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Abstract

In this report, we propose a new definition of quality of fingerprint impressions and present
detailed algorithms to measure image quality for fingerprints. We define fingerprint image
quality as a predictor of matcher performance before a matcher algorithm is applied. This means
presenting the matcher with good quality fingerprint images will result in high matcher
performance, and vice versa, the matcher will perform poorly for poor quality fingerprints. We
also have carried out an objective evaluation of the quality assessment of fingerprint images.
Our quality measure is implemented in the C programming language and has been tested on 20
different live scan and paper fingerprints datasets collected in different operational settings. Our
implementation is publicly, but export controlled, available as part of NIST’s fingerprint
software distribution.

1   Introduction

Studies carried out by NIST as part of its Patriot Act mandate have demonstrated that all
fingerprint systems tested have widely varying performance which depends, among other
factors, on fingerprint image quality [21, 22, 5, 6]. In this paper we will define a novel measure
of fingerprint image quality, which can be used to estimate fingerprint match performance. We
will present test results for this image quality measure for 20 different live scan and scanned
paper fingerprint data sets. These datasets are explained in section 1.2. The ability to predict
matcher performance has been evaluated for 14 different fingerprint systems supplied by 8
commercial fingerprint vendors. An explanation of the NIST Fingerprint SDK test plus more
detailed explanation of datasets are in [6].

An ideally sensed or scanned fingerprint image has clear and distinct ridges and valleys. An
automatic fingerprint recognition system can perform well on such fingerprint images.
However, precise fingerprint acquisition has some peculiar and challenging aspects [1]. Often
skin condition or imperfect acquisitions cause the captured fingerprint image to be far from
ideal. Unclean sensor plates, non-uniform and inconsistent contact [2] can result in poor
samples and feature extraction artifacts during image processing and hence increase false
accept/reject rate.

An automatic fingerprint recognition system has traditionally consisted of three subsystems:
fingerprint image acquisition, feature extraction, and matching. In image acquisition, a digital
image of a fingerprint is captured either from the live scan of a person’s finger or from an inked
impression of a person’s finger on paper (e.g. fingerprint cards). Feature extraction is the
process of representing the captured image in some space to facilitate matching. Matching
involves computing the likelihood of the fingerprint coming from subjects (persons) in the
database. The performance of the whole system depends on how well each subset behaves.

It is desirable to assess “quality” of a fingerprint before any matching process. This allows poor
image acquisition to be corrected before poor quality is entered into users’ databases. Higher
matcher performance can be achieved if a fingerprint’s quality (in the sense that will be defined
later in this paper) is sufficiently good and overall database integrity is improved.
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This motivates us to define fingerprint image quality as a predictor of a matcher’s performance.
This means presenting the matcher with good quality fingerprint images will result in high
matcher performance, and vice versa, the matcher will perform poorly for poor quality
fingerprints. Despite some on-going and past effort in the investigation of fingerprint image
quality [2,11,12,13,14,16], to our knowledge, nobody has publicly defined fingerprint image
quality as a scalar to predict matcher performance. Predicting matcher performance is also
valuable for biometric fusion of multiple fingerprints because the fingerprints with the best
image quality can be assigned higher weight in the fusion.

The rest of this paper is organized as follows: we briefly discuss the framework and datasets
used for experiments. We briefly survey some on-going and past effort in fingerprint image
quality research in section 2. Section 3 defines fingerprint image quality in a broad general
sense without addressing implementation details. Although it was defined and implemented for
fingerprints, we believe this definition of quality can and should be applied for other biometric
modalities (e.g. face, iris) if proper feature vectors are defined and measured. Section 4 covers
our implementation for measuring fingerprint quality in detail. Section 5 discusses how we test
our quality system. Section 6 summarizes our findings. Appendix A shows the image quality
predictions for this method over all 20 data sets and all 14 fingerprint-matching systems.

1.1 Terminology

A biometric sample is an abstraction of the material input to a recognition system: it may be an
image (fingerprint, face, iris), speech sequence(s) or some arbitrary composite. We define a
gallery Γ, to represent the set of enrollees in a biometric system. It contains identically one
biometric sample per subject. We use G = | Γ| to denote the size of the enrolled population.
Likewise a probe set, ΠΓ, serves as the set of legitimate users of the system. A match describes
the comparison of a probe and a gallery sample of the same individual. A non-match arises from
samples of different persons.

1.2 Data set and matcher algorithm

NIST has acquired a collection of live-scan and scanned paper fingerprints datasets collected at
different operational settings.

Department of State (DOS-C) and Department of Homeland Security (DHS2-C) datasets
contain live-scan plain impressions of the left and right index fingers. They were captured in an
operational environment and should give results of what to expect from real time data of plain-
to-plain (p2p) impression matching.

Department of Homeland Security Ten-print (DHS10) and Texas Department of Public Safety
(TXDPS) were mainly inked paper segmented plain and rolled impressions and Department of
Homeland Security Benefits (BEN) was mainly live-scan segmented plain and rolled
impressions. These three datasets are most useful in evaluating plain to rolled (p2r) impression
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matching.  DHS10 and TXDPS are examples of the currently available fingerprint databases
and BEN represents data captured with newer live-scan methods with some control on quality.

US-VISIT Point of Entry and Bio-Visa Application data (VISIT_POE, VISIT_POE_BVA)
contain live-scan plain impressions of the left and right index fingers.  They are captured in an
operational environment and represent the current image data being captured in the US-VISIT
program.  The BVA data was captured at State Department Consular offices when applicants
apply for visas and the POE are captured by the Department of Homeland Security at the points
of entry into the US for international travelers.  VISIT_POE compares two instances of a person
that were captured at the POE and VISIT_POE_BVA compares a POE image to a BVA image.

A random sample of 6,000 subjects was selected from each of the datasets.  Since DHS2-C was
consolidated after testing had started, the final dataset size after consolidation was only 5,888
not 6,000.  The process of consolidation has been explained in detail in [22]. The four-finger
slaps in BEN, DHS10, and TXDPS were all segmented with the NIST segmentor as discussed
in [10].

NIST has conducted testing of one-to-one SDK (Software Development Kit) based COTS
fingerprint matching systems to evaluate the accuracy of one-to-one matching [6]. Eight
commercial fingerprint vendors submitted their systems for evaluation, some more than one
system. A total of fourteen SDK based matching application were tested on twenty different
single finger datasets of varying difficulty. We have used similarity scores of SDK vendors to
develop and test our image quality assessment system. In this report, we refer to SDK vendors
by their SDK abbreviated letters. Table 1 shows list of vendor names associated with SDK
letters.
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SDK LETTER VENDOR NAME
A Name Not Released
B Name Not Released
C NEC
D Cogent Systems, Inc.
E Name Not Released
F Cogent Systems, Inc.
G SAGEM Morpho, Inc.
H NEC
I Cogent Systems, Inc.
J SAGEM Morpho, Inc
K Neurotechnologija Ltd.
L Name Not Released

VTB NIST

Table 1. List of SDK vendor names associated with SDK letters1

2   Previous Work

Many papers in biometric literature address the problem of assessing fingerprint image quality.
Nill & Bouzas [11] propose an objective image quality based on the digital image power of
normally acquires scenes. Their system is designed to assess the quality of digital images and
can be applied to fingerprint as well. Bolle, et al [12] used ratio of directional area to other non-
directional area as a quality measure. Shen et al [13] applied gabor filter to image sub-blocks, to
identify blocks with clear repetition of ridge and valley pattern as good quality blocks.  Both
[12] and [13] only use the local orientation information and neglect information on global
uniformity and continuity The configurations of ridges and valleys within a local neighborhood
vary with the quality of input fingerprint images, so a well defined sinusoidal shaped waves of
ridges and valleys may not always be observed. Global features are needed for a more precise
region mask classification. They both use subjective method to test the performance of their
proposed quality analysis algorithms.

Ratha and Bolle [14] proposed a method for image quality estimation from wavelet compressed
fingerprint image, where the fingerprint image is WSQ compressed. Still evaluating their
quality measure is a subjective matter.

