
Specification of Attribute Relations for Access Control Policies and Constraints
Using Policy Machine

Vincent C. Hu, David D. Ferraiolo, Serban Gavrila
National Institute of Standards and Technology, Gaithersburg. Maryland, USA

{vhu, dferraiollo, gavrila}@nist.gov

Abstract— Attribute relations in access control mechanisms or
languages allow accurate and efficient specification of some
popular access control models. However, most of the access
control systems including today’s de-facto access control
protocol and specification language, XACML, does not provide
sufficient syntactic and semantic support for the specification
of attribute relations in their scheme. In this paper, we show
the deficiencies of XACML in specifying such capabilities in
the implementations of the Multilevel Security, Hierarchical
Role Based policies and Separation of Duty requirements of
access control systems. In comparison, we then demonstrate
the attribute relation mechanism provided by a relation-based
access control mechanism – the Policy Machine.

Keywords-access control; access control model

I. INTRODUCTION
A critical capability of an access control (AC) system is

to allow an AC administrator to specify relations between
AC attributes. With this capability, an AC system is able to
maintain hierarchical orders of the attributes of the AC
elements (subjects, actions, objects). The expression of
privilege inheritance relations is essential for many popular
AC models such as Bell-La Padula[1] and Biba [2] (BLPB)
of Multileve Security (MLS)[3], and Hierarchical Role
Based Access Control (HRBAC)[4] as well as constraint
policies such as Separation Of Duty (SOD)[5].

The syntactic and semantic supports of attribute relation
(AR) specifications in AC mechanisms or languages allow
not only accurately specifying but also efficiently enforcing
the relation-based AC models and policy constraints. The
specific advantages of such capabilities include:

• Specifying hierarchical relations for the inherit or
inherited privileges of subjects, actions, and objects
in AC policies. For example, if subject X is related
to subject Y then subject X inherits all the access
privileges of subject Y.

• Efficient management of AC rules, such that AC
policy administrators can modify privileges based on
attribute groups and relations without leaking access
permissions. Also, through a GUI, it is possible to
display all the linkages of existing related attributes,
thus providing a complete view of the current
privilege assignments.

• Performance enhancement for evaluating access
requests, because the AC system does not have to go
through all the AC rules to collect attribute

information for the grant decision if higher level
attributes of the request can be found to match the
rule.

eXtensible Access Control Markup Language (XACML)
[6] is today’s de-facto protocol and specification language
scheme for AC implementations. XACML provides a
flexible and mechanism independent representation of
access rules that vary in granularity; It allows the
combination of different authoritative domains’ policies into
one policy set for making access control decisions in a
widely distributed system environment. However, XACML
does not provide a scheme for specifying ARs; instead, ARs
can be implemented in one of its architectural components
(e.g., PEP) by ad-hoc applications.

In this paper, we first show the deficiencies of XACML
in specifying ARs. We then demonstrate the virtues of an
AR mechanism from a relation-based AC mechanism –
Policy Machine (PM) [7, 8], which includes a server engine
called Policy Server (PS) and a policy management system,
called General Policy Management System (GPMS). PS and
GPMS together enable enforcement of multiple access
control policies within a single, unified system. PM
composes and combines access control policies from a
relatively small set of atomic properties completely
expressed with mappings and interrelationships of the ARs
on three basic elements – Subject Sets, Object Sets, and
Operation Sets. Mappings and interrelationships of ARs are
enforced with a database and a fixed set of functions.

This paper contains six sections. Section I introduces the
AR of AC policies. Section II explains AR implementation
in the popular XACML scheme. Section III introduces the
architecture and functions of Policy Machine (PM). Section
IV demonstrates PM’s mechanism for specifying ARs for
AC models and policy constraints. Section V compares PM
with related work. Section VI is the conclusion.

II. ATTRIBUTE RELATIONS IN XACML
XACML provides an AC policy specification language

in an XML scheme as well as generic architecture
components (PDP, PEP, PIP, and PAP) for the AC
enforcement functions. The regular expressions of XACML
Version 2 are listed as following.
(1) PS: T+ PS + P + PCA + O
(2) T: S + R + A + E
(3) P: T + RL +RCA + O

(4) RL: T + C + E
where PS is the PolicySet, T is the Target, P is the Policy,
PCA is the Policy Combination Algorithm, O is the
Obligation, S is the Subject, R is the Resource, A is the
Action, E is the Environment, RL is the Rule, RCA is the
Rule Combining Algorithm, C is the Condition, and E is the
Effect for the XACML language scheme.

