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Abstract. Feedback shift registers are basic building blocks for many 
cryptographic primitives. Due to the insecurities of Linear Feedback Shift 
Register (LFSR) based systems, the use of Nonlinear Feedback Shift 
Registers (NFSRs) became more popular. In this work, we study the 
feedback functions of NFSRs with period 2n. First, we provide two new 
necessary conditions for feedback functions to be maximum length. Then, 
we consider NFSRs with k-monomial feedback functions and focus on 

2n−1two extreme cases where k = 4 and k = . We study construction 
methods for these special cases. 
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1 Introduction 

Feedback Shift Registers (FSRs) are widely used in many applications such as 
error correcting codes, test pattern generation and symmetric cryptography. The 
eSTREAM stream cipher project hardware finalists Grain [1], Mickey [2] and 
Trivium [3] use FSRs, due to their efficiency, large period and good statistical 
properties. 

The FSRs with linear feedback function, Linear Feedback Shift Registers (LF-
SRs) are widely studied in the literature and it is easy to find LFSRs with 
maximum period for a given length n. However, one important drawback of 
LFSR outputs is that they are completely linear, thus cryptographically inse­
cure. Whenever 2n bits of the output of an n-bit register is given, the sequence 
is totally predictable using the Berlekamp-Massey algorithm. 

Many different design attempts have been done to add nonlinearity to the 
systems based on LFSRs, such as combining outputs of several LFSRs using a 
nonlinear function, nonlinearly filtering the LFSR state or irregularly decimat­
ing the output [4]. However, most of these approaches do not offer the desired 
security [5]. Due to the limitations of LFSRs, use of Nonlinear Feedback Shift 
Registers (NFSRs) became more popular. 

NFSRs constitute a larger class compared to LFSRs and they are more re­
sistant to algebraic attacks, but for large n, there exists no efficient method to 
construct a cryptographically secure NFSR. 



Golomb studied on maximum length NFSRs and presented some of the prop­
erties to generate maximum length NFSRs in [6] (p. 115). Also, in 1982, Fredrick­
sen [7] presented a survey on maximum length NFSRs including construction 
methods and some properties. Recently, Dubrova et al. [8] generalized the Ga­
lois type of LFSRs and defined an alternative type of NFSRs that are called 
(n, k)-NFSRs. Tsueda et al. [9] proposed feedback-limited NFSRs and studied 
their properties in terms of correlation and linear complexity measures. 

There is no efficient method that finds a feedback function with maximum 
period and also, given a feedback function it is hard to predict the period. In 
this work, we study maximum length NFSRs and propose two new conditions 
for feedback functions to be maximum length. Since hardware efficiency of NF-
SRs is extremely important, especially for stream ciphers designed for restricted 
environments, we focus on the number of monomials in the feedback function 
which is highly correlated with the gate count of a design. We focus on two 
special cases with k = 4 and k = 2n−1, and provide construction methods. 

The paper is organized as follows. In Sect. 2, we give a basic review of FSRs 
and we list necessary conditions for maximum length feedback functions. In 
Sect. 3, we focus on the number of monomials k in the feedback functions and 

2n−1constructions of two extreme cases with k = 4 and k = are also provided. 
In Sect. 4, we conclude the study. 

2 Preliminaries 

A Boolean function f with n variables is a mapping from Fn 
2 to F2. Let αi 

be the n-bit vector corresponding to the binary representation of integers i = 
0, 1, 2, . . . , 2n − 1. For a Boolean function with n variables, the sequence 

(f(α0), f (α1), . . . , f (α2n−1)) (1) 

is called the truth table of f . Algebraic normal form (ANF) of a Boolean function 
is the polynomial 

f(x1, x2, . . . , xn) = c0 ⊕ c1x1 ⊕ . . . ⊕ c12...n x1x2 . . . xn (2) 

with unique ci1...ik ’s in F2. The number of terms in the highest order product 
monomial with nonzero coefficient is called the degree of f . The Boolean func­
tions with degree 1 are called affine and in particular for c0 = 0, the functions 
are called linear. 