                                                     
1 These tests were performed for the Department of Homeland Security in accordance with section 303 of the Border
Security Act, codified at 8 U.S.C. 1732. Specific hardware and software products identified in this report were used
in order to adequately support the development of technology to conduct the performance evaluations described in
this document.  In no case does such identification imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best
available for the purpose.
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Hong et al [15] modeled the ridge and valley pattern as sine wave, and compute the amplitude,
frequency as well as the variance of the sine wave to decide the quality of the fingerprint. They
classify regions of fingerprint as recoverable or unrecoverable. If the percentages of recoverable
blocks are smaller than a specified threshold, the input fingerprint is rejected as poor quality.

Lim and Yau [16] propose algorithms for estimating quality and validity of a fingerprint image
in spatial domain. They verify the repetition of ridge and valley patterns by the ratio of the
eigenvalues obtained from covariance matrix for the image block’s grey-level gradient. They
use the quality of the feature extracted from the fingerprint image by the automatic fingerprint
identification system as the benchmark to test the performance of their proposed image quality
analysis procedure. Their system is aimed to flag poor quality or invalid fingerprint images.

Yao et al [2] compute quality Q as a measure of how much reliable directional information is
available in a fingerprint image. They have used ROC curves to show better performance is
achieved but did not use ROC to test the performance of their proposed quality analysis
algorithms.

To our knowledge, nobody has publicly defined biometric sample quality as a predictor for
recognition performance, and nobody has used ranked ROCs to assess the measured quality.

3   Defining Fingerprint Image Quality

A fingerprint is a pattern of friction ridges on the surface of a fingertip. A good quality
fingerprint has distinguishable patterns and features that allow the extraction of features that are
useful for subsequent matching of fingerprint pairs. A minutia based automatic fingerprint-
matching algorithm uses features that compares local ridge characteristics (minutia) of two
fingerprints (biometric samples) )(igx and )( jpx  and produces a real valued similarity score

),( )()( jpigij xxFs = (eq. 1)

where subscript )(ig  denotes i-th gallery and )( jp denoted j-th probe and ijs is the score of the
i-th gallery matched against the j-th probe.

We call similarity scores iis of a genuine (i.e. same person) comparisons match scores, and
similarity scores jisij ≠,  of imposter (i.e. different person) comparisons non-match scores.
So, for a gallery of size G, with the assumption that there is one and only one biometric sample
for each subject enrolled in the system, for each probe image )(ipx  there is one match score iis
and G-1 non-match scores jis ji ≠, . Let )( im xs  denotes match score for sample )(ipx and

)( jin xs  non-match scores of )(ipx and )( jgx , while ji ≠ .
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A higher similarity score is construed to indicate a higher likelihood that the samples come from
the same individual. Let )( msM  denote the cumulative distribution function (CDF) of the
match scores, and )( nsN the CDF of non-match scores. The Detection Error Tradeoff
Characteristic (DET) is a plot of the false non-match rate,

)( msMFNMR = (eq. 2)

against the false match rate,

)(1 nsNFMR −= (eq. 3)

for all values of ms  and ns . The DET, and the equivalent ROC, are the commonest statement of
performance of a verification system.

We define fingerprint image quality as a predictor of a matcher’s performance. Before
advancing any further, we need to quantify matcher performance. The similarity score is the
ultimate statement of expected performance: in conjunction with the underlying match and non-
match distributions it yields likelihood for the samples coming from the same person or
different people. The match and non-match distributions are the result of complex non-linear
algorithms and are not usually random but are strongly dependent on the internal algorithm and
how its parameters are set.

Figure 1 shows the histogram of vendor VTB [10,6] match and non-match scores of fingerprint
impressions of 216 subjects in data set NIST- SD29 [3]. There are 216 match scores and 46440
non-match scores.

4 36 68 100 132 164 196 228
0.00

0.05

0.10

0.15 match scores
non match scores

sd29 - vtb match and non match scores histogram

Figure 1 - SD29 VTB match and non-match scores histogram
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It is common for the match distribution to be wider than non-match distribution. It is also quite
typical for the two distributions to overlap. Overlapping match and non-match distributions
means a given sample ix  will match falsely if its match score )( im xs  is less than some non-
match scores ))()(()( jixsxsxs jinimjin ≠< . If the quality measure q  is to be predictive of
matcher performance, good quality fingerprints must be those with high match scores and well
separated from the non-match distribution. Similarly, poor quality fingerprints are those with
lower match scores, in particular those where their match scores are in the region of overlap
with non-match scores.

Therefore, quality measure q  should be indicative of the degree to which the match distribution
)( msM is separated from the non-match distribution )( nsN . Specifically, we define quality iq

of biometric sample ix  to predict

∈∀
−

= i
jin

jinim
i x

xs
xsExs

xo
))((

)]([)(
)(

σ
 Γ or Π (eq. 4)

where E[.] is mathematical expectation, and (.)σ  is standard deviation, )( im xs  is the match
score, and )( jin xs  are the non-match scores of sample ix , ∀j, ji ≠ . Comparing a probe

sample ix  with an internal gallery of G samples, which include one and only one sample from
the same subject (person), results in a vector of G scores, s. Only one element of vector s is ix ’s
match score, and the other G-1 are its non-match scores. E[.] is evaluated by computing mean
of all non-match scores of probe sample ix to all G-1 non-matching gallery entries. Likewise,

(.)σ is standard deviation estimated solely from the non-matching elements of s.  We call
)( ixo normalized match score of sample ix . Basically, we are comparing the subject’s

biometric sample to the claimed match sample and to other non-matching samples, and
adjusting the raw score on the basis of the extra scores.

Figure 2 shows box plot of normalized match scores of SDK vendor matcher F as generated
using equation (4) for right index fingers of dataset DOS-C for fingerprints that are matched
correctly and those that are matched incorrectly separately. Note that fingerprints with lower
values of (.)o are matched falsely, where fingerprints that are matched correctly are having
higher values (.)o .
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Figure 2. Box plot o(.) falsely matched and correctly matched separated. The black dot
inside the box represents the median; the box shows inter-quartile-range of normalized
match scores (eq. 4) of vendor F for right index fingerprints in dataset DOS-C. Whiskers
are drawn are 1.5(inter-quartile-range) and data points beyond, which are considered
outliers, are drawn individually.

For each fingerprint, we define its image quality as predictor of its normalized match score.
Similarity scores as defined by equation 1, and so normalized match scores as defined by
equation 4, are a function of both probe and gallery samples, but quality as defined here is a
scalar value which is measured for each sample separately. Therefore, pair wise quality q  as
defined below, should be predictive of recognition performance of pair ),( probegallery xx .

),( probegallery qqHq = (eq. 5)

Extensive testing at NIST [5, 6] has shown that recognition errors are triggered by low quality
samples. That is, (.)H  is simply a min function of the individual numbers probeq , and galleryq ,
and so pair wise quality is defined in equation 6. In this paper quality refers to q as defined in
equation 6.

),min( probegallery qqq = (eq. 6)

In an operational setting, if the enrolled samples are assured to have high quality, then a
measurement of quality of a subject’s biometric sample (probe) can be sufficient to predict its
normalized match score.
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We measure (scalar value) quality iq  for biometric sample ix , by first computing a feature
vector vi, which contains appropriate signal or image fidelity characteristics of ix  and then
finding some (nonlinear) mapping from vi to )( ixo . Mathematically speaking:

vi )( ixL= (eq.7)

Ixoq ii == )(~ (vi) (eq. 8)

Function (.)L  will be realized by computing characteristics and features of ix  that convey
information for a matching algorithm. Applying (.)L  to a sample ix  results in an n-dimensional
feature vector vi. For fingerprints, this includes measured clarity of ridges and valleys, size of
the image, and measures of number and quality of minutiae. Section 4 has a detailed
explanation of our feature vectors.

Function (.)I  is a mapping from the space of feature vectors v to normalized match scores
(.)o . )(~

ixo is the predicted value for )( ixo .

