Current induced torques in the presence of spin-orbit coupling
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In systems with strong spin-orbit coupling, the relationship between spin-transfer torque and
the divergence of the spin current is generalized to a relation between spin transfer torques, total
angular momentum current, and mechanical torques. In ferromagnetic semiconductors, where the
spin-orbit coupling is large, these considerations modify the behavior of the spin transfer torques.
One example is a persistent spin transfer torque in a spin valve: the spin transfer torque does not
decay away from the interface, but approaches a constant value. A second example is a mechanical
torque at single ferromagnetic-nonmagnetic interfaces.

Introduction— Since the prediction [1-3] of spin trans-
fer torques in non-collinear ferromagnetic metal circuits,
they have been the subject of extensive research [4, 5].
The possibility of using spin transfer torque to im-
prove the commercial viability of magnetic random ac-
cess memory (MRAM) [6], and the rich non-equilibrium
physics involved establish the topic as one of practical
and fundamental interest. These torques arise from the
exchange interaction between non-equilibrium, current-
carrying electrons and the spin-polarized electrons that
make up the magnetization. In systems where the spin-
orbit coupling is weak, the torque on the magnetization
can be computed from the change in the spins flowing
through the region containing the magnetization. This
relation is a consequence of conservation of total spin.
Here, we consider systems in which the spin-orbit cou-
pling cannot be neglected (and hence total spin is no
longer conserved).

In systems where spin angular momentum is not con-
served, the relationship between the spin transfer torque
and the flow of spins needs to be generalized. Conserva-
tion of total angular momentum implies that mechanical
torques on the lattice of the material accompany changes
in the magnetization [7, 8]. This effect has been used for
decades to measure the g-factor of metals. More recent
theoretical [9, 10] and experimental [11] work considers
the current-induced mechanical torques present at the in-
terface of a ferromagnet and non-magnet, similar in spirit
to the spin transfer torques on the magnetization present
in spin valves.

In this article we develop a theory for current in-
duced torques (both spin transfer torques and mechani-
cal torques) in systems with strong spin-orbit coupling,
and apply it to a model of dilute magnetic semiconduc-
tors. We find that by accounting for the orbital angular
momentum of the electrons, we can relate the change in
total angular momentum flow to spin transfer torques
and mechanical torques. We study two system geome-
tries where these torques play important roles. The first
is a spin-valve geometry, which is used to study the fea-
tures of spin transfer torques in the presence of spin-orbit
coupling. The second is a single interface between a fer-
romagnet and non-magnet, which elucidates the physics
underlying current-induced mechanical torques.

Formalism — We consider a Hamiltonian consisting

of a spin-independent kinetic and potential energy Hy =
2v72 A

=1V_ 4 V(r) [12], an exchange splitting A, and a spin-

orbit interaction parameterized by a:
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where L and § are the electron angular momentum and
spin operators, respectively [13]. The exchange splitting
arises from a magnetization M, with magnitude M;. We
treat the magnetization within mean field theory.

We consider the torque on the magnetization due to
electric current flow. The spin transfer torque Tspr
at position r from electronic states with spin density
s(r) is proportional to the component of spin trans-

verse to the magnetization [15]: 7srr(r) = dhgfr)

%—QA (M(r) x s(r)). In the absence of spin-orbit coupling,
this torque can be related to the divergence of a spin
current, which offers conceptual and computational sim-
plicity [16]. In the following we analyze how spin-orbit
coupling changes this simple result.

