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ABSTRACT 
The traditional method of cell microscopy can be subjective, due 
to observer variability, a lack of standardization, and a limited 
feature set. To address this challenge, we developed an image 
classifier using a machine learning approach. Our system was able 
to classify cytoskeletal changes in A10 rat smooth muscle cells 
with an accuracy of 85% to 99%. These cytoskeletal changes 
correspond to cell-to-matrix interactions. Analysis of these 
changes may be used to better understand how these interactions 
correspond to certain physiologic processes.  

Categories and Subject Descriptors 
I.4.0 [Image Processing and Computer Vision]: General – 
Image processing software; J.3 [Computer Applications]: Life 
and Medical Sciences – biology and genetics. 

General Terms 
Algorithms, Design, Measurement 

Keywords 
digital image processing, machine learning, cell biology 

1. INTRODUCTION 
The traditional method of cell microscopy is through visual 
inspection of nuclei, organelles, and morphology, with 
observations made based on variations from expected appearance. 
This approach can be subjective, due to observer variability, a 
lack of standardization, and a limited feature set. Computational 
image classification can be used to provide more quantitative data 
for a number of applications in the field of molecular biology [1]. 
Our goal is to provide a set of quantitative measures which 

correlate well with visual appearance and allow for intracellular 
comparisons. 

Our specific interest is to better understand how vascular smooth 
muscle cell proliferation is regulated by the mechanical stiffness 
of arteries. A study is currently in progress, which experimentally 
manipulates the stiffness of the collagen matrix for these cells in 
vitro (in a laboratory setting) [2,3]. The resulting morphologic 
changes in these cells correspond to its cell-to-matrix interactions 
[4]. It is these morphologic changes that we hope to quantify and 
classify. 

2. BACKGROUND 
Computational image classification is used to categorize an image 
into a finite set of classes based on their intrinsic features. When 
considering meaningful features for describing an image, the three 
fundamental patterns include spectral, textural, and contextual 
features. Spectral features describe the tonal variations, which can 
be measured as a distribution and represented as a histogram [5]. 
Textural features contain information about the spatial distribution 
of tonal variations and are represented as a co-occurrence matrix 
[6]. Context features are derived from the spectral and textural 
features in adjacent regions of interest. 

The data extracted from these features are organized as vectors. 
These feature vectors can be compared to determine the similarity 
between any two images. Distance metrics, such as the Jeffrey 
Divergence, are commonly used for this comparison [7]. A 
machine learning approach, such as a support vector machine, can 
also be employed [8,9]. A support vector machine is a set of 
supervised learning methods. It can be used for image 
classification by constructing an N-dimensional hyperplane that 
optimally separates the data into two categories, based on a set of 
image features. 

Related efforts include the use of biomedical image classification 
to increase the diagnostic accuracy of prostate cancer biopsies 
[10], breast cancer biopsies [11], skin cancer detection [12], 
colonic polyps [13], hysteroscopy video segmentation [14], and 
echocardiogram analysis [15]. 
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We have previously used this approach to segment surgical 
videos. Our image classifier recognized key events in 
laparoscopic cholecystectomy videos (a minimally invasive 
surgical procedure to remove the gall bladder). Our classifier had 
an accuracy of about 91% [16]. 

For this current effort, we have already reported on an initial 
image classifier [17]. We used this initial classifier to compare 
non-geometric image features in order to classify morphologic 
changes to the actin cytoskeleton of smooth muscle cells. This 
initial classifier used the Manhattan distance metric with an 
experimentally derived threshold, and had an accuracy of 87%. 
The remainder of this paper describes a second image classifier 
we developed. This new classifier applies a support vector 
machine to non-geometric image features in order to classify 
morphologic changes of smooth muscle cells. 

3. METHODS 
We obtained a set of vascular smooth muscle cell images from the 
A10 rat cell line, stained with an antibody for the actin 
cytoskeleton. The images were divided into four classes, based on 
whether they were cultured on a mechanically flexible or 
mechanically stiff fibrillar collagen extracellular matrix, and 
whether they were fixed one hour or 24 hours after plating. 

A second set of A10 cell images was also obtained, which 
contained images stained for a specific cytoskeletal element 
(either actin, myosin, or focal adhesions). The images were 
divided into four classes, based on whether the culture matrix was 
mechanically stiff collagen fibrils, mechanically flexible collagen 
fibrils, monolayer collagen, or fibronectin. All cells were fixed 24 
hours after plating. 