A FSR is a device that shifts its contents into adjacent positions within the 
register and fills the position on the other end with a new value generated by the 
feedback function. The individual delay cells of the register are called the stages 
and the number of the stages n is called the length of FSR. The contents of 
the n stages are called the state of the FSR. The n bit vector (s0, s1, . . . , sn−1) 
initially loaded into FSR state specify the initial state. A block diagram of a 
FSR is given in Figure 1. 
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Fig. 1. Block diagram of a Feedback Shift Register. 

Definition 1. Let S= {s0, s1, s2, . . .} be a binary sequence. If there exists inte­
gers u ≥ 0 and p > 0 such that si+p = si for all i ≥ u, the sequence is called 
ultimately periodic and smallest possible p is called the period of the sequence. 

A FSR is uniquely determined by its length n and feedback function f . The 
output sequence S= {s0, s1, s2, . . .} of a FSR satisfies the following recursion 

sn+i = f(si, . . . , sn−1+i), i ≥ 0 (3) 

for the given initial state (s0, s1, . . . , sn−1). 
For LFSRs, this recursion is linear and may be represented using the char­

acteristic polynomial, 
n 

n−iC(x) = cix . (4) 
i=0 

with c0 = 1. If C(x) is a primitive polynomial with degree n, then each of the 
2n − 1 non-zero initial states of the LFSR produce an output with maximum 
possible period 2n − 1. Outputs of maximum length LFSRs are called maximal 
length sequences or m-sequences. 

3 NFSRs and de Bruijn Sequences 

The output sequences of NFSRs can achieve the period of 2n. Such sequences 
include each n bit pattern exactly once and are called de Bruijn sequences. The 

−nnumber of de Bruijn sequences of order n is 22
n−1 

[10]. In this study, we are 
interested in NFSRs that generate de Bruijn sequences. 

3.1 Basic Transformations 

In the following propositions, we define the basic transformations on maximum 
length sequences and show how the feedback function of the NFSR should be 
modified in order to perform each transformation. 

Proposition 1. Let f(x1, x2, . . . , xn) be a feedback function that generates a se­
′ ′ quence with period 2n − 1 and f(0, 0, . . . , 0) = 0. Then, f + x2 . . . x produces a n 

′ de Bruijn sequence where x is the complement of xi.i 



Proof. To combine all zero cycle and the cycle with period 2n − 1, two values in 
the truth table of f should be changed so that f(0, . . . , 0) = 1 and f(1, 0, . . . , 0) = 

′ ′ 0 are satisfied. The necessary changes are done by adding x2 · · · x to f .n 

Proposition 2. Let f(x1, x2, . . . , xn) be a feedback function that generates a 
sequence with period 2n −1 and f(1, 1, . . . , 1) = 1. Then, f+x2x3 . . . xn produces 
a de Bruijn sequence. 

Proof. Following similar argument given in Proposition 1, to combine all one 
cycle and the cycle with period 2n − 1, two values in the truth table of f should 
be changed so that f(1, . . . , 1) = 0 and f(0, 1, . . . , 1) = 1 are satisfied. The 
necessary changes is done by adding x2 · · · xn to f . 

Proposition 3. Let f(x1, x2, . . . , xn) be a feedback function that generates a se­
′ ′ quence S with period 2n − 1 or 2n. Then, f(x1, x 2, . . . , x ) generates the bitwise n 

complement of S. 

′ Proof. Let S ′ be the bitwise complement of S and let f be the feedback function 
that generates S ′ . Then, the following equation holds 

′ ′ ′ f(x1, x2, . . . , xn) = f ′ (x1, x 2, . . . , x ) + 1 n 
′ ′ = f ′ (x1, x 2, . . . , x ) (5) n 

′ ′ Then, f ′ (x1, x2, . . . , xn) = f(x1, x 2, . . . , x ) holds. n 

Proposition 4. Let f(x1, x2, . . . , xn) be a feedback function that generates a 
sequence S with period 2n − 1 or 2n. Then, f(x1, xn, xn−1, . . . , x2) generates the 
reverse of S. 