We develop an expression for 7gpr by evaluating
the time-dependence of the electron spin and angular
momentum densities. To do so, we adopt a Heisen-

dO(r)

berg picture of time evolution, and evaluate —~ =

i [I;T, @ZT(I‘)OAzZAJ(r)} , where 9)(r) is the position operator,

for the operators O = §, L. This procedure leads to [4]:

ds(r) _
dt
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where Qg (r) = ¢ (r)v ®8¢(r), and the velocity operator
is given by v = % (ﬁ — ﬁ), here the arrow superscript
specifies the direction in which the gradient acts. In ad-

dition:
dL(r) R a
dt

where Qu(r) = @T(r)% (Vﬁ+ﬁ\7) ¢(r) (the product

of non-commuting operators L and ¥ is symmetrized).
We've defined fi,¢(r) = £¢f(r) {ﬁo,ﬂ} ¢(r), which is



FIG. 1: Left and right panels shows GaMnAs band struc-
ture without and with spin orbit coupling, respectively (for
v2 = 73 = 2.4). (arrows indicate spin direction of the eigen-
states). The inset shows the directions of bulk magnetization,
and spin, velocity, k vector, and orbital moment for a single
state. The torque from the misalignment between magnetiza-
tion and spin, 77T, equals the torque from the misalignment
between velocity and k vectors, Tiat.

nonzero for a potentials V' (r) which break rotational sym-
metry [17].

We define a total angular momentum .:] = L+8, a total
angular momentum current Qy = Qr,+Qs, combine Eqs.
(2) and (3), and take the expectation value to obtain:

dJ(r)
dt

Eq. (4) is our main formal result. When spin-orbit cou-
pling is important, the total angular momentum in the
conduction electrons couples both to the magnetization
and the lattice. The coupling of electron spin to the lat-
tice requires both spin-orbit coupling and the crystal field
potential. The term T, changes the physical picture of
spin transfer torque substantially, as is illustrated by a
single bulk eigenstate: % and V - Qj vanish, however
TsrT and Tjux may both be non-zero, implying a coupling
from the angular momentum of the lattice to the magne-
tization (see Fig. 1). This coupling takes place through
the eigenstates of the system, despite the fact that in
an eigenstate, the net torque on both the spin and the
orbital moment vanishes. The electronic system accom-
modates this coupling because the exchange torque on
the spin from the magnetization is counter-balanced by
a spin-orbit torque on the spin from the orbital moment.
Similarly, the spin-orbit torque on the orbital moment
from the spin is counter-balanced by the lattice torque
on the orbital moment. Spin-orbit torque is the link be-
tween lattice angular momentum and magnetization.
Application to DMS — We apply this formalism to a
model of a dilute magnetic semiconductor (DMS). DMSs

— V- Qi(r) = —7g7r(r) — Tias (). (4)

are semiconductor materials which become ferromagnetic
when doped with magnetic atoms. Gaj;_,Mn,As is the
archetype for these materials, and can be described as a
system of local moments of Mn d-electrons, whose inter-
action is mediated by holes in the semiconductor valence
band [18]. The valence states are described by the Kohn-
Luttinger Hamiltonian PAI(IfL, which represents a small-k

expansion for a periodic ﬁo, acting in the £ = 1 subspace
(describing valence states). It is given by:
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where L are the spin-1 matrices for the p-state orbitals,
Y1, Y2, 3 are Luttinger parameters, and k is the Bloch
wave-vector. Figure 1 shows how the presence of spin-
orbit coupling affects the band structure. For the re-
sults presented here, we use the default parameter values:
(71,72,73) = (6.85,2.1,2.9), A = 0.27 eV, « = 0.11 eV.
For GaAs, we set A = 0.

For periodic systems the velocity operator can be writ-
ten as: Vv = %%—f, and spin and angular momentum cur-
rent densities are again defined as symmetrized products
of v and L, and ¥ and 8. The dynamics of the magne-
tization occur on a much longer time scale than that of
the electronic states, so we compute the dynamics from
a sum over scattering states, for which % = % = 0. For
the Luttinger Hamiltonian, we find the z-component of
Tlat

T = (Vxhk), + W {(k’xﬁy + kyix) )

(k:zjim - kyLy) } (6)

where the brackets on the second term indicate an an-
ticommutator. Other components are given by cyclic
permutation of indices. In the spherical approximation
(72 = 73), Eq. (6) takes on a particularly simple form.

