
International Journal of Computational Bioscience, 2010

MATCHING OBSERVED ALPHA HELIX

LENGTHS TO PREDICTED SECONDARY

STRUCTURE∗

Brian D. Cloteaux∗ and Nadezhda Serova∗∗

Abstract

Because of the complexity in determining the 3D structure of a

protein, the use of partial information determined from experimental

techniques can greatly reduce the overall computational expense.

We investigate the problem of matching experimentally observed

lengths of helices to the predicted secondary structure of a protein.

We give a simple and fast algorithm for producing a library of

potential solutions. We test our algorithm by performing a series of

computational experiments for predicting the alpha helix placement

of proteins with an already known order. These tests seem to

demonstrate that our method, if given a good prediction of the

protein’s secondary structure, can generate high quality lists of

potential placements of the helix lengths onto the protein sequence.

Key Words

Protein structure, alpha helix placement

1. Introduction

Understanding how specific proteins fold, or arrange them-
selves in three-dimensional space (3D) based on environ-
mental and internal chemical constraints, is necessary to
determine how these proteins function. But even when
the amino acid sequence of the proteins (1D structure) is
known, the prediction of their corresponding 3D structure
is an extremely challenging problem.

This challenge is both from an experimental and
computational viewpoint. Proteins require precise
environments to fold properly. Because of the numer-
ous complications in measuring protein under the correct
environment, experimental methods for ascertaining
the 3D arrangements are expensive, time consuming,

∗ Applied and Computational Mathematics Division, National
Institute of Standards and Technology, Gaithersburg, Mary-
land, USA; e-mail: brian.cloteaux@nist.gov

∗∗ Department of Computer Science, University of Mary-
land, Baltimore County, Baltimore, Maryland, USA; e-mail:
nserova1@umbc.edu

� Official contribution of the National Institute of Standards and
Technology; not subject to copyright in the United States. A
conference version of this paper was published at the 2009
Computational Structural Bioinformatics Workshop [1].

Recommended by Dr. L. Elnitski
(10.2316/J.2010.210-1024)

and of limited accuracy. X-ray crystallography, for exam-
ple, is a powerful technique in the determination of these
structures; however, it is ineffective in proteins that are
not easily crystallized, such as membrane proteins. Many
other methods provide only partial information about the
protein’s 3D structure.

At the same time, computationally determining the
3D structure of proteins is, in general, intractable. To
reduce the difficulty of this problem, a recent approach has
been to computationally match experimental observations
to the 3D structure of the protein [2–4]. This paper extends
an original investigation by He, Lu, and Pontelli [5] into
the problem of matching observed lengths of the alpha
helices from the electron cryomicroscopy technique to the
predicted areas of secondary structure.

Electron cryomicroscopy can be used to produce a
density map of some proteins. Although with current
technology the resolutions of such maps are relatively
low, certain secondary structures such as alpha helices
can still be identified. Using electron cryomicroscopy,
the lengths of the alpha helices can be observed, but the
exact location of these helices on the protein sequence
is not clear. To help overcome this limitation, He, Lu,
and Pontelli suggested matching these observed lengths
to the predicted probabilities of the protein’s secondary
structure. An example of the correspondence between
protein sequences and the observed secondary structure is
shown in Fig. 1. These probabilities on the placement of
alpha helices onto the 1D sequence are generally based on
the placement for similar sequences in other known proteins
and have inherently limited accuracy. Thus, the result
from matching observed length to the predicted secondary
structure is to produce a set of probable arrangements of
the observed lengths that can then be used as a starting
point in determining 3D structure.

This article offers two contributions to the matching
of observed lengths to their placement on the 1D protein
structure. The first is an examination of the complexity
and necessity of computing the optimal length placement.
We give evidence that computing optimal solutions may
not be worth the computational expense.