Proof. Let f ′ (x1, . . . , xn) be the feedback function that generates the reverse of 
S. Then, f(si, . . . , si+n−1) = si+n and f 

′ (si+n, . . . , si+1 ) = si hold for i ≥ 0. 
′ ′ Since f and f are maximum length, there exists g and g functions such that 

si+n = si + g(si+1 , . . . , si+n−1) (6) 

and 

si = si+n + g ′ (si+n−1, . . . , si+1 ) (7) 

Summing Eq. 6 and Eq. 7, we obtain 

g(s2, . . . , sn) = g ′ (sn, . . . , s2), (8) 

therefore 

f ′ (x1, . . . , xn) = f(x1, xn, xn−1, . . . , x2) (9) 

holds. 



3.2 Properties of Maximum Length NFSRs 

In this part of the study, we survey some of the necessary conditions of the 
feedback function f(x1, . . . , xn) to generate de Bruijn sequences. We also provide 
two new necessary conditions; one based on the symmetry of variables, and the 
other based on the number of monomials. 

To guarantee that every state has a unique predecessor and successor, f 
should be written in the form f(x1, . . . , xn) = x1 + g(x2, . . . , xn) [6]. Some nec­
essary conditions on f and g to generate a de Bruijn sequence are given as 
follows; 

1. To avoid all zero cycle, f(0, . . . , 0) = 1, i.e. c0 = 1. 
2. To avoid all one cycle, f(1, . . . , 1) = 0, therefore the number of monomials 

in f is even. 
3. To avoid the cycle (0 . . . 01) of length n + 1, there must be at least one 

coefficient ci = 0 for i = 2, . . . , n [11], i.e., g cannot contain all the linear 
terms. Otherwise, if all the linear terms exist in g, the cycle (0 . . . 01) repeats 
itself, since g always outputs 0 for inputs with weight 1. 

4. The parity of the cycles generated by a FSR is equal to the parity of the 
truth table of g [6]. To achieve one maximum length cycle, parity of the truth 
table of g should be 1, which implies 
c23...n = 1. 

5. The weight w(g) of g satisfies the following inequality 

Zn−1 ≤ w(g) ≤ 2n−1 − Z ∗ + 1 (10) n 
" "

where Zn is 
1 φ(d)2n/d and Z ∗ is Zn − 1 φ(2d)2n/2d with summa-n d|n n 2 2n 

tion over all even divisors of n [7], and φ is the Euler phi function. 

Next, we provide a new condition based on symmetry of variables. 

Proposition 5. Let f = x1 + g(x2, . . . , xn) generate a de Bruijn sequence and 
n > 2. Then, 

g(x2, . . . , xn) = g(xn, . . . , x2). (11) 

Proof. We call a state R-state, if its reverse is equal to itself. Let the initial state 
R1 = (si, si+1 , . . . , si+n−1) be an R-state. Assume g(x2, . . . , xn) = g(xn, . . . , x2), 
then the sequence generated by f = x1 + g has the following property; si−j = 
si+n+j−1 for j ≥ 1. Then, R2 is also an R-state. For n ≥ 3, the number of 
R-states is greater than 3 (all zero state, all one state and 10 . . . 01 state are ex­
amples). Therefore, there exists another R-state R3 (See Figure 2) that appears 
twice in the sequence resulting in a contradiction to the definition of de Bruijn 
sequences. 

Proposition 6. Let Symn be the number of n variable Boolean functions with 
property g(x1, x2, . . . , xn) = g(xn, xn−1, . . . x1). Then; 

n 

22
n−1+2 2 −1 , if n is even 

Symn = n+1 

22
n−1+2 2 −1 , if n is odd. 



R1 

R3 

R2 

R3 

Fig. 2. R-states in NFSR output. 

Proof. We call a monomial self-symmetric, if it’s symmetric monomial is itself, 
i.e., 

xi1 xi2 . . . xik = xn+1−i1 xn+1−i2 . . . xn+1−ik . 

The number of monomials satisfying this property can be obtained by count­
ing the monomials depending on one half of the input variables, from x1 to 
xn n+1 for even n and from x1 to x for odd n. The remaining monomials can 

2 2 

be grouped in pairs in which one monomial is the symmetric of the other. A 
Boolean function constructed with any combination of the self-symmetric mono­
mials and from remaining symmetric monomial pairs is also symmetric because 
either each monomial is self-symmetric or its symmetric monomial exists in the 

n n+1 
2 2function. The number of self-symmetric monomials are 2 for even n and 2 

for odd n. Subtracting these numbers from the total number of 2n monomaials 
n n+1 −1 and 2n−1 −2 −1
2 2and dividing by 2 to get the pair count, we obtain 2n−1 −2 

free choices for even and odd n respectively. Hence, the result is 2 to the power 
of these numbers. 