Regular expressions (2) and (4) are used for composing
AC rules by the basic AC elements: subjects, resources,
actions, and environment variables. Regular expressions (1)
and (3) are for associating (2) and (4) in two different levels.
There is no grammar for the expression of ARs in these four
regular expressions unless specified by enumerating every
relation between attributes. Additionally, XACML allows
functions to be implemented to handle ARs in a PEP or an
extended function. And those two methods are ad-hoc
efforts without formal and structural definition in the
scheme. In comparison, we will introduce an AC
mechanism that provides a well-defined framework for the
specification of attribute relations in Section III.

Note that even though XACML Version 3 has more (and
concise) elements in the language scheme than Version 2,
for the purpose of explaining the ARs by the basic AC
elements (i.e., subject, action, and object), we use XACML
Version 2. The issues discussed in this paper apply to
Version 3 as well.

A. Specification of MLS and HRBAC Policies
BLPB models for MLS policies require assigning

classes (ranks) attributes to subjects and objects. Formal
definitions are Rs = {…(Sai, Saj)…..} and Ro = {…(Oai,
Oaj)…}, where Rs is a set of ARs for subject classes: for
instance, Sai is the “Top Secret” class and Saj is the
“Secret” class. Rs defines the “no read up” property of
BLPB. In the same manner, Oai and Oaj define the object
classes and property. Instead of classes, HRBAC model uses
Sai and Saj to define the hierarchical relation of privilege
inheritance from Role Saj to Role Sai; for example, Role
“Professor” inherits all Role “Teaching Assistant” privileges
in a grading system. To specify and enforce these relations
in XACML, AC policy authors need to specify all the
possibilities including direct and indirect relations between
the classes or roles. In the worst case, it requires O(n2)
number of (2) type of statements to describe the relations for
n number of classes or roles in the policy. Further, there is
no semantic support for checking the correctness (e.g.,
cyclic assignment) of the specifications.

B. Specification of Separation of Duty Policies
When required to enforce SOD polices to prevent

conflicts of interest or to control business processes, the
access state of the AC system is dynamically dictated by
some system variables. For example, a SOD policy
constrains a subject’s privileges (action and object pairs) not

to exceed a predefined number, so that no subject should be
assigned to more than k privileges. Another SOD policy
guarantees that no less than k number of subjects can
perform all of a set of privileges (i.e., requires at least k
number of subjects to perform all of them). To specify and
enforce these SOD policies, XACML needs to maintain
counters for monitoring the number of privileges consumed
by each subject currently in the system. Thus, the
XACML’s obligation and environment elements are used to
update and retrieve (read in) the external counters,
respectively. And to compose SOD policies, statements in
regular expression (4) are needed for referencing the
environment variables (e.g., external counters) and
statements in (3) are used to store updated variables.
However, the challenge is to accurately maintain the
constraint variables (the number k in our examples), because
a subject’s access request can be granted from more than
one type (4) statement. And (4) may be encompassed in (1)
(2) or (3) statement, which provides no syntax for
maintaining the ARs between (4)s. For example, a subject
may be granted access both from Role X and Role Y to an
object, and there is no way to specify the fact that X inherits
Y, therefore, the privilege k for this subject is counted twice
(which is supposed to be once) from both X and Y attributes
in the same access session. It is hard to ensure a SOD policy
is implemented without errors in XACML, because even
though ARs can be specified in the language, there are no
syntactic and semantic supports for the correctness of the
specification unless by custom application through functions
in PEP or PDP.

III. ATTRIBUTE RELATIONS IN POLICY MACHINE
NIST has initiated a project in pursuit of a standardized

access control mechanism referred to as the Policy Machine
(PM) [7, 8]. PM is based on the principle that the separation
of access control policies from mechanisms allows
enforcement of multiple policies within a single, unified
system so that access control rules from different authorities
may be integrated with each other. The PM architecture is
composed of the Policy Server (PS) for PDP and PEP. PS
includes PS processes and the PS database, and the General
Policy Management System (GPMS). PS receives subject
requests and performs the authorization process by
referencing information from the PS database; it then
generates a Boolean value (grant or deny) as a result. GPMS
is the interface for PM administrators to configure and
compose policies and to manage the PS database. PM
categorizes subjects (users), objects (resources), and their
attributes into policy classes, and appropriately enforces
subsets of the policies in response to a subject’s access
request. The following fundamental data sets for PM
processing are stored in the PS database:
S: The set of PM subjects (users) under the PM’s control
SA: The set of subject attributes of S
OP: The set of operations (access rights) permitted by the
PM
O: The set of objects under the PM’s control

OA: The set of object attributes of O
PC: The set of policy classes the PM is implementing
Figure 1 shows the PS database model. The arrows denotes
assignment mapping functions from one data set to another.
For example the uua function maps subjects in S to subject
attritutes in SA.

Figure 1. Set relations and functions of PM.