A second contribution is to introduce a new approach
to computing possible arrangements. He, Lu, and Pontelli

103



Figure 1. Protein sequence and structure of the protein 2CYP. In this example, two of the alpha helices are highlighted on
the structure to show their correspondence with the protein sequence.

introduced a method to produce a library of likely map-
pings to serve as starting points for a researcher. Our ap-
proach is similar to the He, Lu, and Pontelli method in the
sense that it does not generate all of the possible mappings
nor does it try to find an optimal solution. Instead, we give
a simple heuristic algorithm that gives a good approxima-
tion of the placement of the lengths and then using this
approximation as a starting point, we randomly modify it
to look for other possible solutions. We collect the best
arrangements to use as a library of possible mappings.

To test our approach, we compared the predicting
length placement produced by our algorithm to actual
ordering on several known proteins. These tests show
that our method can be a fast and simple approach for
producing high quality possible placements of observed
alpha helix lengths onto a protein’s sequence.

2. The Maximal Cover Sum Problem

Before we examine the problem of mapping the observed
alpha helices to the predicted secondary structure, we
first will consider a closely related problem that we call
the maximal cover sum problem. This problem consists
of a set of covers with an associated function ω : →N

that gives the length of each cover. There is also an n-
length string P of positive real numbers, i.e., P ∈R

n
+. The

expression Pi is used to denote the ith value in the string P .
We define a placement of the covers on the string using

an index function I : →{1 . . . |P |}. The value I(c) gives
the index in P of the first location to place the cover c.
Any index function has the following three restrictions:

1. ∀c1, c2 ∈ , I(c1)= I(c2) if and only if c1 = c2.

2. ∀c1, c2 ∈ , if I(c1)<I(c2) then I(c1)+ω(c1)<I(c2).

3. ∀c∈ , I(c)+ω(c)≤ |P |.
The first two restrictions say that covers are not al-

lowed to overlap as they cover the string P . The last re-
striction prevents covers from extending beyond the length
of the string P . These restrictions trivially imply that if
for a problem instance the condition:

|P | ≥
∑
c∈

ω(c) (1)

does not hold, then no index function can exist for that
instance.

The maximal cover sum problem is then to find an
index function that maximizes the expression:

∑
c∈

ω(c)−1∑
j=0

Pj+I(c) (2)

In other words, find a arrangement of the covers in that
covers the largest total of values on P .

We are interested in this problem because we can view
matching the observed lengths of helices to the predicted
secondary structure of a protein as a maximal cover sum
problem. When examining possible arrangements of the
helices onto the protein string, we would expect that
the arrangements that cover the maximal value for the
predicted probabilities of helices would be the most likely
to occur in the actual protein. Thus, we are typically
interested in examining these optimal arrangements first
when trying to determine the 3D structure of the
protein.

In considering how to obtain an optimal arrangement,
we first notice that for any given ordering of the covers,
we can compute an optimal covering using that ordering in
polynomial time. To show this, we define π as an ordering
of the cover set = {c1, c2, . . . , cn}, i.e., the value of π(i)
is the position of the element ci ∈ in the order π. The
inverse function π−1 then takes a position i in the ordering
and returns the cover in that position. Using a given
order π, we can define the following recurrence equation
that determines the size of an optimal covering
using π:

m(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a or b = 0,

max
(
m
(
a, b− 1

)
, m

(
a− 1, b− ω(π−1(a))

)

+
∑b

k=b−ω(π−1(a))+1 Pk

)
(3)

Under this definition, the term m(a, b) is the value of the
maximal covering of the first a covers in the order π onto

104



the first b positions of the string P . This recursion is based
on determining whether or not there exists an optimal
covering of the b position of P with π−1(a). By using
dynamic programming, the recurrence and its associated
index function can be computed in O(| | · |P |) time.