Following theorem gives another condition based on the number of monomials 
in f . 

Theorem 1. Let f(x1, . . . , xn) generate a de Bruijn sequence and Ki be the 
number of monomials that depend on xi, i = 2, . . . , n in f . Then there exists at 
least one even Ki. 

Proof. Assume Ki is odd for all i. Following Proposition 3, if f produces a de 
′ ′ ′ Bruijn sequence, then f = f(x1, x 2, . . . , x ) also produces a de Bruijn sequence. n 

′ Then, ANF of f includes all linear monomials from x2 to xn, and that con­
tradicts the 3rd condition given above. Therefore, there exists at least one even 
Ki. 

Corollary 1. There exists no maximum length feedback function of the form 

′ ′ f(x1, x2, . . . , xn) = x1 + x2 · . . . · xn + x · · · x (12) i1 ik 

for 2 ≤ i1 < . . . < ik ≤ n. 



Proof. The number of occurrences of each xi is odd for (2 ≥ i ≥ n), therefore 
following Theorem 1, it is impossible to generate a de Bruijn sequence using f 
of this form. 

4 Number of Monomials in f 

In this section, we study the number of monomials in feedback functions of 
maximum length NFSRs. We call a maximum length NFSR k-Monomial NFSR, 
if it’s feedback function has k monomials. 

Let Nn,k be the number of n bit maximum length NFSRs with k monomials. 
" 

22
n−1−nFigure 3 shows the distribution of Nn,k for n = 6. Trivially, k Nn,k = . 
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Fig. 3. The distribution of Nn,k for n = 6. 

Proposition 7. Let f(x1, x2, . . . , xn) generate a de Bruijn sequence and k be 
the number of monomials in f . Then, 
(i) k is even, 
(ii) 4 ≤ k ≤ 2n−1 . 

Proof. (i) To avoid the cycle of all ones, the number of monomials k in f should 
be even. 
(ii) Maximum period feedback function always include the monomials 1, x1 and 
x2.x3. . . . .xn, therefore k ≥ 3. To ensure maximum length, f does not include 
any nonlinear monomials that include x1. Then, k ≤ 2n−1 + 1. Since k is even, 
4 ≤ k ≤ 2n−1 holds. 

Proposition 8. Nn,k is even for k > 0 and n > 2. 

Proof. For each maximum length feedback functions f1 with k monomials, it is 
possible to find another maximum length feedback function f2 with k monomi­
als using the transformation in Proposition 4. According to the Proposition 5, 



 

 

f1 = f2. Applying the same transformation to f2 gives f1. Therefore, the set of 
maximum length feedback functions with k monomials can be grouped as pairs 
with respect to this transformation, which implies Nn,k is always even. 

Next, we study on the feedback functions with 4 monomials. 

4.1 4-Monomial NFSRs 

It is known that the maximum length feedback functions include the monomials 
1, x1 and x2.x3. . . . .xn. Since three of the monomials are fixed, 4-monomial 
feedback functions are of the form; 

f(x1, . . . , xn) = 1 + x1 + x2.x3. . . . .xn + I (13) 

where I is the free monomial independent of x1. 
Next, we study the properties of I so that f produces de Bruijn sequence. 

Proposition 9. Let f(x1, . . . , xn) = 1 + x1 + x2.x3. . . . .xn + I generate a de 
Bruijn sequence and I be xi1 . . . xil with 2 ≤ i1 < i2 < . . . < il ≤ n. 
(i) For odd n, the indices of I satisfy the following property 

i1 = i2 = . . . = il (mod 2). (14) 

(ii) The monomial I is not symmetric, i.e. 

xi1 . . . xil = xn+2−i1 . . . xn+2−il . (15) 

Proof. (i) Assume the contrary, then the register falls in the cycle of (01). 
(ii) Symmetric I contradicts the Proposition 5 given in Sect. 2. 