PM allows inheritance relations among subject
attributes, and object attributes such that an element inherits
the privileges from the elements that it is inherited from.
The inheritance relation must not have cycles to be
legitimate. A set of elements in an inheritance relation from
one function to another function can be formally described
by the union transitive closure of the two functions: ∪
y∈a(x)b(y) denoted by the symbol “x→ab”. For example,
all inherited subject attributes SAs of a subject s can be
denoted by s→ssasasa, and all inherited object attributes
OAo of an object o is o→ooaoaoa.

The atomic authorization process of PM is based on the
above model and notation; the following formal definitions
describe the PS authorization process:
For s ∈ S, op ∈ OP, o ∈ O, pc ∈ PC, Grant_instance_of_policy(s,
op, o, pc) = True ⇔ ∃ sa ∈ SA and ∃ oa ∈ OA, such that
1) sa ∈ (s→ssa sasa), 2) oa ∈ (o→ooa oaoa),
3) sa→op oa, 4) pc ∈ sa→sapcpcpc, and
5) pc ∈ oa→oapccpcpc.

PM only requires mapping the relations between
elements to decide the permission of a subject’s request.
Through this mechanism, PM provides syntactic and
semantic support of the AR specification.

IV. P ATTRIBUTE RELATIONS IN AC MODELS
This section demonstrates how PM specifies the MLS,

HRBAC policies and SOD constraints by the AR
assignments from the PS database and relation mapping
functions. Subsection A demonstrates the implementation of
simple BLBP model, and Subsection B shows the
specification of SOD constraints as illustrated in Section II.
A. Specification of MLS and HRBAC Policies

PM can emulate MLS models by using its subject and
object ARs. The subject security classes (labels) can be

represented in PM’s subject attributes. Further, the objects
security classes (labels) can be represented in PM’s object
attributes, and the subject attributes are linked to the object
attributes through operations. For example, to implement the
Bell-La Padula model, PM may construct two sets of
relations for each of the subject attributes and object
attributes as shown in the simple example of Figure 2. The
attribute with lower-case r in the attribute label of subject
attribute and object attribute is for the read privileges, which
are for the basic confidential rule. The attributes with lower-
case w in the attribute label are for the star property of Bell-
La Padula rules. In Figure 2, TS is subject/object attribute
label for “Top Secret” subject/object class, S is for “Secret”
class, and C is for “Confidential” class. W is for write
privilege, R is for read privilege for each class (for example,
TSR or CW). Each subject/object belonging to a class is
assigned to both labels w and r subject/object attribute (for
example, TSr and TSw). Assume that class TS dominates
class S, and class S dominates class C; Subjects with the Cw
subject attribute can write objects with the object attribute
Cw, Sw and TSw. Sw can write Sw and TSw. TSw can only
write TSw. TSr can read TSr, Sr, and Cr. Sr can read Sr and
Cr. Cr can only read Cr. Note that a subject/object must be
assigned to the same r and w group of subject/object
attributes (TS, S or C). For example, a subject should be
assigned to the Cw subject attribute if she was assigned to
the Cr subject attribute and vice versa.

Figure 2. Simple Bell-La Padula Implementation.

Similar to BLBP models, the hierarchy of privilege
inheritance for HRBAC can be directly specified by the
subject attributes of PM, such that if subject attribute x
dominates subject attribute y, then subject with role x
inherits all the access privilege of subjects with role y. Figure
3 shows example attribute assignments of MLS and HRBAC
of a PM system state. As the relation need only be assigned
to directly related attributes, it only requires O(n) relation
assignments if there are n classes for BLPA, or role
inheritance relations for HRBAC. Thus the complexity is
many times more efficient compared to O(n2) assignment
statements in Section II A.

Note that in this paper, we only focus on the efficiency
and accuracy in specifying the AR required AC models and
constraints. The process complexity (efficiency) for the
enforcement of these models and constraints is either
inevitable (e.g., collecting all the ARs in SOD models such
as the examples in the next Subsection B) or algorithm
/application dependent, thus not discussed in this paper.

S O

PC

SA

OA

OP

sasa

ssa

oapc sapc
sas opsa

saop

oaop

opoa

oaoa

ooa

oao

pcoa pcsa

OPOA=OP×OA

subject
attribute
relations

object
attribute
relations

operations

CW

Sw

Cw

TSw

TSr

Sr

Cr

Cw TSr

Sr

Cr TSw

Sw

TSR
SW
SR

CR
TSW

Figure 3. Sample attribute relation assignments in PM

B. Specification of Separation of Duty Policies
To enforce SOD, it is necessary to maintain all
subject/object attribute relations for any subject or object if
multiple attribute assignments are allowed. Hence, in
addition to the basic relation mapping functions (in figure 1),
to retrieve current mappings of ARs in the system, the
function sa_opoa(sa) returns all (op, oa) pairs mapped to
the sa.