Thus, the complexity in the maximal cover set prob-
lem stems from finding an order that produces an optimal
covering. In general, finding an optimal ordering is super-
polynomial in the number of covers unless P =NP . This
is a consequence of the fact that we can reduce the set par-
tition problem, which is NP -complete [6], to the maximal
cover sum problem. To see this, consider an instance of a
set partition problem with a multiset of values S. Using
the multiset S, we can create an instance of the maximal
cover problem by creating a set of covers C where |C|= |S|
and where the length of the covers are the values in S. We
then create a string P where:

P =

⎛
⎝1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

�

, 0, 1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
�

⎞
⎠ (4)

and �=
∑

c∈C ω(c)

2 . The point of this construction is that
the maximal cover sum is equal to

∑
c∈C ω(c)= 2� if and

only if the multiset S can be equally partitioned.
Although the set partition problem is NP -complete,

our reduction does not necessarily prove that the maximal
cover sum problem isNP -hard. This is because the number
of bits needed in our created string P can potentially be
exponential to the number of bits in S and so the size of
the instance for the maximal cover sum problem can be
exponentially larger than that of the set partition problem.
But this reduction does tell us two facts about the maximal
cover sum problem. The first is that if there is a reduction
to an NP -complete problem where the maximum value in
the cover set of these instances is bounded by a polynomial
based on the size of the cover sets, then the problem
itself would have to be NP -hard. But more importantly,
even if this problem is in polynomial time, we would still
not expect for there to be any algorithm to determine an
optimal order that is polynomial in the size of the cover set.
In other words, for some instances we probably cannot do
much better than brute force checking of the permutations
to find an optimal one.

3. Examining Optimal Solutions

As it appears that finding an optimal solution, or especially
the top k optimal solutions, to the maximal cover sum
problem is computationally difficult, it is necessary to
ask whether we need to find these solutions to perform
the matching. To test this assumption, we computed
the optimal solutions for a number of proteins and then
compared those results with the actual ordering.

The list of proteins we used were originally selected
in the He, Lu, and Pontelli paper [5]. The set of covers
for each protein were generated by taking all the alpha
helices in the protein with length greater than 7. This was
done to match the cover sets produced in the He, Lu, and
Pontelli experiments. The predictions of the secondary

structure came from using the PHD algorithm [7] which
has been implemented in the PredictProtein server [8].
This server returns a value for each amino acid within a
given protein sequence corresponding to the likelihood of
its participation in an alpha helix. These values range from
0 to 9, where a prediction value of 0 means that it is highly
unlikely for that amino acid to be a part of an alpha helix
and a value of 9 corresponds to a very high likelihood.

While there are a number of distance measures for
list orders (see, e.g., Chapter 6 of Diaconis [9] and Fagin,
Kumar, and Sivakumar [10]), we focused on two metrics.
The first is the Hamming distance between the orders.
This is a measure of the number of items that are in the
same position between two lists. If π and σ are orderings
of the cover set = {c1, c2, . . . , cn}, then the Hamming
distance is defined as:

dHam(π, σ) = n− |ci ∈ : π(ci) = σ(ci)| (5)

To compare the distance between orders of different
lengths, we used a normalized version of the Hamming
distance that is obtained by dividing the value dHam by
n. This normalization maps all distances to interval [0, 1],
where a distance of 0 represents identical orders and a
distance of 1 are orders that are maximally disordered
to each other. For the Hamming distance, maximally
disordered lists share no common item for any position in
the list.

A second metric that we will consider is the Kendall-
tau distance. This distance is defined as:

dKτ (π, σ) = |(ci, cj) ∈ 2 : π(ci) < π(cj) ∧ σ(ci) > σ(cj)|
(6)

The Kendall-tau distance is sometimes called the Bub-
bleSort distance because it is equivalent to the number of
flips needed in BubbleSort to transform one order to the
second. For the Kendall-tau distance, two maximally dis-
ordered lists are in reverse order of each other. Again, we
normalized the Kendall-tau distance to the interval [0, 1]
by dividing the value dKτ by

(
n
2

)
.

Our experiment involved computing all the optimal
orders for each of the test proteins. In most instances, there
are multiple optimal solutions. We then computed the
minimum and mean Kendall-tau and Hamming distances
from the set of optimal solutions to the actual arrangement
for the protein. These results are shown in Table 1.

A point to notice is that for all the given proteins, none
of the optimal solutions were the actual ordering of the
proteins. In fact, we can see examples, like 1L58, where
a number of optimal solutions exist and also where all of
these solutions are relatively distant from the actual order.
These results call into question whether it is worth the
computational expense to compute the optimal coverings
of the predicted secondary structure.