Next, we consider the properties of the simple register with feedback function 
f = 1 + x1 + x2.x3. . . . .xn and we call it a type A register. The properties of 
this register is very similar to the complemented cycling register (CCR) with 
feedback function 1 + x1 defined in [6]. The number of cycles generated by a 
CCR is 

1 1 � 
N = Z(n)− φ(2d)2n/2d (16) 

2 2n 
2d|n
 

1 "
 
where Zn = φ(d)2n/d [6]. Then, the number of cycles generated by a type n d|n 
A register is N + 1, since adding x2 . . . xn to the feedback functions only affects 
the cycle (00 . . . 0 1 . . . 1) by dividing it into two cycles (00 . . . 0 1 . . . 1) and (1) 

' -v ' ' -v ' ' -v ' ' -v ' 
n n n n−1 

and the rest of the cycles remain the same. As an example, the cycles generated 
by the 6-bit CCR and type A register are given in Table 1. 

Proposition 10. Let the degree of I be d, then the weight of g(x2, . . . , xn) = 
1 + x2 · · · xn + I is 

w(g) = 2n−1 − 2n−d−1 + 1. (17) 



Table 1. The cycles generated by 6-bit CCR and 6-bit type A register. 

6 bit CCR 6 bit type A register 
-
(0011) 
(00000011111) 
(000010111101) 
(000100111011) 
(000110111001) 
(001010110101) 

(1) 
(0011) 
(00000011111) 
(000010111101) 
(000100111011) 
(000110111001) 
(001010110101) 

′ Proof. Let g be 1 + x2. · · · .xn, then w(g 
′ ) = 2n−1 −1. I changes the truth table 

′ of g at 2d−1 points. Then, 

w(g) = w(g ′ ) + #(Changes from 0 to 1) 

−#(Changes from 1 to 0) (18) 

= 2n−1 − 2n−d−1 + 1 

Next, we give an upper bound on the degree of I. 

Proposition 11. The degree of I is less than log2n. 

Proof. To combine N + 1 cycles generated by the type A register, the monomial 
I should make at least N changes in the truth table of 1+ x2 . . . xn. If the degree 
of I is d, following Proposition 10 the number of changes in the truth table is 
2n−1−d. Therefore, 2n−1−d should be greater than N . Due to the special structure 
of the register, the maximum length of the cycles is 2n, therefore N > 2

n 
should 

2n 
2n 

be satisfied. 2n−1−d > implies d < log2n.2n 

Construction of 4-monomial NFSRs Here, we give two different construc­
tion methods for maximum length 4-monomial NFSRs. The first method uses a 
trinomial primitive polynomial, and generates a 4-monomial feedback function 
in which I is linear. The second method starts with a quadratic feedback func­
tion with period 2n −1, then generates a 4-monomial feedback function in which 
I is quadratic. 

i nProposition 12. Let p = 1 + x + x be a trinomial primitive polynomial over 
GF (2) for 1 ≤ i < n. Then, the feedback function f = 1 + x1 + xn+1−i + 
x2.x3 . . . xn with 4 monomials produces a de Bruijn sequence. 

Proof. Given p, f1(x) = x1 +xn+1−i produces a maximum length LFSR sequence 
with period 2n − 1. Applying the transformations in Proposition 3 and Proposi­
tion 2 to f respectively, we obtain a 4-monomial f = 1+x1 +xn+1−i +x2.x3 . . . xn 

that produces a de Bruijn sequence. 



 

Following proposition gives another construction method from a quadratic 
feedback functions with period 2n − 1. 

Proposition 13. Let f(x1, . . . , xn) = x1 + xi + xj + xi.xj for some i = j and 
2 ≤ i, j ≤ n generate a sequence with period 2n − 1. Then, 

f ′ (x1, . . . , xn) = 1 + x1 + xi.xj + x2. . . . .xn (19) 

is a 4-monomial feedback function that generates a de Bruijn sequence. 

Proof. Applying the transformations in Proposition 3 and Proposition 2 to f 
′ respectively, the feedback function f that generates a de Bruijn sequence is 

constructed. 