For example, a SOD constraint specifies that no subject
should be assigned to more than k privileges of a given set.
Note that when k =1, this policy is a Privilege to Privilege
Conflicts Policy (PPC), i.e. a set of privileges (OP × OA)
should not be assigned to the same subject. PM implements
this policy by calculating the number of subject attributes
the requesting subject is dominating or inheriting associated
with the constrained privileges, and the number cannot
exceed k. The rule is formally specified as:
SoDPM = 〈 OPOA, k 〉, OPOA = {(op1, oa1),…..
(opn,oan)}, 1≤ k ≤ OPOA, and
∀s ∈ S ((∩ sasa(sa∈ ssa(s)) sa_opoa(sa)) ∩ OPOA≤ k)

Tuple SoDPM contains the set of restricted privileges
OPOA, and limited number of privileges k. ∩ used in
sa_opoa(sa) ∩ OPOA is because a subject may be assigned
to duplicated privileges through different ARs. The example
shows the SOD rule specifications by the PM’s standard PS
functions based on the ARs. Without these functions, the
complexity in specification is nontrivial.

V. RELATED WORK
[9] proposed a Flexible Access Control Model (FACM),

which provides user-friendly notation and presentation of
ARs and constraints. However, the main usage of the graph
representation is to help in the specification, design, rather
than as a pure computational model, unlike PM, which
provides computational functions in the PS server, and
allows policy authors to specify AC rules by directly
mapping ARs into rules semantic.

[10] proposed a Logical Framework for Reasoning
about Access Control Models (ACMP) based on the C-

Datalog program, which provide a precise mathematical
foundation for reasoning about ARs. However, in addition
to its logical programs are not being intuitive to most users,
ACMP does not provide views of access instance and
relations between attributes, unlike PM, which allows
administrators to check/filter the relations at the point of
view of any selected access element. This capability
otherwise requires traceing through AC rules, and it is hard
to achieve with the increased number of entries in the
ACMP program.

VI. CONCLUSION
The flexibility and expressiveness of XACML make it

complex to work directly with some AC mechanisms.
Specifying ARs in XACML calls for completely specified
relations for each and every directly or indirectly related
attribute, thus produces a highly verbose document even if
the actual policy rules are trivial. Because, PM is not a
language, it is free from the syntactic and semantic
complexity of a language. When describing hierarchical
relations between attributes or policies, PM only requires
adding links between them, therefore, avoiding the time
delays due to the sequence of overhead algorithms. In
supporting the enforcement of SOD policy constraint rules,
PM provides an infrastructure that allows the efficient
specification of rules to collect the attributes for the policy.
PM also has a WYSIWYG graphic user interface (Figure 3)
that visually aids in the management of policy documents.
This feature is especially important when adding and
deleting rules in the AC policies.

REFERENCES
[1] Bell D.E. and Lapadula L. J., “Secure Computer Systems:

Mathematical Foundations and Model,” M74-244, MITRE Corp.,
Bedford, Mass., 1973 (also available as DTIC AS-771543).

[2] Biba K. J., “Integrity Considerations for Secure Computer Systems,”
ESD-TR-76-372, USAF Electronic Systems Division (also
MTR3153, MITRE Corp.), Bedford, Mass., April 1977.

[3] NCSC, “Trusted Computer System Evaluation Criteria,” National
Computer Security Center, 1985.

[4] Ferraiolo et al, “Role-Based Access Control (RBAC): Features and
Motivations,” Proc. of the 11th Annual Conference on Computer
Security Applications, Calif, pp 241-248, 1995.

[5] Jajodia et al, “A logical language for expressing authorizations,”
Proc. IEEE Symp. On Research in Security and Privacy, Oakland,
Calif, pp 31- 42, May 1997.

[6] OASIS, “Extensible ACCess Control Markup Language (XACML),
TC”, www.oasisopen.org/committes/tc_home.php?wg_abbrev=xacml

[7] Hu et al, “The Policy Machine For Security Policy Management,”
Proc. ICCS Conference, San Francisco, 2001.

[8] Ferraiolo et al, “Composing and Combining Policies under the
PolicyMachine,” ACM SACMAT, 2005.

[9] Coetzee M. and Eloff J. H. P., “Virtual Enterprise Access Control
Requirements,” Proc. of SAICSIT, pp. 285-294, 2003.

[10] Bertino et al, “A Logical Framework for Reasoning about Access
Control Models,” ACM Transactions on Information and System
Security, Vol. 6, No. 1, pp 71–127, February, 2003.

	I. Introduction
	II. Attribute Relations in XACML
	A. Specification of MLS and HRBAC Policies
	B. Specification of Separation of Duty Policies

	III. Attribute Relations in Policy Machine
	IV. P attribute relations in AC models
	B. Specification of Separation of Duty Policies

	V. Related Work
	VI. Conclusion
	References