4. A Greedy Heuristic for the Maximal Cover Sum

Because of the uncertainty inherent in predicting secondary
structure strictly from 1D structure, we should not be

105



Table 1
Distances from the Optimal Covering Orders to the Actual Arrangement of the Alpha Helices for the given Proteins

Protein id Number of Minimum Average Minimum Average
Optimal Kendall-Tau Kendall-Tau Hamming Hamming
Solutions Distance Distance Distance Distance

1CC5 1 0.667 0.667 0.750 0.750

6TMN_E 2 0.238 0.310 0.286 0.286

3TIM_A 1 0.100 0.100 0.400 0.400

2TSC_A 5 0.095 0.305 0.429 0.600

1ECA 6 0.190 0.294 0.429 0.714

1GD1_O 2 0.067 0.100 0.333 0.500

1L58 8 0.393 0.429 0.625 0.688

2PHH 1 0.476 0.476 1.000 1.000

2CYP 3 0.467 0.489 0.800 0.833

All distances have been normalized so that a distance of zero is an identical ordering and a distance of one is maximally dissimilar.

surprised that the optimal ordering is often a large distance
from the actual order. This suggests that finding optimal
orders may not be worth the computational expense, and
that a simpler approximation method can be used. To-
wards this goal, we introduce a simple and fast heuristic
(Algorithm 1) for producing a covering. The produced
cover will not necessarily be optimal, but it will cover a
large sum on the string.

Algorithm cov( , P )
Input: a set of covers with an associated length function
ω and a string P of positive reals
Output: an array I that maps set of covers to indices
in P
Create empty index array I
If 	= ∅ then
| n← | |
| c← a cover in with maximal length
| i← smallest index of a maximal cover of c on P
| I[n]← i
|
| I ′← cov( −{c}, P1,i ⊕ Pi+Cn,|P |)
| forj← 1 to n− 1 do
|
| | If I ′[j]<i then
| | | I[j]← I ′[j]
| | | if I ′[j] +ω(c)>i then
| | | | cj← cover in position j
| | | | I[n]← I[n] +ω(cj)
| | | end
| | else
| | | I[j]← I ′[j] +ω(p)
| | end
| end
end
return I

Algorithm 1: A heuristic algorithm cov for producing a
covering of the string with a high sum. In this algorithm,
the symbol ⊕ denotes string concatenation.

The idea behind our algorithm is straightforward. For
a set of covers , we select a cover c∈ having maximal
length and place it on the string P where it covers the
greatest sum of values. We then create a new string P ′

which concatenates together the sections of P that are not
covered by c. For the remaining covers −{c}, we obtain
an index function I ′ for placing them on the string P ′

by calling our routine recursively. Using this new index
function I ′, we construct the index function I for the cover
set and P . If i is the starting index of c on P , then this
construction breaks into three cases. The first is for every
cover c′ ∈ −{c} that is completely placed on P ′ before i,
in other words I ′(c′)+ω(c′)≤ i. For this case, we simply
copy the index over, i.e., I(c′)= I ′(c′). The second case is
when the cover is completely after i, (I ′(c′)>i), then we
can insert the cover in P by offsetting its index by ω(c)
to make room for the cover c (I(c′)= I ′(c′)+ω(c)). The
final case is when a cover overlaps the index i (I ′(c′)<i
and I ′(c′)+ω(c′)>i). For this case, we notice that we can
cover the same sum on P by keeping c′ at the current index
and sliding c over by the length of c′ (i.e., I(c′)= I ′(c′)
and I(c)= I ′(c′)+ω(c′)). An example of this algorithm is
shown in Fig. 2.

The advantage of this heuristic is that it gives a fast and
reasonable covering of the string. As Fig. 2 demonstrates,
this algorithm does not necessarily produce an optimal
placement of the covers, but if there exists optimal solutions
where the placement of covers are all separated on the
string, this heuristic can often return one of those solutions.
As the recursion depth of the algorithm is the number of
covers, and for each cover we need to check the string P for
its optimal placement, we can implement this algorithm to
run in time O(| | · |P |).

