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ABSTRACT

Image inpainting is a useful and powerful technique for auto-
matically restoring or removing objects in films and damaged
pictures. In the last ten years, many excellent inpainting al-
gorithms have been proposed after Bertalmioet al. [1]. How-
ever, no paper systematically and theoretically analyzes the
factors, which limit the performances of existing algorithms.
Based on extensive experiments, we firstly construct a uni-
versal framework for image inpainting, which contains three
crucial factors —Area, Shape, and Perimeter (ASP). Then we
propose a Pyramid model based Down-sampling Inpainting
(PDI) model according to the ASP principles. Experimental
results show that the performances of existing methods can be
tremendously improved after incorporating the PDI model.

Index Terms— Image inpainting, Pyramid model, Down-
sampling.

1. INTRODUCTION

Image inpainting was introduced by Bertalmioet al.[1]. After
their pioneering research, image inpainting algorithms experi-
enced significant progress. Bear in mind that inpainting tech-
nology has been widely applied in various fields, such as spe-
cific objects removal [2, 3], old photograph restoration [4, 5],
film retouching [6], and digital zooming [7]. In this article,
we review the inpainting algorithms from two aspects: non-
texture and texture based inpainting methods.

The non-texture based inpainting methodaims to restore
the damaged areas regardless of its texture information, as
described in [1,3,5]. Therefore, the non-texture based method
will inevitably degrade in the center of the inpainting hole, if
the diameter of the hole becomes big enough.

Non-texture algorithms mainly includePartial Differen-
tial Equation (PDE)based methods andTotal Variation (TV)
based methods. To some level, TV based algorithms also as-
sociate with some solutions of PDE equations.

PDE based methods, such as [1, 3], belong to pixel based
inpainting technology. The method proposed in [1] uses
a second order PDE equation to restore the damaged areas,
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which expands the information from the boundary areas along
isophote lines. Bertalmioet al. [3] employed the Navier-
Stokes equation to hold the continuity of isophote lines from
the boundary to the center of the inpainting holes.

TV based methods, such as [7–9], utilize a noise removal
mathematical model with low computational complexity for
image inpainting. Rudinet al. [8] introduced this model to
remove image noises. In [7], Chanet al. developed the TV
based method and employed new principles, e.g. human vi-
sual perception, to restore the edges. Also, Chanet al. pro-
posed a new information propagation model — theCurvature
Driven Diffusions (CDD)scheme in [9], which tries to restore
the connectivity of far apart corrupted areas.

The texture based inpainting methodcan restore the dam-
aged area considering the textures of the damaged images.
Literatures like [10, 11] combinedtexture synthesisand tra-
ditional inpainting algorithms to restore damaged pictures.
For example, Yamauchiet al. [10] employedDiscrete Co-
sine Transform (DCT)to separate the original image into low
frequency and high frequency parts. They arranged these
two kinds of frequencies with different schemes: low fre-
quency components using traditional non-texture method,
and high frequency components using texture synthesis. Al-
though texture based inpainting methods can achieve bet-
ter restoration results than non-texture ones, they are time-
consuming and suffer high computational complexity, which
limit widespread use.

Besides the above two main inpainting classes, there are
other ponderable inpainting methods. For example, [5, 12]
employ different methods directly to restore the damaged
image instead of iteration in [1]; Oliveiraet al. [5] employ
a small filter to propagate the boundary information to the
holes. In [12], Sunet al. design an interesting scheme to
complete damaged images, which first restores the structure
of objects and then other small parts isolated by the already
restored structure.

Our contributions: firstly, we extract three factors which
play an important role in existing pixel based schemes. These
are theArea, ShapeandPerimeterof the inpainting hole. Sec-
ondly, we construct a novel optimization model —–Pyramid
model based Down-sampling Inpainting (PDI)model for im-



age inpainting. After incorporating PDI, the performances of
previous pixel based inpainting algorithms can be improved
significantly. Experimental results show that our PDI method
can both accelerate the traditional inpainting algorithms and
enhance their performance.

The reminder of this paper is organized as follows. In Sec-
tion 2, we analyze the constraints of image inpainting and pro-
pose our PDI model. Then we evaluate the proposed model
by simulations and present the results in Section 3. Finally, in
Section 4, we draw the conclusions.

2. ANALYSIS OF INPAINTING CONSTRAINTS AND
OUR PROPOSED PDI MODEL

2.1. Analysis of Inpainting Constraints

We start our research from three aspects: theArea, Shapeand
Perimeterof the Inpainting Regions.

