of ~V . We can see that the first shape
derivatives have the following form: dJ(Γ; ~V ) =

∫
Γ

(w1(x,Γ)κ + w2(x,Γ)) dS.
The second shape derivatives of JGAC , JMS have the form

d2J(Γ; ~V , ~W ) =
∫

Γ

(
α(x,Γ)∇V · ∇W + β(x,Γ)V W

)
dS +

∫
Γ

R(x,Γ)dS, (2)



where α(x,Γ), β(x,Γ) are weight functions, R(x, γ) contains some remaining terms and V =
~V · ν, W = ~W · ν. The specific expressions for JGAC , JMS can be found in [8], [9] respectively.

Since the shape derivatives depend only on the normal components V,W of ~V , ~W , we will work
with the scalar velocity fields V,W , thereby write dJ(Γ;V ), d2J(Γ;V,W ).

3 Gradient Descent Flows

The shape derivatives introduced in the previous section allow us to evaluate the effect of given
velocities on the shape energies. Our goal, however, is to compute a velocity that is a good descent
direction for a given surface Γ. For this, we introduce a scalar product b(·, ·) with the associated
Hilbert space H(Γ) on Γ. Then we can solve the following equation for V

b(V, φ) = −dJ(Γ;φ), ∀φ ∈ H(Γ). (3)

It is easy to see that the velocity computed this way makes the shape derivative negative, thus
decreases the energy: dJ(Γ;V ) = −b(V, V ) 6 0. Possible choices for the scalar product b(·, ·)
are the L2 scalar product 〈V,W 〉L2 = 〈V,W 〉 =

∫
Γ

V WdS or the weighted H1 scalar product
〈V,W 〉H1 = 〈α∇V,∇W 〉 + 〈βV W 〉, where α = α(x,Γ), β = β(x,Γ) are positive weight functions.
The gradient descent flow resulting from the L2 scalar product is known to exhibit slow convergence
and may not be stable. The H1 scalar product on the other hand results in smooth evolutions
and is very stable. Constant coefficient versions have been implemented and examined in [3, 11].
Moreover, if the second shape derivatives are used as the basis of the H1 scalar products, one can
achieve faster convergence with fewer iterations [8, 9, 5].

In order to compute a gradient descent velocity, we need to put together the information
from geometry, the shape derivative and the gradient descent equation (3), namely, three more
equations of basic differential geometry: ~κ = −∆Γ

~X, κ = ~κ · ν, ~V = V ν.
These can be imposed weakly by multiplying with test functions φ ∈ H(Γ) and ~φ ∈ [H(Γ)]d, and
integrating by parts: 〈~κ, ~φ〉 = 〈∇Γ

~X,∇Γ
~φ〉, 〈κ, φ〉 = 〈~κ · ν, φ〉 〈~V , ~φ〉 = 〈V ν, ~φ〉.

Now we can expand the quantities ~X, κ,~κ, V, ~V in terms of finite element basis functions {φi}N
i=1,

{~φi}N
i=1 (piecewise linear in our implementation) and obtain the fully discretized scheme. The

complete set of equations for the weak form and the corresponding linear system is given by

〈~κ, ~φ〉 = 〈∇Γ
~X,∇Γ

~φ〉, 〈κ, φ〉 = 〈~κ · ν, φ〉, b(V, φ) = −dJ(Γ, φ), 〈~V , ~φ〉 = 〈V ν, ~φ〉,
~M ~K = ~A~X, MK = ~NT ~K, BV = −Mw1K−w2, ~M ~V = ~NV.

The vectors X̃,K, K̃,V, Ṽ store the finite element coefficients for the quantities ~X, κ,~κ, V, ~V
respectively. Details of the finite element discretization and the linear system can be found in [6],
where a semi-implicit scheme was proposed. The current scheme is explicit and velocity vector
computed by this can be used to update the surface Γn to obtain Γn+1 by ~Xn+1 = ~Xn + τ ~V.

4 Computation

In order to realize a flexible implementation that is effective and robust in practice, some
additional computational procedures are needed [5, 6, 7]:

• Spatial adaptivity : Geometric adaptivity and data-based adaptivity, i.e. we maintain a fine
mesh where the local geometry or the image varies more and a coarse mesh elsewhere.

• Time step selection: As the goal is energy minimization, the time steps are taken to ensure
energy decrease. Moreover, an extra check is imposed to guard against mesh distortions.

• Topological changes in 2d : The number of regions to be segmented are not known in advance.
This requires capabilities to merge or split shapes, currently implemented for 2d curves.



Figure 1: Segmentation of a galaxy image using the Mumford-Shah functional and H1 gradient
descent flow based on the second shape derivative. Mumford-Shah functional is well-suited for
images with no distinct edges, because it incorporates global information during segmentation.
This example also illustrates topological changes in 2d. The initial curve splits into two during
the evolution to capture the two galaxies in the image.

Figure 2: Segmentation of a synthetic 3d image using the geodesic active contour model and the
H1 gradient descent flow based on the second shape derivative. This example also illustrates
spatial adaptivity. We start with a coarse initial surface. As the surface starts capturing the
object, it is refined to resolve the object better. The final model has fine resolution only where it
is needed (edges, corners), and a coarse representation elsewhere (faces).

We demonstrate the framework with two examples. First we use the Mumford-Shah functional
to segment a galaxy image with no edges (see Figure 1). The galaxy image is hard to segment for
traditional methods because it does not have well-defined boundaries or edges. But it is a good
example demonstrating the power of the Mumford-Shah functional, which incorporates global
information. We use the H1 flow to segment image. We can see the role of topological changes
in this example. We start with a single closed curve. It splits into two curves to capture both
galaxies in the image.

In the second example, we use the geodesic active contour model on a synthetic 3d example
again using the corresponding H1 flow (see Figure 2). This example illustrates the benefits of
incorporating spatial adaptivity in the method. We start with a coarse initial mesh and use modest
computational resources at the initial iterations. As the surface starts capturing the target object,
it refines to resolve the object better. At the termination of the evolution, the surface has fine
resolution only where needed (edges, corners) and maintains a coarse representation elsewhere.
Performing the same experiment with a fine surface mesh from the start would require an order
of magnitude more computation for the same result.

5 Conclusion

We have introduced a flexible and efficient numerical framework for image segmentation by en-
ergy minimization. Our work is aimed at the variational segmentation approaches in literature. In
these approaches, initial shapes (curves, surfaces) specified by the users are deformed to minimize



associated segmentation energies, so that the optimal shapes computed correspond to the sought
segmentation. The key feature of our framework is that it enables practitioners to define and
compute a large class of descent updates, which yield stable evolutions and often converge with
fewer iterations. This is in contrast with the L2 gradient descent traditionally used in this field.
We also use spatial adaptivity to tune the resolution of the mesh with respect to the variation
in the image and in the geometry. This significantly improves computational efficiency without
compromising accuracy. Finally, incorporating time step controls and topological changes results
in a robust practical method. We have demonstrated the effectiveness of our method with the
geodesic active contour model and the Mumford-Shah functional.
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