In Table 2, we compare the distance of the cover order
produced by our heuristic to the actual ordering of the
helices on the proteins. Surprisingly, it seems that this
heuristic often produces a result that is closer to the protein
helix arrangement than using the set of optimal solutions.

5. Randomized Orderings based on BubbleSearch

As the complexity in the maximal cover sum problem is
in determining the correct order, our approach is, instead

106



Figure 2. An example of how the heuristic algorithm constructs an ordering. Starting with the set C of cover lengths and a
string P in 2(a), the algorithm (shown in 2(c)) greedily places the largest cover onto P and then removes that covered section
from the string. When it has selected all cover lengths, it then inserts the covers while sliding over any covers that overlap.
Figure 2(b) gives the optimal solution for this covering showing that the algorithm is a heuristic.

Table 2
Distances to the Actual Ordering from the Ordering
Produced by the Greedy Heuristic Algorithm cov

Protein id Kendall-Tau Hamming

Distance Distance

1CC5 0.167 0.500

6TMN_E 0.571 1.000

3TIM_A 0.100 0.400

2TSC_A 0.095 0.571

1ECA 0.381 0.714

1GD1_O 0.133 0.667

1L58 0.250 0.750

2PHH 0.143 0.714

2CYP 0.578 0.900

of trying to compute every possible placement, to use a
randomized process to find the high value orderings and
then use only the optimal placement of those orderings.
Our method is based on the randomized BubbleSearch
algorithm of Lesh and Mitzenmacher [11] which is a type
of priority algorithm [12]. Their approach is a heuristic
used to search for optimal orderings especially in NP -hard
applications. The basic algorithm starts with a simple
approximation of the optimal order, called the base order,
which is usually derived by using some type of greedy
method. Using the base order, a series of random orders are
then created. Starting from the first cover in the base order
and then progressing through the order sequentially, each
cover is added to the new order with some probability P .
If the end of the order is reached without placing all the
covers, then the selection process restarts from the first
nonplaced cover. Denoting the base order as π and the new
order as σ, the probability of producing σ is proportional to

(1−P )dKτ (π,σ). In other words, the closer the two orders
are in Kendall-tau distance, the more likely it is to produce
σ from π. The choice of P controls how large the radius of
probable orders will be around the base order. Thus as P
approaches 1, the Kendall-tau distance between the orders
approaches 0.

For the observed helix matching problem, we con-
ducted a series of computational experiments where we
generated a base order using our heuristic and then gener-
ated 200 random orders each for a series of values for P . We
then computed the Kendall-tau and Hamming distances
between the randomly generated orders and the actual or-
der of the protein. These results are shown in Table 3. We
notice from these test results that in every instance the
BubbleSearch method was able to find an ordering that
was either the correct ordering or very close.

As the value of P tends to be domain specific, it is
not specified for the randomized BubbleSearch algorithm.
Instead, the user must tune this parameter for their in-
dividual problems. In examining the results of our ex-
periments, it seems that P =0.6 provides a good initial
value for examining protein orders. This value seems to
be a compromise between keeping most orders reasonably
close to the base ordering, but still allowing the structure
to be modified into a fundamentally different orderings to
avoid being trapped in a local minima. Using this idea,
we propose the following workflow to produce k potential
matchings when investigating how to relate the observed
helix lengths to the 3D structure:

1. Generate a base order using our greedy heuristic.

2. Run the randomized BubbleSearch algorithm with
P =0.6 for c · k times for some c≥ 1.

3. For each order generated, find its optimal placement
and compute the sum covered, saving the k top valued
placements.

In the Lesh and Mitzenmicher paper, a second form of
randomized BubbleSearch is suggested where the base

107



Table 3
Normalized Distances from the Randomized BubbleSearch Orders to the Actual Arrangement of the Alpha Helices on the

given Proteins

Protein id Val P -values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1CC5 Min. Kτ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167