3.1 Image Quality as Classification

We defined biometric sample quality as a predictor of its normalized match score as defined in
equation 4. Equation 8 suggests use of various regression methods to estimate the response
function (.)o  from a vector of variables v. However, as shown in detail in section 4, we tried
various regression methods and failed to find a good fit primarily because: sample-specific
measures (components of vector v) are not linearly related to the response variable (.)o  and so
nonlinear functions have to be found; outliers heavily influence data; and residual errors are not
Gaussian for any of the regression methods tried. Plus, it is sufficient to know the level of
quality (e.g. high, good, medium, low) and since quality is defined as predictor of

(.)o (normalized match scores) it is sufficient to know the range of )( ixo (e.g. high, good,
medium, low) rather than its exact value for each sample ix . These facts lead us to restate the
problem in terms of classification. This means we define sample quality as a measure that
predicts the bin of )( ixo . Now function (.)I  from equation 8 is basically a classifier that maps
feature vector vi of sample ix  (eq. 7) to a quality number Q such that )( ixo falls in the k-th bin
where, without loss of generality, Q = k. That is, the quality number qi of sample ix  is the bin in
which )( ixo will fall. Our implementation employs an artificial neural network [17] as the
classifier.

The number of allowed bins, K, constitutes a coarseness parameter, against which the quality
number can be traded off. For example, a high / low level (K = 2) is easier to achieve than the
continuous case as K tends to infinity discussed above.  In this paper we chose K = 5, that is we
have five levels of quality: poor (5), fair (4), good (3), very good (2), and excellent (1).  The
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choice of 5 levels of image quality is a compromise. Studies at NIST [6] shows that eight to ten
levels would be needed to fully characterize a matcher that is very sensitive to image quality.
Matchers that are insensitive to image quality could be well characterized by three levels of
image quality. We have selected five levels, which is the correct level for a medium to good
quality matcher. We used irregularly spaced quantiles of (.)o to define the bin boundaries for

(.)o . For a sample, x , the quantile function is the inverse of the empirical CDF; that is,

quantile(p) = min{z | proportion p of )(xo χ z}

We define (.)o bin boundaries as shown in Table 2, where (.)W  denotes the CDF of samples
that are falsely (wrongly) matched and C denotes CDF of samples that are correctly matched.

Q QUALITY RANGE

5 poor [0, W-1(0.75)]

4 fair (C-1(0.75)], C-1(0.05)]

3 good (C-1(0.05), C-1(0.2)]

2 very good (C-1(0.2), C-1(0.6)]

1 excellent (C-1(0.6), C-1(1)]

Table 2. Bin boundary for normalized match scores o(.). The boundaries were set by
inspection to give useful categorization of the normalized match scores statistic.

Our bin boundary selection agrees with our definition of quality; we are labeling samples with
poorest recognition rate as poor, (in this case all of them are falsely matched). Samples with fair
quality are those that are borderline, some of the these samples are falsely matched, most of
good quality samples are matched correctly and very good and excellent are those samples that
almost all are matched correctly. In other words, excellent quality samples are those with very
high FNMR (eq 2) and poor quality samples are those with high FMR (eq 3).

4   Measuring Fingerprint Image Quality

In this section we discuss our implementation of (.)L  and (.)I  of equation 7 and 8 for
fingerprint images. We first apply (.)L  to a biometric sample ix to get feature vector vi  and
then use vi as input into a neural network, (.)I . (.)L  is realized by computing characteristics
and features of biometric sample ix  that convey information for a matching algorithm.
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4.1 Feature extraction
This section explains feature extraction for fingerprints. Our proposed definition and
measurement of biometric sample quality can be applied to other biometric modalities if the
appropriate feature vectors are defined and computed accordingly.

It is known that fingerprint matcher algorithms commonly in use are sensitive to clarity of
ridges and valleys, measures of number and quality of minutiae, and size of the image.  We
have used NIST Fingerprint Image Software (NFIS) [7] package to extract features, i.e.
implementation of (.)L of equation 7. The MINDTCT package of NFIS has a fingerprint
minutia detector algorithm that accepts a fingerprint image and automatically detects minutia. It
also assesses minutia quality and generates an image quality map. To locally analyze a
fingerprint image, NFIS divides the image into grids of blocks. To assess the quality of each
block, NFIS computes several maps (direction map, low contrast, low flow, and high curve) and
summarizes the result in a quality map. All pixels in a block are assigned the same result. It
should be noted that the NFIS algorithms and software parameters have been designed and set
to process images scanned at 500 pixels per inch (19.69 pixels per millimeter) and quantized at
256 levels of gray. A discussion of MINDTCT parameters and how it is used in our quality
assessment follows.

4.1.1 MINDTCT input
MINDTCT reads in an ANSI/NIST formatted file and searches the file structure for a grayscale
fingerprint record. The application is capable of processing ANSI/NIST Type-4, Type-13, and
Type-14 fingerprint image records [8].

4.1.2 Generate image quality map
MINDTCT measures quality of localized regions in the image including determining the
directional flow of ridges in the image and detecting regions of low contrast, low ridge flow,
and high curvature. These last three conditions represent unstable areas in the image where
minutiae detection is unreliable, and together they can be used to represent levels of quality in
the image. Each of these characteristics is discussed below.

4.1.2.1 Direction map: The purpose of this map is to represent areas of the image with sufficient
ridge structure. Well-formed and clearly visible ridges are essential to reliably detection of ridge
endings and bifurcations. To locally analyze the fingerprint, the image is divided into grid of
blocks. All pixels within a block are assigned the same value. To minimize the discontinuity in
block values as one move from one block to its neighbor, windows are defined to surround
blocks, and windows overlap from one block to the next. For each block in the image, the
surrounding window is rotated incrementally and a Discrete Fourier Transform (DFT) is
conducted at each orientation. The details are given in [7].

4.1.2.2 Low contrast map: An image map called the low contrast map is computed where the
blocks of sufficiently low contrast are flagged. This map separates the background of the image
from the fingerprint, and maps out smudges and lightly inked areas of the fingerprint. Minutiae
are not detected within low contrast blocks in the image. This software computes the pixel
intensity distribution within the block’s surrounding window. A specified percent (10%) of the
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distribution’s high and low tails are trimmed as possible outliers, and the width of the remaining
distribution is measured. A pixel intensity threshold was derived empirically from a training
sample of low and high contrast blocks extracted from real fingerprint images. Blocks that have
narrow dynamic range in pixel intensity are flagged as low contrast areas.

4.1.2.3 Low flow map: Low flow map marks the blocks that could not initially be assigned a
dominant ridge flow. Minutiae detected in low flow areas are not reliable.

4.1.2.4 High curve map: Minutiae detected in high curvature areas are not reliable. This is
especially true of the core and delta regions of a fingerprint. A high curve map is used to marks
blocks that are in high curvature areas of the fingerprint.

4.1.2.5 Quality map: As discussed, the low contrast map, low flow map, and the high curve map
all point to different low quality regions of the image. The information in these maps is
integrated into one general map, and contains 5 levels of quality (4 being the highest quality and
0 being the lowest). The background has a score of 0, a score of 4 means a very good region of
fingerprint. The quality assigned to a specific block is determined based on its proximity to
blocks flagged in the above-mentioned maps. We display quality map grayscale image with
black, dark gray, medium gray, light gray, and white corresponding to scores of 0 to 4
respectively.

Figure 3 shows an example of a good quality fingerprint and its gray scale image of quality map
as described above. Note that most of gray scale quality map image is white. Figure 4 shows an
example of a poor quality image and its gray scale level translation. It is notable that majority
gray scale quality map image is dark gray or black. Quality maps of both fingerprints are in
appendix B. We have subjectively checked quality map of several fingerprint images and we are
confident that quality maps generated by MINDTCT is a good representation of areas with clear
ridges and valleys and areas where minutiae detection is (or is not) reliable.

For each fingerprint, we used MINDTCT to generate its quality map. Blocks with quality 0 are
regarded as background. We compute the total number of blocks with quality 1 or better as the
effective size of the image or foreground. Then percentage of foreground blocks with quality 1,
2, 3, and 4 are computed. We call them quality zones 1, 2, 3, and 4 respectively. Fingerprint
images with higher number of quality zone 4 (equivalently smaller number of quality zone 1
and/or 2) are more desirable.
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4.1.4 Feature vectors
We used the quality map and minutia quality assessment of NFIS and define our feature vectors,
as shown in Table 3. Therefore, for each fingerprint ix , an 11-dimensional feature vector vi as
listed in Table 3 is computed using MINDTCT of NFIS.