STT in spin-valves — We first consider a system to
study the 7t term of Eq. (4). Figure 2(a) shows the
geometry; current flows in the Z-direction, perpendicular
to the magnetization of both layers. We focus on the
component of torque which is in the plane spanned by
the two magnetization directions. This in-plane torque
is determined by the out-of-plane (or 2-component) spin
density [15]. Here, Er = 0.16 €V is measured from the
top of the valence band. The tunnel barrier is described
by Egs. (1) and (5), with A = 0, and with an energy
offset so that the top of the valence band is 0.1 eV below
FEr. We calculate the eigenstates numerically and apply
boundary conditions as described in Ref. [19].

Figure 2(b) shows the spin transfer torque density as
a function of distance away from the interface. We find
that for & = 0 (no spin-orbit coupling), the torque decays
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FIG. 2: Persistent spin transfer torque. Panel (a) shows the
spin valve geometry treated here. The magnetizations of the
ferromagnetic (FM) layers point in the & and § (out-of-page)
directions. Panel (b) shows the spin transfer torque density as
a function of distance away from the right tunnel barrier-FM
interface with and without spin-orbit coupling. This torque
density decays to zero in the absence of spin-orbit coupling,
while it oscillates around a finite value in the presence of spin-
orbit coupling. Panel (c) shows the total spin transfer torque,
the net flux of spin current, and net flux of total angular mo-
mentum current versus FM thickness. The change in the spin
and angular momentum currents approaches a finite value,
while the total torque does not. The linear dependence for
large thickness indicates a persistent spin transfer torque den-
sity due to coupling to the lattice angular momentum.

to zero away from the interface, as expected [16]. For
a # 0, the torque oscillates around a nonzero value, and
extends into the bulk. Figure 2(c) shows that the total
spin transfer torque as a function of ferromagnetic layer
thickness Lgy is proportional to thickness for large Lpy;.
This is in contrast to the metallic spin valve, where the
torque is an interface effect and becomes constant for
large L.

This persistent spin transfer torque arises because the
spins of individual eigenstates are not aligned with the
magnetization (see Fig. 1) in the presence of spin-orbit
coupling. The misalignment gives rise to a torque be-
tween the lattice and the magnetization. In equilib-
rium, these torques cancel when summed over all occu-
pied states. However, the presence of a current changes
the occupation of the bulk states possibly eliminating
the cancellation. In systems without inversion symmetry,
this mechanism causes spin transfer torque even in sin-
gle domain bulk ferromagnets [20, 21]. In bulk GaMnAs
however, inversion symmetry is only very weakly broken,
and the standard Kohn Luttinger Hamiltonian, Eq. (5)
treats the system as inversion symmetric. In the system
we consider, the interfaces between dissimilar materials
break inversion symmetry, enabling the

scattering (not included here). For materials that
strongly break inversion symmetry, unlike GaMnAs, even
scattering would not eliminate the persistent transverse
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FIG. 3: The total spin transfer torque, the net flux of total
angular momentum, and the persistent component of the spin
transfer torque as « is increased from 0 to ap = 0.11 eV.

spin accumulation [20, 21]. We note that strain can also
break inversion symmetry in GaMnAs, enabling the ob-
servation of persistent spin transfer torque in a single
ferromagnetic layer [22, 23]. In our results, the coher-
ence between the states modifies the spin accumulation
and the torque near the interface but these corrections
decay away from the interface due to dephasing.

Figure 3 shows, as a function of the spin orbit cou-
pling constant «, the values of total spin transfer torque,
the angular momentum current flux, the lattice torque,
and the persistent contribution to spin transfer torque
(for Lpy = 30 nm). We determine the persistent contri-
bution from the slope of the integrated total versus FM
width Lpy at large Lyy (see Fig. 2¢). In this exam-
ple, the spin transfer torque increases with the addition
of spin-orbit coupling, largely because of the addition of
the persistent term. This qualitative behavior depends
on system parameters: for Fp = 0.34 eV, for example,
the spin-orbit coupling decreases the total torque. For
the layer thicknesses considered here, the angular depen-
dence of the torques is similar that of metallic systems.
Both the total and persistent spin transfer torques vanish
for collinear configurations and are roughly sinusoidal for
intermediate angles.