Mean Kτ 0.379 0.332 0.338 0.334 0.307 0.300 0.261 0.243 0.209

Std. Kτ 0.191 0.186 0.183 0.165 0.153 0.155 0.128 0.101 0.075

Min. Ham. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500

Mean Ham. 0.640 0.645 0.636 0.675 0.660 0.659 0.650 0.649 0.601

Std. Ham. 0.248 0.264 0.260 0.254 0.239 0.243 0.236 0.200 0.186

6TMN_E Min. Kτ 0.000 0.143 0.095 0.143 0.143 0.143 0.143 0.190 0.286

Mean Kτ 0.474 0.468 0.466 0.501 0.497 0.511 0.518 0.535 0.553

Std. Kτ 0.152 0.139 0.138 0.147 0.145 0.127 0.114 0.100 0.074

Min. Ham. 0.000 0.286 0.429 0.286 0.571 0.429 0.429 0.429 0.714

Mean Ham. 0.824 0.826 0.843 0.856 0.857 0.852 0.858 0.897 0.949

Std. Ham. 0.156 0.153 0.139 0.140 0.120 0.140 0.146 0.116 0.092

3TIM_A Min. Kτ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100

Mean Kτ 0.439 0.412 0.380 0.339 0.328 0.295 0.284 0.220 0.164

Std. Kτ 0.206 0.180 0.186 0.172 0.163 0.174 0.161 0.144 0.100

Min. Ham. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400

Mean Ham. 0.705 0.692 0.697 0.664 0.671 0.634 0.657 0.591 0.526

Std. Ham. 0.230 0.212 0.224 0.215 0.188 0.212 0.206 0.199 0.176

2TSC_A Min. Kτ 0.048 0.048 0.000 0.000 0.000 0.000 0.048 0.048 0.048

Mean Kτ 0.348 0.325 0.307 0.260 0.252 0.228 0.215 0.174 0.142

Std. Kτ 0.131 0.131 0.154 0.127 0.131 0.138 0.132 0.116 0.106

Min. Ham. 0.286 0.286 0.000 0.000 0.000 0.000 0.286 0.286 0.286

Mean Ham. 0.678 0.647 0.629 0.596 0.576 0.551 0.528 0.496 0.519

Std. Ham. 0.178 0.157 0.186 0.185 0.185 0.196 0.160 0.150 0.124

1ECA Min. Kτ 0.095 0.048 0.095 0.143 0.143 0.143 0.143 0.143 0.190

Mean Kτ 0.436 0.442 0.435 0.424 0.416 0.419 0.418 0.400 0.391

Std. Kτ 0.151 0.148 0.144 0.151 0.124 0.110 0.112 0.092 0.072

Min. Ham. 0.286 0.286 0.429 0.429 0.286 0.286 0.286 0.286 0.571

Mean Ham. 0.824 0.794 0.824 0.834 0.841 0.854 0.864 0.816 0.801

Std. Ham. 0.160 0.172 0.148 0.146 0.153 0.138 0.141 0.145 0.132

1GD1_O Min. Kτ 0.067 0.000 0.000 0.067 0.067 0.067 0.067 0.067 0.067

Mean Kτ 0.438 0.423 0.361 0.365 0.338 0.294 0.250 0.238 0.186

Std. Kτ 0.170 0.170 0.167 0.165 0.153 0.148 0.129 0.128 0.097

Min. Ham. 0.333 0.000 0.000 0.333 0.333 0.333 0.333 0.333 0.333

Mean Ham. 0.772 0.769 0.713 0.712 0.717 0.688 0.673 0.663 0.663

Std. Ham. 0.191 0.174 0.189 0.175 0.167 0.164 0.140 0.136 0.093

(continued.)

108



Table 3
(Continued )

Protein id Val P -values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1L58 Min. Kτ 0.071 0.036 0.071 0.071 0.036 0.036 0.071 0.107 0.143