NAME DESCRIPTION

1 foreground
number of blocks that are quality 1 or better; i.e. foreground = i

i

U∑
=

4

1

where iU is number of blocks with quality i
2 total #of minutia number of total minutiae found in the fingerprint
3 min05 number of minutiae that have quality 0.5 or better
4 min06 number of minutiae that have quality 0.6 or better
5 min075 number of minutiae that have quality 0.75 or better
6 min08 number of minutiae that have quality 0.8 or better
7 min09 number of minutiae that have quality 0.9 or better
8 quality zone 1 percentage of the foreground blocks of quality map with quality =1
9 quality zone 2 percentage of the foreground blocks of quality map with quality =2
10 quality zone 3 percentage of the foreground blocks of quality map with quality =3
11 quality zone 4 percentage of the foreground blocks of quality map with quality =4

Table 3. Feature vector description

Feature vector of the fingerprint in Figure 3 (subjectively assessed as good quality fingerprint)
is computed as:
00602_01: (1642, 57, 34, 34, 34, 34, 28, 0.053, 0.167, 0.059, 0.720)

and for the fingerprint in Figure 4 (subjectively assessed as bad quality) is:
00207_01: (1690, 182, 0, 0, 0, 0, 0, 0.168, 0.572, 0.259, 0.0006)

It is apparent that the good quality fingerprint has a large quality zone 4 and higher number of
minutia of reliability 0.9 or better where the poor quality fingerprint has a large quality zone 2
and no minutia with reliability 0.5 or better.

To get a better insight into the feature vectors and uncover its underlying structure we
performed an explanatory data analysis (eda).  Eda is a graphically oriented method of data
analysis that helps to determine whether the data support the assumptions required for the
classical methods of statistical inference: an outlier-free, nearly normal distribution, and serially
uncorrelated observations. We have a set of 4 plots for each feature computed for right index
fingers of dataset DOS-C: a histogram, a box plot, a density plot, and a normal qq-plot. A
normal qq-plot (or quantile-quantile plot) consists of a plot of the ordered values of the data
versus the corresponding quantiles of a standard normal distribution. If the qq-plot is fairly
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linear, the data are reasonably Guassian, otherwise; they are not.  Of these four plots, the
histogram and density plot give us the best picture of the distribution shape, while the box plot
and normal qq-plot give the clearest display of outliers. The box in each box plot represents first
and third quartile of the data, black dot inside the box represents the median, data points outside
[1st quartile, 3rd quartile] range are shown by black lines outside the box. Figure 5 summarizes
our analysis for right index fingerprints in dataset DOS-C in statistical graphics. Table 4 shows
the Spearman’s rank correlation of features of right index fingerprints of dataset DOS-C and
normalized match scores of vendor F as defined in equation 4.

QUALITY
ZONE1

QUALITY
ZONE2

QUALITY
ZONE3

QUALITY
ZONE4

NORMED
MATCH
SCORE

FOREGRO
UND

0.139 0.139 0.012 0.079 0.108

TOTAL
#OF MIN

0.258 -0.385 0.292 -0.315 0.076

MIN05 -0.347 -0.386 -0.510 0.563 0.391

MIN06 -0.349 -0.387 -0.513 0.566 0.391

MIN075 -0.412 -0.253 -0.521 0.555 0.313

MIN08 -0.398 -0.169 -0.455 0.483 0.246

MIN09 -0.339 -0.047 -0.303 0.327 0.131

NORMED
MATCH
SCORE

-0.242 -0.172 -0.255 0.289 1.0

Table 4. Features and normalized match score correlations - Dataset DOS-C – right index
fingerprints and vendor F scores. Min06 and quality zone4 have the highest correlation
(0.566). There are no significant correlations between normalized match score and
features.
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Figure 5-a. Exploratory data analysis for foreground (# of block with quality 1 or better)

Figure 5-b. Exploratory data analysis total number of minutia

Dataset DOS-C Right Index



NIST Fingerprint Image Quality Page 19 08/19/04

Figure 5-c. Exploratory data analysis for min05 (# of minutiae with quality 0.5 or better)

Figure 5-d. Exploratory data analysis for min06 (# of minutiae with quality 0.6 or better)

Dataset DOS-C Right Index
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Figure 5-e. Exploratory data analysis for min075 (# of minutiae with quality 0.75 or better)

Figure 5-f. Exploratory data analysis for min08 (# of minutiae with quality 0.8 or better)

Dataset DOS-C Right Index
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Figure 5-g. Exploratory data analysis for min09 (# of minutiae with quality 0.9 or better)

Figure 5-h. Exploratory data analysis for quality zone1 (fraction of foreground with quality 1)

Dataset DOS-C Right Index
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Figure 5-i. Exploratory data analysis for quality zone2 (fraction of foreground with quality 2)

Figure 5-j. Exploratory data analysis for quality zone3 (fraction of foreground with quality 3)

Dataset DOS-C Right Index
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Figure 5-k. Exploratory data analysis for quality zone4 (fraction of foreground with quality 4)

Figure 5-l. Exploratory data analysis for vendor F match scores

Dataset DOS-C Right Index, vendor F normalized match score
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Figure 5-m. Exploratory data analysis for vendor F non-match scores - Dataset DOS-C
Right Index

Note the departure of normal distribution for the tail of mean of non-match scores per person.
As mentioned dataset DOS-C was consolidated and therefore non-match mean is not being
artificially increased by erroneous ground truth data.

Figure 5 reveals several interesting observations:

o Outliers heavily influence data.  Presence of outliers, as shown in Figures 5-a through
5-m, suggests the need for a robust statistical method. It is important to note that it will
not suffice to screen data and remove outliers because the sharp decision to keep or
reject an observation is wasteful. Also it is very difficult or even impossible to spot
outliers in multivariate data. Rejecting outliers affects the distribution. We can do better
by down-weighting dubious observations rather than by rejecting them, although we
may wish to reject completely wrong observations. To compute robust measures, we
can compute trimmed mean or rank correlation. The trimmed mean is the mean of the
central 1-2α part of the distribution, so fraction α of the observations are removed from
each end.

o The distributions are not normal, and not even nearly normal. This suggests the use of
nonparametric methods.

As shown by qq-plots of Figures 5a-m normality is not a valid assumption, so rank-based
Spearman’s ρ  measures of correlation between each DOS-C right index sample’s feature and
its vendor F normalized match score (i.e. (.)o ) are computed and reported in Table 4.
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The correlation factors between features and normalized match scores are not very attractive.
Min05, min06, and quality zone 4 with 0.391, 0.391, and 0.289 respectively are the highest.
This means none of features can be a good predictor of the normalized match score all by itself.
However, jointly they might be used to predict it. To investigate any association, or correlation,
between any features and the normalized match score, scatter plots of each feature vs.
normalized match score were plotted. Scatter plots can be used as a visual check on correlation
between two variables. If two variables are strongly correlated, a scatter plot of one variable
against the other will look like a straight line.  A strong correlation between any feature and
normalized match score ( (.)o ) means that we will be able to use that feature as a predictor of
normalized match score (.)o . Figures 6, 7, 8, and 9 show matrices of scatter plots of
components of feature vectors for DOS-C right index fingerprints and normalized match scores
of vendor F. Green circles represent fingerprints that are matched correctly and red ones
represent fingerprints that are not matched correctly.

Figure 6.  Min06 and quality zone 4 are somehow correlated. Fingerprints with small
values of min06 and quality zone 4 are most likely identified falsely.
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Figure 7.  Scatter plots min09, quality zone1, and vendor F’s normalized match score
for dataset DOS-C Right Index. Fingerprints with min09 bigger than 15 are most likely
identified correctly and so, by our definition, are of “good” quality.

Figure 8. Fingerprints with small number of min05 and large values of quality zone 3
are most likely identified falsely.
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Figure 9.  Fingerprints with high number of min075 ( >20) and small values of quality
zone 2 are most likely identified correctly and hence are of “good” quality.