When the total area of inpainting regionArea remains un-
changed, there are three factors which affect restoring perfor-
mances:

Area = 1
2

n∑
i=1

∮
M∂Ωi

x · dy − y · dx (1)

whereM∂Ωi represents the boundary of theith hole with the
total numbern.

a).The distribution of the inpainting regions:firstly, let’s
employ two new definitions:Sparse Distribution and Dense
Distribution. We consider the inpainting picture as amultiply
connected region (MTR)and holes in the MTR are equiva-
lent to each connected inpainting area. Sparse Distribution
denotes that the number of inpainting holes is small, while
dense distribution represents large amounts of inpainting
holes. These two types measure the distribution of holes in
the damaged pictures.

Why are the distributions of damaged regions significant
for inpainting? Let’s analyze the example shown in Fig. 1,
where different layers (such as20, 22, 24,) have different dis-
tributions. The illustration in Fig. 1 represents that dense dis-
tribution has more peripheral pixels, which can be utilized to
directly restore the boundary damaged pixels. Theoretically,
since current pixel based methods repair damaged pixels step
by step from the boundary to the center of the hole, the bound-
ary pixels of the hole can more easily achieve their authentic
values than the central pixels.

Corollary 1. Dense distribution outperforms sparse dis-
tribution in the process of inpainting.

b).The shape of the inpainting regions:Fig.1 shows that
different shapes affect the restoring results. We employ the
definition of theInscribed Circle of the Hole (ICH). The ICH
represents the biggest inscribed circle among the whole in-
painting holes in a MTR. For pixel based inpainting methods,
theRadius of the Inscribed Circle of the Hole (RICH)deter-
mines the complexity and accuracy of the restoring process:

Fig. 1. Pyramid model based downsampling

RICH = max{R∂Ω1 , R∂Ω2 , ...R∂Ωn} (2)

Let’s give a concise proof: pixel based methods have sim-
ilar steps. For example: the values of inner damaged pixels
are obtained by their boundary pixels layer by layer along the
direction of propagation from the boundary to the center of
the hole. As we analyzed above, the center pixels of the hole
degrade restoring performances.

Corollary 2. The bigger the RICH is, the worse perfor-
mance restores in the center of the inpainting, and vice versa.

c).The total perimeter of the inpainting regions:in an
MTR, it is easy to prove that the totalPerimeter will increase
when the MTR is cut into small MTRs. For instance, a square
with the dimension2m × 2m is cut into two rectangles with
the dimensionm × 2m. As shown in Fig. 1, we find that
a picture with a constant damagedArea will obtain differ-
ent restoring results under the same condition when the total
perimeters are different.

Perimeter =
n∑

i=1

∮
M∂Ωi

√
1 + y′(x)dx (3)

Corollary 3. The longer the total perimeter is, the better
the restoring results are.

Taking Bertalmioet al. [1] as an example, the restoring
process is expanded from the boundary pixels to the center
ones by iterations. Theoretically, when iterations increase,
the restoring results will gradually approaching a better vi-
sual quality. Actually, it should be noted that the restoring
performance will change slightly after the first several itera-
tions (As shown in Fig. 2, we find that the restoring results
have little variation among 200∼3000 iterations.).

Bertalmio’s [1] algorithm consists of two important steps:

In+1 (i, j) = In (i, j) + ∆tIn
t (i, j)

In
t (i, j) = ∇−→L n (i, j) · −→N n (i, j) , ∀(i, j) ∈ Ω

(9)



Fig. 2. Results of [1] and PDI based [1]. iteration=200, 600, 1000, 1500, 2000, 3000, 200 (PDI based [1]), original picture

Table 1. The PDI algorithm

Algorithm PDI

BEGIN
% i denotes theith pyramid layer,PID denotes the
maximum pyramid layer,M (0)=I

M (i) = {(x, y)|x, y ∈ I} (4)

IF i <= PID Pyramid(M (i)) END
END

Pyramid(M (i))
BEGIN

M
(i+1)
1 = {(x, y)|x = 2n, y = 2n, and

x, y ∈ M (i), where, n = 1, 2, ...} (5)

M
(i+1)
2 = {(x, y)|x = 2n, y = 2n− 1, and

x, y ∈ M (i), where, n = 1, 2, ...} (6)

M
(i+1)
3 = {(x, y)|x = 2n− 1, y = 2n, and

x, y ∈ M (i), where, n = 1, 2, ...} (7)

M
(i+1)
4 = {(x, y)|x = 2n− 1, y = 2n− 1,

and, x, y ∈ M (i), where, n = 1, 2, ...} (8)

END

I (i, j) is the pixel value at position(i, j). The superscript
n denotes thenth iteration.In

t (i, j) denotes the correction in

thenth iteration and is achieved by equation (9).∇−→L n (i, j)
is a Laplacian smoothness estimator which is used to smooth
the variation between neighbor pixels.