Chan et al. [12] studied the maximum length quadratic feedback function of 
the form 

q(x1, . . . , xn) = x1 + xi + xj + xi.xj . (20) 

After empirical analysis, they observed that the number of such polynomials 
decreases to zero as n gets larger. Our results also support their observation in 
the sense that there exists no quadratic I for 12 < n ≤ 36 (See Table 2). 

We have enumerated all 4-monomial NFSRs with period 2n and list them in 
Table 2. We observe that the fourth monomial I only takes linear and quadratic 
values. 

Following conjecture states that I can only take linear values for large n. 

Conjecture 1. Let f(x1, . . . , xn) = 1+x1 +x2 · · · xn +I be a 4-monomial feedback 
function with maximum period. Then, for n > 12 

d(I) = 1. (21) 

4.2 2n−1-Monomial NFSRs 

The feedback function with k = 2n−1 monomials is of the form 

′ ′ ′ f(x1, . . . , xn) = x1 + x2.x3 . . . x + (22) n xi 

′ ′ ′ for 2 ≤ i ≤ n. The ANF of the monomial x2.x3 . . . x consists of all of the n 
possible 2n−1 monomials and it is known that not all of the linear monomials 
exist in the algebraic normal form of f , thus one of the linear monomials xi 

(2 ≤ i ≤ n) is added to cancel one of the linear monomials. 

Construction of 2n−1-monomial NFSRs The following proposition states 
2n−1that the only way to generate k = monomial NFSRs is to use primitive 

trinomials and the transformation in Proposition 1. 

Proposition 14. Nn,2n−1 is equal to the number of primitive trinomials of de­
gree n. 



Table 2. Exhaustive list of maximum length feedback functions of the form 
1 + x1 + x2 . . . xn + I for n ≤ 36 

n I 
Linear Quadratic 

3 x2, x3 ­

4 x2, x4 x2x3, x3x4 

5 x3, x4 x2x4, x3x5 

x2x3, x2x5, x3x4,6 x2, x6 x3x6, x4x5, x5x6 

7 x2, x4, x5, x7 x2x6, x3x7 

8 - x2x6, x4x5, x4x8, x5x6 

9 x5, x6 ­

10 x4, x8 ­

11 x3, x10 ­

12 - x5x8, x6x9 

13 - ­

14 - ­

15 x2, x5, x8, x9, x12 , x15 ­

16 - ­

17 x4, x6, x7, x12 , x13 , x15 ­

18 x8, x12 ­

19 - ­

20 x4, x18 ­

21 x3, x20 ­

22 x2, x22 ­

23 x6, x10 , x15 , x19 ­

24 - ­

25 x4, x8, x19 , x23 ­

26 - ­

27 - ­

28 x4, x10 , x14 , x16 , x20 , x26 ­

29 x3, x28 ­

30 - ­

31 
x4, x7, x8, x14 , -
x19 , x25 , x26 , x29 

32 - -

33 x14 , x21 -

34 - -

35 x3, x34 -

36 x12 , x26 -

Proof. For each primitive trinomial, there exists a linear function with period 
2n −1 and this linear function can be converted to a nonlinear feedback function 
with period 2n using the transformation in Prop. 1. 

Assume f is a maximum length feedback function with 2n−1 monomials. It 
is known that not all of the linear monomials exits in the ANF of f , therefore 
a maximum length feedback function with 2n − 1 monomial misses one of the 

′ ′ ′ linear monomials. Adding the monomial x 3 . . . x divides the maximum cycle 2x n 
into two cycles, one of which is the all zero cycle and the other is a sequence with 
period 2n −1 generated by a linear feedback function with two linear monomials, 
whose connection polynomial is a trinomial primitive polynomial. 

Swan [13] proved that there are no primitive trinomials when n is a multiple 
of 8, therefore NF SR8k,2n−1 = 0 for k = 1, 2, . . .. 



5 Conclusion 

In this study, we focus on the properties of feedback functions of maximum 
length NFSRs. We presented two new conditions on feedback functions. We also 
studied the number of monomials in the feedback function of maximum length 
NFSRs and analyzed the two extreme cases where k = 4 and 2n−1 . We gave 
construction methods using four basic transformations. For 4-monomial NFSRs, 
we conjecture that the degree of the free monomial is one, when n > 12. 
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