Scatter plots show explicitly the consequences of the feature correlation discussed in Table 4.
Figure 6 shows three sets of scatter plots between min06, quality zone4, and the normalized
match scores of vendor matcher F as generated using equation 4. The plot does not reveal a
clear relationship between either min06 or quality zone4 and normalized match scores. It does,
however, show two weak correlations. Sufficiently large values of min06 result in green circles
predicting correct match in the lower right subplot of Figure 6. Further, small values of both
quality zone4 and min06 associate incorrect match (red circles) in the center left and center
bottom subplots of Figure 6. This behavior is also seen in Figure 9 for features min075, and
quality zone2. Figure 8 shows a weak correlation between min05 and quality zone 3. Red
circles in center bottom subplot of Figure 8 indicate that sufficiently large values of quality zone
3 and small numbers of min05 result in false identification. Figure 7, for features min09 and
quality zone1, shows the correlation associated with large values of the minutia variable but do
not show a predictive effect when the minutia variable is combined with the quality variable.
Similar results hold for the effect of other features on normalized match scores.

The observation that the quality measures generated by NFIS are capable of predicting the
performance of a commercial fingerprint matching system, which uses completely different
feature extraction methods, is of great importance. This suggests that an image quality measure
based on the publicly available NFIS generated features can be used to predict matcher
performance for one and, as we will show later in section 5, other commercial systems.

To summarize, correlation factors of none of the features is strong enough to predict the
normalized match score all by itself. However, there is strong evidence that some linear or
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nonlinear combination of these features can predict normalized match scores as defined in
equation 4. The Next section discusses how these features are used to predict normalized match
scores.

4.2 Pattern recognition (Regression vs. Classification)
In the terminology of pattern recognition, the given examples, together with their
classifications, are known as the training set, and future cases form the test set. Our primary
measure of success is the error (or misclassification) rate. Note that we would obtain (possibly
seriously) biased estimates by re-classifying the training set, but that the error rate on a test
randomly chosen from the whole population will be an unbiased estimator. To avoid the over
fitting problem, we formed two disjoint subsets of fingerprint images drawn from datasets DOS-
C, DHS2-C, BEN, TXDPS, and DHS10, used one subset to fit the model (train set), and used
the other subset (test set) for assessment of the generalization error of the final chosen model.
Data set SD29[3] was used as validation set.

Equation 8 suggests use of various regression methods. We have a vector inputs v = (feature1,
feature2, … , featuren), and want to predict the real valued output (.)o .The linear regression
model has the form

j
j

j xxfY ∑+== ββ 0)(

The linear model either assumes that the regression function ]|[ XYE  is linear, or that the
linear model is a reasonable approximation. The jβ  are unknown parameters or coefficients,

and the variables jx  can come from different sources: quantitative inputs, transformations of

quantitative inputs, such as log or square, and basis expansions, such as 2
jx , or interactions

between variables ji xx . No matter the source of jx , the model is linear in the parameters, jβ .

Linear regression is a natural choice when graphical evidence clearly indicates a linear
relationship between response (normalized match score) and predictors (features). According to
scatter plots of dataset DOS-C (Figures 5-a through 5-m) and matrix plots of Figures 6, 7, 8, and
9, such a linear relationship does not exist. We tried several regression methods but none fit the
data. R2 was never larger that 0.30, furthermore residuals did not have a standard covariance
structure and residuals had a larger spread than fitted values. Therefore, though simple, the
traditional linear model is not a good fit for our data because the classical linear regression
techniques make several strong assumptions about the underlying data, and the feature data fail
to satisfy these assumptions in several ways. For example, one or more outliers may throw off
the regression line, or the data may not have a normal distribution. We know that outliers
influence our data heavily and it does not have a normal distribution. To overcome the influence
of outliers, we used robust regression methods; these minimize the effect of outliers while
retaining the basic form of the linear method. We even replaced one or more predictors by
polynomial smooth function of the predictor, converting the classical linear model into a
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generalized additive model (GAM). In the regression setting, a generalized additive model has
the form [23]:

εα +++++= )()()( 2211 pp xfxfxfY Κ

As usual, pxxx ,...,, 21  represent predictors (features) and Y is the outcome (normalized match

score); the if ’s are unspecified smooth (and so nonparametric) functions. The approach taken
was to fit each function using a scatter plot smoother (e.g., a loess smoother or spline smoother),
and provide an algorithm for simultaneously estimating all p functions. The model was fit using
the local scoring algorithm, which iteratively fits weighted additive models by backfitting. The
backfitting algorithm is a Gauss-Seidel method for fitting additive models, by iteratively
smoothing partial residuals. The algorithm separates the parametric part from the nonparametric
part of the fit, and fits the parametric part using weighted linear least squares within the
backfitting algorithm. We tried both loess and spline smoother for the model. GAM takes care
of non-linearity and non-normality of errors (residuals) but failed due to an interaction between
predictors, jx  (i.e. features), which, in turn, suggests the use of projection pursuit regression [4].
This is a non-parametric regression model that includes the possibility of having interactions
between the explanatory variables. Project pursuit regression applies an additive model to
projected variables. That is, it is of the form:

εαα ++= ∑
=

)(
1

0 XfY T
j

M

j
j

for vectors ααααj, and a dimension M to be chosen by the user. Thus it uses an additive model on
predictor variables that are formed by projecting X in M carefully chosen directions.  Projection
pursuit regression did not do better than any other model we discussed before.

Failure of regression and additive models, plus our rationale for choosing discrete quality
(section 3.1), leads us to state the problem as a classification problem. To investigate the
discriminatory power of our feature vectors, for right index fingerprints in data set DOS-C, we
made box plots of each feature for different levels (bins as given in Table 2) of normalized
match scores of vendor F for those correctly identified and those that are falsely identified
separately. These box plots are shown in Figure 10. The box in each box plot shows the middle
half of the data and the black dot inside the box represents the median. The whiskers are at
1.5(inter-quartile range) and data points beyond that are considered outliers and are drawn
individually. Box plots show not only the location and spread of the data but indicate skewness
as well.  Trellis plots of components of feature vectors of right index fingerprints of dataset
DOS-C and normalized match scores of vendor F are in appendix B.

As it appears in Figure 10, the median of each feature varies over different performance bins.
This implies that these features can be used to partition the space of normalized match scores
o(.) as defined in equation 4.
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Figure 10. Box plots of each of our 9 features of dataset DOS-C Right index fingerprints for
different bins of normalized match scores of vendor F. The median of each feature varies over
different score bins. All samples in good, very good, and excellent bins are matched correctly.

We chose artificial neural network as the nonlinear classification method. The neural network
has the capability of acting as an approximation function for an arbitrary nonlinear function and
is not dependent on model based distribution functions in either the feature or the classification
space.

4.2.1 Training the neural network
We used neural network implementation in NFIS package. The theory behind the machine
learning techniques used in this program is discussed in [17]. It trains a 3-layer feed forward
nonlinear perceptron model. The input nodes are feed-forwardly connected to the hidden nodes,
and the hidden nodes to the output nodes.  Training (optimization) of the weights is done using
either a scaled conjugate gradient algorithm [18], or by starting out with scaled conjugate
gradient and then switching to a limited memory Broyden Fletcher Goldfarb Shanno algorithm
[19]. Boltzmann pruning [20], i.e. dynamic removal of connections, is performed during
training.

In section 3.1 (Table 2) we explained our 5 classes of quality number. These 5 classes are our
output of neural network. Input to neural network is 11-dimension feature vector discussed in
section 4.1.4. We chose 22 hidden nodes. The activation functions used for hidden nodes as
well as output nodes are sinusoid. Boltzmann pruning was set.
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Our training set consists of plain right index, plain left index, plain right thumb, and plain left
thumb fingerprints from datasets DOS-C, DHS2-C, DHS10, TXDPS, and BEN.  As explained
in section 1.2, these datasets contain fingerprints collected by different personnel, at different
locales, and under different conditions. Therefore the training set contains various levels of
quality. We have tested our system on VISIT_POE and VISIT_POE_BVA datasets and a subset
of DOS-C, DHS2-C, DHS10, TXDPS, and BEN that was not used for training.