The images were converted to 8-bit gray scale JPEG format 
before analysis. Representative cells, stained for different 
cytoskeletal elements, are shown in Figure 1. 

   
Figure 1. An A10 cell spread for 24 hours on a stiff matrix and 

stained for the actin (left), myosin (center), and focal 
adhesions (right). 

We used the ImageJ image processing software to extract features 
from the cell images (http://rsbweb.nih.gov/ij). The image 
classifier was developed using the Weka machine learning 
software with a Bayesian network learning algorithm 
(http://sourceforge.net/projects/weka). The naïve Bayesian 
classifier uses training data to compute the probability of each 
image feature. The probability that a set of features belongs to a 
given class is done by applying Bayes’ rule. An assumption is 
made about the independence of the image features, which 
although theoretically unrealistic, works reasonably well in 
practice. 

As previously reported, we considered more than 60 spectral and 
textural features, and included the most promising features in our 
image classifier [17]. These included the distribution, medium, 
mode, homogeneity, energy, entropy, and inverse difference 
moment. 

Both sets of images were categorized with the new image 
classifier, and analyzed using a 10-fold cross validation process.  
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Figure 2. Image Classification Approach. 

Our image classification approach is summarized in Figure 2. 
Training images were organized by class, based on the matrix 
properties employed or the type of cytoskeletal element that was 
stained. Features were extracted from the training images to create 
a feature model. An unknown image is then classified by 
comparing its features to the feature model. With 10-fold cross-
validation, 90% of the images were randomly selected as training 
data, with the remaining images used for testing. This process was 
repeated four times for each image set. 

Principal outcome variables were the classification results, 
identified as true positives, true negatives, false positives, and 
false negatives. These were used to identify the sensitivity (true 
positives / true positives + false negatives), specificity (true 
negatives / true negatives + false positives), and accuracy (true 
positives + true negatives / all positives + all negatives) of our 
image classifier. 

4. RESULTS 
For actin-stained images, our classifier was able to categorize 
images from the first image set with a sensitivity of 64%, 
specificity of 97%, and accuracy of 89%. The second image set 
was categorized with a sensitivity of 84%, specificity of 87%, and 
accuracy of 85%. For all images in the second set (actin, myosin, 
focal adhesions), our classifier was able to categorize the type of 
cytoskeletal element with a sensitivity of 99%, a specificity of 
98%, and an accuracy of 99%. The results are shown in Tables 1, 
2, and 3. 

5. DISCUSSION 
We developed an image classifier to categorize A10 rat smooth 
muscle cells according to morphologic changes in the 
cytoskeleton. This asymmetry in cell organization corresponds to 
cell-to-matrix interactions, and may be used to better understand 
how these interactions correspond to certain physiologic 
processes.  

Our image classifier shows promise, with an accuracy of 89%, 
85%, and 99% for the three experiments, respectively. We are 
currently working on ways to increase the classification accuracy 
by identifying new image features, applying different kernel 
functions to the support vector machine, and experimenting with 
feature clustering [18]. We are also studying the use of 
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classification and regression trees, which have the advantage of 
enabling understanding of how classification decisions depend on 
the image features [19]. 

Table 1. Actin-stained images from image set 1, classified by 
differences in the cell matrix. 

Image Set 1 ‐ Actin  Value 

n  11 

Sensitivity  64% 

Specificity  97% 

Accuracy  89% 

 

Table 2. Actin-stained images from image set 2, classified by 
differences in the cell matrix. 

Image Set 2 ‐ Actin  Value 

n  57 

Sensitivity  84% 

Specificity  87% 

Accuracy  85% 

 

Table 3. All images from image set 2, classified by differences 
in cytoskeleton element (actin, myosin, or focal adhesions). 

Image Set 2 ‐ Cytoskeleton  Value 

n  171 

Sensitivity  99% 

Specificity  98% 

Accuracy  99% 

 

When interpreting these results, it is important to consider several 
limitations. The image datasets were small in size, which is likely 
the cause of the low sensitivity in the first image set. As our data-
acquisition efforts continue, we expect to have a dataset of images 
from more than 500 cells. In addition, the images were restricted 
to a single cell line and specific cytoskeletal structures, which 
may not be generalizable to other cell lines or cell structures. 

The focus of this effort was on non-geometric spectral and 
textural features. In a separate effort, we are working on new 
ways to segment cells beyond typical thresholding techniques, in 
order to identify clinically significant subcellular regions of 
interest. This information is being used to extract geometric 
features from cells, and quantify the size, orientation, distribution, 
and correlation among these regions of interest. 
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