Mean Kτ 0.322 0.298 0.301 0.306 0.308 0.296 0.280 0.272 0.262

Std. Kτ 0.113 0.117 0.104 0.092 0.102 0.089 0.083 0.063 0.044

Min. Ham. 0.250 0.250 0.250 0.375 0.250 0.250 0.250 0.375 0.375

Mean Ham. 0.676 0.674 0.672 0.686 0.666 0.664 0.649 0.651 0.676

Std. Ham. 0.144 0.134 0.130 0.121 0.124 0.123 0.125 0.105 0.095

2PHH Min. Kτ 0.095 0.048 0.048 0.000 0.048 0.000 0.048 0.048 0.048

Mean Kτ 0.437 0.407 0.394 0.381 0.350 0.309 0.277 0.254 0.189

Std. Kτ 0.159 0.153 0.156 0.153 0.146 0.158 0.134 0.134 0.095

Min. Ham. 0.286 0.286 0.286 0.000 0.286 0.000 0.286 0.286 0.286

Mean Ham. 0.759 0.739 0.745 0.725 0.715 0.692 0.633 0.628 0.625

Std. Ham. 0.166 0.175 0.178 0.188 0.174 0.192 0.194 0.184 0.163

2CYP Min. Kτ 0.089 0.044 0.111 0.200 0.178 0.200 0.244 0.244 0.289

Mean Kτ 0.410 0.410 0.433 0.448 0.463 0.463 0.493 0.512 0.549

Std. Kτ 0.108 0.111 0.103 0.102 0.099 0.102 0.095 0.083 0.061

Min. Ham. 0.400 0.400 0.500 0.400 0.600 0.500 0.500 0.600 0.500

Mean Ham. 0.826 0.830 0.837 0.838 0.841 0.823 0.826 0.843 0.879

Std. Ham. 0.120 0.116 0.111 0.113 0.107 0.113 0.107 0.100 0.080

For each protein and P -value, 200 random orders were produced, using the greedy heuristic as the base order. This table shows the minimum,

mean, and standard deviation of the Kendall-tau and Hamming distances for these random orders.

ordering is modified whenever an ordering is found that
produces a better value. Intuitively, it would seem that if
the optimal solutions are not good indicators of the actual
ordering, then progressing toward an optimal solution dur-
ing the computation would not necessarily produce better
solutions. We examined this notion by computing the
differences in solutions produced by the version of Bub-
bleSearch which only uses the greedy heuristic as the base
order versus the version which updates base order during
the computation. The results of this experiment is shown
in Table 4. One point we notice is that, other than the val-
ues for the protein 6TMN_E, using the greedy heuristic as
the base order tended to give better solutions on average.
It is also worth noting that in several instances, while the
minimal Kendall-tau difference to the actual order was al-
most negligible, the minimal Hamming distance was much
lower when the base value was allowed to be modified. It
is an open question on whether this observed behaviour is
strictly a product of the protein that were selected or
not.

One final point to mention about this algorithm is that
it can typically produce a number of potential solutions
very quickly. But if additional speed is needed, this entire
process can be trivially parallelized.

Table 4
The Difference in Distances to the Actual Proteins Orders
between the BubbleSearch Algorithm with a Fixed Base
Order (in this case, Produced by the Greedy Algorithm)
and the BubbleSearch Algorithm while Modifying the

Base Order

Minimum Average Minimum Average

Kendall-Tau Kendall-Tau Hamming Hamming

Difference Difference Difference Difference

1CC5 0.000 −0.073 0.000 −0.176
6TMN_E 0.095 0.018 0.286 0.129

3TIM_A 0.000 −0.037 0.000 −0.105
2TSC_A 0.000 −0.060 0.000 −0.089
1ECA 0.000 −0.007 0.000 0.060

1GD1_O 0.067 −0.003 0.333 0.013

1L58 0.071 −0.046 0.250 −0.042
2PHH 0.000 −0.025 0.000 −0.047
2CYP 0.067 −0.012 0.400 0.050

Each value was the result of 200 random samples using a P -value

of 0.6 for all calculations.

109



6. Conclusions

In this article, we have examined the problem of matching
observed lengths of alpha helices to their predicted loca-
tion on a protein’s amino acid sequence. This potentially
is a first step towards determining the 3D structure of the
protein. Our first conclusion is that finding an optimal
solution does not seem to be worth the computational ef-
fort. In particular, we showed evidence that, because of the
uncertainty of the helix prediction, the optimal coverings
can be relatively distance from the actual ordering on the
protein.