A full similarity matrix of the training set is needed for training the neural network. Similarity
scores are needed to compute the output class of neural network (i.e. bins of normalized match
scores).  Since bin boundaries are based on distribution of match and non-match scores (Table
2), one may argue that training based on similarity scores of one vendor will result in “vendor
dependent” weights and so the whole system may be biased and not generalize to other
matchers. To avoid such a problem, we have chosen samples that are assigned the same bins by
SDK vendors F, G, and VTB.  Therefore, similarity scores of SDK vendors F, G, and VTB were
used for our training.

Care was taken to design a training set balanced in terms of numbers of different finger
positions of different quality of different datasets. Table 5 summarizes the diversity of our
training set.

RIGHT INDEX LEFT INDEX RIGHT THUMB LEFT THUMB

Quality 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

DOS_C 100 100 83 21 31 100 100 69 18 62

DHS2_C 100 100 90 29 21 100 100 79 11 30

BEN 40 40 40 40 26 40 40 40 40 40 60 60 60 60 7 60 60 60 60 15

TXDPS 40 40 40 38 35 40 40 40 36 34 60 60 60 43 14 60 60 60 31 18

DHS10 20 20 20 20 20 20 20 20 20 20 80 80 80 32 32 80 80 80 36 39

TOTAL 300 300 273 148 133 300 300 248 125 186 200 200 200 135 53 200 200 200 127 72

Table 5. Training set structure: Number of samples. Note the totals from each class are:
1000, 1000, 421, 535, and 444.

In an ideal case, we want our training set to have equal numbers of each fingers (right/left
index/thumb) with equal numbers of different quality, e.g. 300 right index fingerprints of each
quality 1, 2, 3, 4, and 5, and same for left index and right / left thumb. Plus it is preferred to
have equal number of samples from each above-mentioned datasets. However, in reality only a
small fraction of each dataset is of very poor quality, and so our training set has more samples
of high and good quality than samples of low and very low quality.  This is common in
classification problems where large samples of rare classes may not be available. We have
compensated for lower samples of poor quality in our training set by setting “class-weight”
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parameter of our implementation of neural network [17]. Our implementation of neural network
accepts class prior probabilities as a training parameter. In the scaled conjugate gradient method
used here, both the network errors and the error signals used in the training are calculated using
class weights. This ensures that the optimization is performed in a way that produces the best
solution to the global problem but allows reasonable sampling of less common classes.

For each training sample, the class of neural net output is determined based on its match and
non-match scores, which is computed for a pair of (probe, gallery). We know that the lower
match score (and/or higher non-match mean) is due to the lower quality of the pair. However,
prior to training, it is not obvious which of the (probe, gallery) fingerprint images is of the lower
quality and so both probe and gallery fingerprint images are assigned the same class. If the
quality of the probe and gallery are the same, samples are labeled correctly and so the neural
network is trained correctly. However, if the quality of the probe and gallery are not the same,
the better quality image of the pair (probe, gallery) is labeled with the wrong class. For example
a probe image with very low number of good quality minutia and small quality zone 4
(indicators of low quality), scored against a gallery image with high number of good quality
minutia and large quality zone 4 (indicators of good quality), will result in a low normalized
match score (eq. 4). Both probe and gallery will be assigned the same class (which is low
quality) and so the gallery image (the better quality image of the pair) is obviously labeled with
the wrong class. We solved this problem by adjusting the “pattern-weights” parameter of our
implementation of the neural network. The pattern-weights are used in the calculation of the
error value that neural network attempts to minimize during training. When the training patterns
(features) are sent through the network, each pattern produces an error contribution, which gets
multiplied by the pattern-weight for that pattern before added to an error accumulator.

In our case, to assure that the neural network is trained properly, we must assign a lower weight
to the better quality image of the pair (probe, gallery) for each subject. As discussed above,
there is no knowledge of relative quality of the pair (probe, gallery) prior to training. However,
we can use the predicted class of quality for each image after training to adjust pattern-weights
and then repeat the training with adjusted pattern-weights. Therefore, we performed two rounds
of training: First, we trained the neural network giving equal weights (all weights = 1) to all
feature vectors. Upon completion of training, neural network predicts class of quality for each
image in the training set. New pattern-weights are assigned to each image based on this
predicted quality for the two images (probe, gallery) of each subject, and training is repeated
using the new and adjusted pattern-weights. Pattern-weights are adjusted as explained below:

For each subject (person) in training set,
If qprobe = qgallery , set probe’s pattern-weight = 0.5 and gallery’s pattern-weight = 0.5
If qprobe < qgallery , set probe’s pattern-weight = 0 and gallery’s pattern-weight = 1
If qprobe > qgallery , set probe’s pattern-weight = 1 and gallery’s pattern-weight = 0

Note that quality=5 is the poorest quality and quality=1 is the best quality.

To make sure that all feature vectors fed to the neural network are in the same range, feature
vectors are normalized by vectors of global mean and global standard deviation of all feature
vectors of datasets DOS-C, DHS2-C, BEN, DHS10, and TXDPS.
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We have used similarity scores of vendor A  L, N, and VTB of the SDK test performed at
NIST [6] to test our proposed fingerprint image quality metrics. Results of vendor F for dataset
VISIT_POE have been reported in the body of this report, and results for all the other vendors
for all other datasets (a total of 280 ROCs) are in appendix A. It should be noted that no subset
of the VISIT_POE dataset has been used in training the neural network.

5   Assessing Fingerprint Image Quality

It is difficult to obtain the fingerprint image quality benchmark to test the performance of a
quality analysis algorithm. The most used method to test image quality measures are based on
visual (and thus subjective) assessments of images. However, with growing size of databases,
manual judgment is extremely time-consuming and expensive. The present complete NIST
fingerprint test archive consists of approximately 68 million fingerprints from 16 million
individuals. Thus, objective measures that correlate acceptably well with perceived image
quality and/or matcher performance are essential.

Our evaluation criterion is rank ROC as a function of image quality. We measure quality
number q  for probe and gallery fingerprint pairs of each person in our test datasets, and quality
is defined by the minimum of the two numbers. Given a quality number taking on K integral
values, K ROC characteristics are generated. If the k-th quality number is kq , then the similarity
scores used in the computation of the K non-match distributions )(sNk  and K match
distributions )(sM k  are those for which the image pair has quality kq  by equations 6 and 8.
The selection of number K is a design issue. At minimum K=2, that is a binary decision to
accept the image as good quality or reject the image as poor quality is made. We have chosen K
= 5. The choice of 5 levels of image quality is a compromise. Eight to ten levels would be
needed to fully characterize a matcher that is very sensitive to image quality, such as SDK
matcher A [6]. Matchers that are insensitive to image quality, such as SDK matchers H and I,
could be well characterized by three levels of image quality. We have selected five levels which
is the correct level for a medium to good quality matcher such as SDK matcher F.

Figures 11-a and 11-b show rank ROC performance as a function of our quality analysis for
right and left index fingers of dataset VISIT_POE and similarity scores of SDK vendor F. These
figures show that our proposed image quality works as a rank statistic for performance. It is
worth mentioning that no subset of the VISIT_POE data has been used in training the neural
network.