−→
N n (i, j) is the direc-

tion of propagation.∆t is the refresh rate. The program steps
out at the pixel(i, j) whenIn

t (i, j) equals zero.

2.2. Our Proposed PDI Model

When a given picture needs to be restored, shapes, perime-
ters and distributions of its holes remain fixed. If we want to
improve the efficiency and accuracy of algorithms for image
inpainting, we must transform the picture in order to conform
to eithercorollary (1), (2)or (3). It should be noted that these
transforms can not involve frequency domain which will lead
to a mismatch between the restored image and its mask. Let’s
consider a pyramid model based down-sampling, as shown in

(a) iteration= 50, 100, 200, 50 (PDI based [5], 20, 15, 10, 5)

(b) iteration=325, 1000, 325 (PDI based [7], 150, 100, 50, 25)

Fig. 3. Simulation results. (a) [5] and PDI based [5]; (b) [7]
and PDI based [7].

Fig. 4. Results of [1] and PDI based [1]. iteration= 100, 200,
300, 600, 60 (PDI based [1]), original picture.

Fig. 1. For example, the original pictureM (i) will be trans-
formed into four small picturesM (i+1)

1 ,M (i+2)
2 ,M (i+3)

3 and

M
(i+4)
4 by selecting a different combination of pixels along

the rows and columns. Obviously, these four small pictures
can completely reconstruct the original one. The algorithm of
PDI is listed in Table 1.

From Fig.1, we can find that PDI meets these three corol-
laries: a) the distribution of the holes becoming more dense;
b) the RICH decreasing;c) the total perimeters of these holes
increasing. Thus the values of boundary pixels can easily
propagate to central pixels in these holes after incorporating
PDI. As a result, the speed and accuracy of image inpainting
methods can be improved drastically (shown in Section 3).

3. SIMULATION RESULTS

We implemented our method and other classical inpainting
algorithms [1,5,7] onPentium IVPC (RAM 512M and CPU
1.65G Hz). The samples used in the experiments are available



(a) iteration= 20, 60, 20 (PDI based [5], 10, 5, 5)

(b) iteration= 100, 500, 100 (PDI based [7], 50, 30, 20)

Fig. 5. Simulation results. (a) [5] and PDI based [5]; (b) [7]
and PDI based [7].

(a) (b)

Fig. 6. (a): Zoom ins from Fig. 2 and Fig. 3. Left side:
iteration=325, 100, 3000 for [7], [5] and [1] from top to bot-
tom; Right side: iteration=325, 50, 200 for PDI based [7], [5]
and [1] respectively.(b): Zoom ins from Fig. 5 and Fig. 4.
Left side: iteration=500, 60, 600 for [7], [5] and [1] from
top to bottom; Right side: iteration=100, 20, 60 for PDI
based [7], [5] and [1] respectively.

on the Internet.
Fig. 2 illustrates the performance of Bertalmioet al. [1]

under different iterations and PDI based [1] with the total iter-
ations 200 (with 100, 50, 30, 20 iterations for different pyra-
mid layers28, 24, 22 and20 respectively). Fig.3 represents
comparison results of Oliveiraet al. [5] and Chanet al. [7]
with different iterations. As we can observe from these fig-
ures, our PDI method is able to save more time with better in-
painting visual quality than [1], [5], and [7] (the PDI method
needs less iterations, while each iteration consumes one unit
time).

Fig. 4 shows the restoring results of another picture by
Bertalmio et al. [1]. Here the PDI based [1] with total 60
iterations (with 30, 20 and 10 iterations for different pyramid
layers24, 22 and20 respectively) shows the advantages. It is
obvious that PDI has a better restoring result by taking fewer
iterations than that of [1]. Fig. 5 shows the results of Oliveira
et al. [5] and Chanet al. [7]. We can see that the inpainting
performances are improved significantly after incorporating

the proposed PDI model.

4. CONCLUSION

Starting from Bertalmio’s pioneering work [1], new concepts
for inpainting algorithms, which employ more and more com-
plex mathematical models [2, 4], have been designed. Un-
fortunately, none focus on what contributes to retarding the
inpainting performance. Based on a rigid analysis of the clas-
sical inpainting theory, we firstly propose ASP principles to
measure the inpainting technology, which is useful for direct-
ing future inpainting research. In addition, we propose a PDI
method to testify the accuracy of ASP principles. Experimen-
tal results represent that our PDI method can greatly improve
the efficiency and performance of previous pixel based in-
painting algorithms, which can help to commercialize these
classical time consuming inpainting algorithms.
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