Instead, we introduced a simple greedy heuristic for es-
timating the order. Using this heuristic as a starting point,
we chose random orders around it using the BubbleSearch
method of Lesh and Mitzenmacher. When compared to
the actual orderings, this method was able to either find
the correct ordering or an ordering that was very close.
Thus, we believe that our method is a fast and efficient
algorithm for determining a set of potential placements of
helix lengths onto a protein sequence.

A future direction in this line of research would be to
develop methods to incorporate additional constraints in
the order building process. Specifically, a problem that has
been brought to our attention is the building of a library of
potential solutions in which all solutions obey some given
partial ordering of the covers. But the addition of any type
of constraint provides interesting new research directions
with these algorithms.

Acknowledgements

This research was performed while the second author was at
NIST supported by the Summer Undergraduate Research
Fellowship (SURF) program. We would like to thank
the anonymous referees for their helpful comments on our
paper.

References

[1] B. Cloteaux & N. Serova, Matching observed alpha helix
lengths to predicted secondary structure, BIBMW 2009. IEEE
International Conference on Bioinformatics and Biomedicine
Workshop, Washington, DC, USA, 2009, 113–119.

[2] Y. Wu, M. Chen, M. Lu, Q. Wang, & J. Ma, Determining pro-
tein topology from skeletons of secondary structures, Journal
of Molecular Biology, 350(3), 2005, 571–586.

[3] W. Sun, S. Al-Haj, & J. He, Parallel computing in protein
structure topology determination, Proceedings of the 26th Army
Science Conference, Orlando, Florida, USA, 2008, cp8.

[4] Y. Lu, J. He, &C.E.M. Strauss, Deriving topology and sequence
alignment for the helix skeleton in lowresolution protein density
maps, Journal of Bioinformatics and Computational Biology,
6(1), 2008, 183–201.

[5] J. He, Y. Lu, & E. Pontelli, A parallel algorithm for he-
lix mapping between 3d and 1d protein structure using the
length constraints, ISPA ’04: Proceedings of Second Interna-
tional Symposium on Parallel and Distributed Processing and
Applications, Hong Kong, China, 2004, 746–756.

[6] M.R. Garey & D.S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness (New York, NY, USA:
W. H. Freeman & Co., 1990).

[7] B. Rost & C. Sander, Prediction of protein secondary structure
at better than 70% accuracy, Journal of Molecular Biology,
232(2), 1993, 584–599.

[8] B. Rost, G. Yachdav, & J. Liu, The PredictProtein server,
Nucleic Acids Research, 32, 2004, W321–W326.

[9] P. Diaconis, Group representations in probability and statistics,
Lecture notes – Monograph series, vol. 11 (Hayward, California,
USA: Institute of Mathematical Statistics, 1988).

[10] R. Fagin, R. Kumar, & D. Sivakumar, Comparing top k lists,
SIAM Journal on Discrete Mathematics, 17(1), 2003, 134–160.

[11] N. Lesh & M. Mitzenmacher, Bubblesearch: A simple heuristic
for improving priority-based greedy algorithms, Information
Processing Letters, 97(4), 2006, 161–169.

[12] A. Borodin, M.N. Nielsen, & C. Rackoff, (Incremental) priority
algorithms, Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, California:
Society for Industrial and AppliedMathematics, 2002, 752–761.

Biographies

Brian D. Cloteaux is a com-
puter scientist in the Discrete
Mathematical Analysis Group
of the Information Technology
Laboratory at the National Insti-
tute of Standards and Technology
in Gaithersburg, Maryland. He
holds a Ph.D. degree in Com-
puter Science from New Mex-
ico State University. Previously,
he has worked at ExxonMobil
in both computing and research

capacities.

Nadezhda Serova is currently in
her third year of undergraduate
studies at University of Maryland,
Baltimore County with a major
in Computer Science and a minor
in Physics. After graduating, she
is planning to pursue a M.S. de-
gree in Computer Science. Her
current areas of interest include
mobile and wearable computing,
computational photography, and
robotics. She has taken part in

the Summer Undergraduate Research Fellowship at NIST
for two summers and will be participating again in summer
of 2010.

110