Each of the figures showing results, (Figures 11-24), consists of three sections. The first section
of the figures contains a ranked set of ROC curves for image quality levels 1-5.  To study the
difference in performance for different levels of quality, it is necessary to combine results over
the set of 5 ROCs (one for each class of quality). One method of combining results is to
measure the variation of the TAR for each FAR. This requires readjusting the operating
threshold for each probe set (i.e. different levels of quality). For many applications, this is not
feasible or desirable. However, it is an appropriate technique for comparing performance of
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different systems because it is not possible to set uniform thresholds across different systems.
To study the effect of quality on the performance of a system, we have to set one operating
threshold across all galleries and probe sets. Fixing the threshold across various levels of quality
corresponds to an operational situation in which threshold is set once for an application. The
operating-threshold is picked based upon a specific false accept rate (usually 1%) on an
aggregated population. The second section of each figure contains a table showing operating-
threshold and its corresponding FAR and TAR values for the aggregated population as well as
FAR and TAR values for each image quality level computed at operating-threshold. The third
section of each figure contains a plot of the values given in the second section. Specifically, it
show false accept rate and true accept rate of probe sets of different quality at the fixed
operating-threshold. The red square marks the false accept rate and true accept rate of the whole
dataset at the fixed operating-threshold.
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Vendor F – VISIT_POE – Right index
threshold=350 (far,tar)=(0.0119418,0.991333)

quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)

FAR 0.0037 0.0083 0.0131 0.0216 0.0477
TAR 0.997 0.994 0.993 0.9496 0.926

Figure 11-a. The effect of quality on ROC - Vendor F - Dataset VISIT_POE - Right index
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VendorF –VISIT_POE Left Index
threshold=350 (far,tar)=(0.0120981,0.989)

quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0043 0.0073 0.0124 0.0228 0.0573
TAR 0.997 0.998 0.993 0.953 0.856

Figure 11-b. The effect of quality on ROC - Vendor F - Dataset VISIT_POE - Left index
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A desirable feature of a quality measure is how well it generalizes to other matchers and other
datasets. To investigate how well our system generalizes to other matchers, we have used
similarity scores of SDK vendors A  L, N, and VTB to test our proposed fingerprint image
quality metrics on all datasets explained in 1.2. Results of dataset VISIT_POE are shown in
Figures 11 through 24, where results of all SDK vendors (14 vendors) and all datasets (20
datasets) - - a total of 280 ROCs -- are in appendix A. These ROCs show our fingerprint quality
measure generalizes very well to other matchers and other datasets.

The table and plot of (false accept rate, true accept rate) pair for each quality at the same
operating point, i.e. fixed threshold, follow each ROC. The threshold and (false accept rate, true
accept rate) of the corresponding dataset is reported as well. The red square marks the false
accept rate and true accept rate of the whole dataset at the operation-threshold specified in the
table in the center section of each figure. As quality degrades, we expect lower performance, i.e.
lower true accept rate and/or higher false accept rate. Figures 11 through 24 show for vendors F,
C, G, I, and J the false accept rate and true accept rate of quality 1 and 2 (excellent and very
good) fingerprints are almost always on the left side of the red square. It means matcher
performance for probe sets with quality 1 (excellent) and quality 2 (very good) is better than the
whole dataset. False accept rates and true accept rates of quality 3, 4, 5 (good, fair, and poor)
are usually on the right side of the red square, which indicates lower true accept rate AND
higher false accept rate than the whole dataset.

As quality degrades, true accept rate decreases for all the matchers. It is also desirable to see an
increase in FAR as quality improves. Vendors F, C, G, J, and I exhibit such a behavior: as
quality degrades, a lower TAR and a higher FAR is observed. Vendors A, B, N, and VTB’s
false accept rate decreases as quality degrades. There is no pattern for vendors D, E, H, K, and
L’s far as quality varies. Increasing false accept rate as quality degrades indicates vulnerability
of low quality fingerprint images.

There are several interesting trends in vendor matcher performance sensitivity to image quality
as defined in this paper. When all vendors are examined on quality level one data, only a few of
them can get TARs over 99.6%. This suggests that there are error sources that generate
approximately 0.4% errors that are independent of image quality as defined in this paper.

At the same time the FAR of different vendors at the operating-threshold ranges from 2.8% for
vendor N to 0.02% for vendor I. This shows that the FAR of systems with relatively low
accuracy rank in the SDK tests is not easily correlated with the TAR of the system.

In most cases, where the FAR of a vendor for quality 1 fingerprints is below 0.1%, the vendor
has very uniform response to fingerprints of quality 1, 2, and 3. This demonstrates that very
high accuracy systems need fewer than five levels of image quality to fully characterize their
performance.

Finally, examination of the results of the SDK report shows that for the top five systems, SDK
systems H, I, J, F, and G, the image quality 3 TAR on VISIT_POE data is a good overall
predictor of SDK rank. The ranks of the various SDK vendor systems on different datasets are
given in Table 7 taken from [6]. The ranks of the top five vendors, based on quality level 3 TAR
at the fixed operating-threshold, are given in Table 8. The ranks between the DOS-C and the
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DHS2-C index finger data set and the quality 2 TARs differ only in the placement of systems H
and F. This difference between this ranking and the other SDK datasets is in part due to the flat
to rolled matching tested by BEN, DHS10, TXDPS, OHIO, and SD29 datasets.

DOS-C/DHS2-C BEN/DHS10/TXDPS ALL

System I System H System H

System H System I System I

System F System J System J

System J System F System F

System G System G System G

System D System D System D

System C System K System C

System K System C System K

System L System L System L

System B System VTB System A

System VTB System A System VTB

System A System B System B

System E System E System E

Table 6. SDK rankings at FAR 0.01% for the different datasets taken from [6]
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QUALITY3
LEFT
INDEX

RANK

VISIT_POE
RIGHT
INDEX

TAR

VISIT_POE
LEFT
INDEX

TAR

System I 0.993 0.996

System F 0.993 0.993

System H 0.993 0.995

System J 0.986 0.990

System G 0.984 0.988

Table 7. Image quality rankings for image quality 3 TAR using the left index fingerprints from
US_VISIT_POE datasets for different vendors. The threshold and TAR values are taken from
figure 11 for system F and from figures 17- 20 for other systems.

Distribution of qualities in the VISIT_POE dataset is shown in Table 8. Distribution of datasets
DOS-C, DHS2-C, DHS10, BEN, TXDPS, and VISIT_POE_BVA are in appendix A.

Quality
#of

sample
in test set

%of
total

1 (excellent) 1637 27.28
2 (very good) 1999 33.32
3 (good) 2122 35.37
4 (fair) 134 2.23R

IG
H

T 
IN

D
E

X

5 (poor) 108 1.8
1 (excellent) 1850 30.83
2 (very good) 1744 29.07
3 (good) 2087 34.78
4 (fair) 173 2.88

LE
FT

 IN
D

EX

5 (poor) 146 2.43

0
5

10
15
20
25
30
35
40

q1 q2 q3 q4 q5

VISIT_POE Right Inex% VISIT_POE Left Index%

Table 8. Percentage of various quality levels for dataset VISIT_POE
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Vendor A– VISIT_POE – Right index
threshold=0.24 (far,tar)=(0.0144008,0.962833)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0170 0.0146 0.0142 0.0096 0.0081
TAR 0.988 0.981 0.967 0.832 0.620
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Figure 12-a. The effect of quality on ROC - Vendor A - Dataset VISIT_POE - Right index

Vendor A – VISIT_POE – Left index
threshold=0.26 (far,tar)=(0.0126554,0.9375)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0159 0.013 0.012 0.0071 0.0059
TAR 0.985 0.981 0.940 0.689 0.534
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Figure 12-b. The effect of quality on ROC - Vendor A - Dataset VISIT_POE - Left index

Vendor B – VISIT_POE – Left index
threshold=124 (far,tar)=(0.0102684,0.941667)

Quality 1(excellent) 2(very
good) 3(good) 4(fair) 5(poor)

FAR 0.0187 0.0088 0.0100 0.0067 0.0030



NIST Fingerprint Image Quality Page 47 08/19/04

TAR 0.996 0.987 0.949 0.722 0.493

Figure 13-a. The effect of quality on ROC - Vendor B - Dataset VISIT_POE Left index

Vendor C – VISIT_POE – Left index
threshold=110 (far,tar)=(0.001,0.975)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.00066 0.00045 0.00099 0.00225 0.00511
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TAR 0.997 0.993 0.976 0.867 0.781

Figure 14-a. The effect of quality on ROC - Vendor C - Dataset VISIT_POE - Left index

Vendor C – VISIT_POE – Right index
 threshold=50 (far,tar)=(0.001,0.982)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.00067 0.00052 0.00114 0.00261 0.00624
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TAR 0.995 0.991 0.983 0.899 0.880

Figure 14-b. The effect of quality on ROC - Vendor C - Dataset VISIT_POE -Right index

Vendor D – VISIT_POE – Left index
threshold=600 (far,tar)=(0.016,0.984)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0179 0.0206 0.0145 0.0094 0.0150
TAR 0.997 0.998 0.992 0.907 0.774
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Figure 15-a. The effect of quality on ROC - Vendor D - Dataset VISIT_POE - Left index

Vendor D – VISIT_POE – Right index
threshold=650 (far,tar)=(0.01,0.986)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.010 0.013 0.0096 0.006 0.0091
TAR 0.997 0.994 0.990 0.924 0.8426
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Figure 15-b. The effect of quality on ROC - Vendor D - Dataset VISIT_POE - Right index

Vendor E – VISIT_POE – Right index
threshold=60 (far,tar)=( 0.018,0.828)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0384 0.0145 0.0172 0.0206 0.0059
TAR 0.988 0.935 0.749 0.403 0.194
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Figure 16-a. The effect of quality on ROC - Vendor E - Dataset VISIT_POE - Right index

Vendor E – VISIT_POE – Left index
threshold=60 (far,tar)=( 0.037,0.829)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.075 0.030 0.034 0.031 0.01
TAR 0.990 0.946 0.764 0.298 0.164
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Figure 16-b. The effect of quality on ROC - Vendor E - Dataset VISIT_POE - Left index

Vendor G – VISIT_POE – Left index
threshold=2700 (far,tar)=(0.012,0.980)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0099 0.0102 0.0140 0.0159 0.0172
TAR 0.996 0.994 0.984 0.934 0.801
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Figure 17-a. The effect of quality on ROC - Vendor G - Dataset VISIT_POE - Left index

Vendor G – VISIT_POE – Right index
 threshold=2700 (far,tar)=(0.011,0.985)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0084 0.0086 0.0128 0.0147 0.0161
TAR 0.996 0.991 0.988 0.941 0.824
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Figure 17-b. The effect of quality on ROC - Vendor G - Dataset VISIT_POE - Right index
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Figure 18-a. The effect of quality on ROC - Vendor H - Dataset VISIT_POE - Left index

Vendor H – VISIT_POE – Left index
 threshold=40 (far,tar)=(0.001,0.991)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0017 0.0008 0.0014 0.0017 0.0013
TAR 0.997 0.998 0.995 0.974 0.870
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Vendor H – VISIT_POE – Right index
 threshold=30 (far,tar)=(0.001,0.992)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0016 0.00080 0.00129 0.00164 0.00183
TAR 0.996 0.995 0.993 0.975 0.917

Figure 18-b. The effect of quality on ROC - Vendor H - Dataset VISIT_POE - Right index
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Vendor I – VISIT_POE – Left index
threshold=400 (far,tar)=( 0.001,0.992)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.00058 0.00101 0.00191 0.00383 0.01129
TAR 0.998 0.997 0.996 0.972 0.880

Figure 19-a. The effect of quality on ROC - Vendor I - Dataset VISIT_POE - Left index
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Vendor I – VISIT_POE – Right index
threshold=450 (far,tar)=(0.001,0.99)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.00022 0.00069 0.00133 0.00336 0.00789
TAR 0.997 0.995 0.993 0.933 0.889

Figure 19-b. The effect of quality on ROC - Vendor I - Dataset VISIT_POE - Right index
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Vendor J – VISIT_POE – Left index
threshold=2600 (far,tar)=(0.01,0.987)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)

FAR 0.0094 0.0101 0.0114 0.0118 0.0181
TAR 0.996 0.997 0.990 0.954 0.877

Figure 20-a. The effect of quality on ROC - Vendor J - Dataset VISIT_POE - Left index
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Vendor J – VISIT_POE – Right index
threshold=2600 (far,tar)=(0.01,0.987)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0082 0.0088 0.0108 0.0111 0.0170
TAR 0.997 0.992 0.986 0.958 0.870

Figure 20-b. The effect of quality on ROC - Vendor J - Dataset VISIT_POE - Right index
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Vendor K – VISIT_POE – Left index
 threshold=14 (far,tar)=(0.011,0.969)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0136 0.0114 0.0106 0.0076 0.0147
TAR 0.995 0.994 0.978 0.874 0.651

Figure 21-a. The effect of quality on ROC - Vendor K - Dataset VISIT_POE - Left index
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Vendor K – VISIT_POE – Right index
threshold=12 (far,tar)=(0.018,0.980)

quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0199 0.0175 0.0176 0.0143 0.0210
TAR 0.994 0.990 0.986 0.924 0.778

Figure 21-b. The effect of quality on ROC - Vendor K - Dataset VISIT_POE - Right index
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Vendor L – VISIT_POE – Left index
threshold=2100 (far,tar)=(0.01,0.952)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0102 0.0151 0.0090 0.0075 0.0065
TAR 0.997 0.994 0.958 0.722 0.514

Figure 22-a. The effect of quality on ROC - Vendor L - Dataset VISIT_POE - Left index
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Vendor L – VISIT_POE – Right index
threshold=2000 (far,tar)=(0.012,0.962)

Quality 1(excellent) 2(very
good) 3(good) 4(fair) 5(poor)

FAR 0.0101 0.0157 0.0104 0.0087 0.0073
TAR 0.992 0.987 0.961 0.807 0.602

Figure 22-b. The effect of quality on ROC - Vendor L - Dataset VISIT_POE - Right index
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Vendor N – VISIT_POE – Left index
threshold=36 (far,tar)=(0.01,0.979)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)
FAR 0.0234 0.0096 0.0088 0.0062 0.0028
TAR 0.997 0.992 0.981 0.914 0.815

Figure 23-a. The effect of quality on ROC - Vendor N - Dataset VISIT_POE - Left index
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Vendor N – VISIT_POE – Right index
threshold=34 (far,tar)=(0.01,0.984)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)

FAR 0.0287 0.0113 0.0099 0.0086 0.0036
TAR 0.994 0.989 0.984 0.949 0.861

Figure 23-b. The effect of quality on ROC - Vendor N - Dataset VISIT_POE - Right index
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Vendor VTB – VISIT_POE – Left index
threshold=18 (far,tar)=(0.011,0.916)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)

FAR 0.0191 0.0168 0.0087 0.0040 0.0028
TAR 0.991 0.980 0.905 0.623 0.397

Figure 24-a. The effect of quality on ROC - Vendor VTB - Dataset VISIT_POE - Left index
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Vendor VTB – VISIT_POE – Right index
threshold=18 (far,tar)=(0.01,0.93)

Quality 1(excellent) 2(very good) 3(good) 4(fair) 5(poor)

FAR 0.019 0.0138 0.0085 0.0039 0.0020
TAR 0.989 0.972 0.918 0.714 0.435

Figure 24-b. The effect of quality on ROC - Vendor VTB - Dataset VISIT_POE - Right index

6   Conclusion

In this report we developed a method to assess quality of a fingerprint that can forecast matcher
performance. This includes an objective method of evaluating quality of fingerprints. Our
definition of quality can be applied to other biometric modalities and upon proper feature
extraction can be used to assess quality of any mode of biometric samples.

This paper explains the method used to generate quality determining feature vectors from the
NIST NFIS fingerprint software. The method used to train an artificial neural network that
generates image quality values is then presented. These image quality values were then tested
on 300 different combinations of fingerprint images data and fingerprint matcher systems and
found to predict matcher performance for all systems and datasets. The test results presented in
the body of the report for US-VISIT POE data show that the method is highly accurate even for
matcher and data combinations that were not used in the neural network training.

Automatically and consistently determining quality of a given biometric sample for
identification and/or verification is a problem with far reaching applications. If one can
determine low quality biometric samples, this information can be used to improve the
acquisition of new data. This same quality measure can also be used to selectively improve
archival biometric gallery by replacing poor quality biometric samples with better quality
samples. Weights for multimodal biometric fusion can be selected to allow better quality
biometric samples to dominate the fusion. All of these applications require that the quality of
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the biometric sample be determined prior to identification or verification. The image quality
measure presented here meets this requirement. Most of these applications also require that
quality of the biometric sample be computed in real time during data acquisition. The method
presented here is fast enough to meet this speed requirement.
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Appendix A

ROCs
Data set quality distributions
This appendix is in a separate file.

Appendix B

Trellis plots of feature vector components and performance
This appendix is in a separate file.