Nanomechanical torques in wires — We next consider
a system with a single interface between GaMnAs and
GaAs, with the direction of the magnetization parallel to
the current flow. This is similar to the geometry consid-
ered in previous theoretical and experimental work [9-11]
on the coupling of spin current to a lattice torque. Here,
we show that this can come from the spin-orbit coupling
in the band structure in addition to spin flip scattering
treated previously [9-11]. We use the same parameters as
before, except Fr = 0.06 €V, and the top of the valence
band of both layers coincide.

Our calculation shows that as a function of distance
away from the interface the torque from a particular
channel oscillates, while the total torque shows oscilla-



tory decay. The oscillatory decay can be understood sim-
ilarly to the oscillatory decay of the spin transfer torque
in ferromagnets without spin-orbit coupling. For a coher-
ent interface, each incident state from the GaMnAs with
particular a k;, k, transmits into the available chan-
nels of GaAs at that transverse wave vector and energy.
These different channels have different J character and
wave vector k,. They interfere with each other, lead-
ing to an oscillatory J(z), with an oscillation period in-
versely proportional to the splitting of k, wave-vectors of
the different sheets of the Fermi surface. This splitting is
from the lattice crystal field and spin-orbit coupling, the
agents responsible for 7. Different channels have dif-
ferent oscillation periods, so that their sum decays away
from the interface, as happens for spin transfer torques
in ferromagnets [16].

For the parameters used here, we find the angular mo-
mentum current of the states entering the system from
the GaMnAs is Q' = 1.09h£7 while that persisting to
the end of the GaAs is Q%' = 0.46715. We calculate the
mechanical torque to be 0.637’1£, which is equal to the
difference between the incoming and outgoing angular
momentum currents for this particular system. For ap-
propriate experimental conditions, this torque is greater
than the thermal fluctuations and is a measurable effect.
We refer the reader to Ref. [9-11] for details of treatment
of the torsion dynamics and experimental details.

The formalism developed here generalizes previous

work to allow for the microscopic evaluation of the elec-
tronic structure contribution to the current-induced me-
chanical torque. For systems with nonzero magnetiza-
tion, the microscopic form of 7, is necessary to deter-
mine the partitioning of total angular momentum flux be-
tween torques on the magnetization and torques on the
lattice. Our theory neglects other mechanisms of spin
relaxation, such as disorder-induced spin-flip scattering,
so that full calculations will require microscopic calcu-
lations like these to be embedded in diffusive transport
calculations.

Conclusion— We have shown how atomic-like spin-
orbit coupling affects current-induced torques: both the
spin transfer torque on the magnetization and the me-
chanical torque on the lattice. In GaMnAs spin valves,
we find a contribution to the spin transfer torque that
persists throughout the bulk. This result may explain ex-
periments which find critical currents which are up to an
order of magnitude smaller than the value expected from
a simple accounting of the net spin current flux [24, 25].
For a single interface between GaMnAs and GaAs, we
microscopically compute the mechanical torque due to
scattering from the interface. These results highlight im-
portant, qualitatively different physics at play when spin-
orbit coupling is strong.

The authors acknowledge helpful conversations with A.
H. MacDonald.

[1] L. Berger, J. Appl. Phys. 3, 2156 (1978); ibid. 3, 2137
(1979).

[2] J. Slonczewski, J. Magn. Magn. Mat. 62, 123, (1996).

[3] L. Berger, Phys. Rev. B 54, 9353 (1996).

[4] D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater.
320, 1190 (2007).

[6] M. D. Stiles and J. Miltat, Top. Appl. Phys. 101, 225
(2006).

[6] J. A. Katine and E. E. Fullerton, J. Magn. Magn. Mater.
320, 1217 (2007).

[7] O. W. Richardson, Phys. Rev. 26, 248 (1908).

[8] A. Einstein and A. de Hass, Verhandlungen der
Deutschen Physikalischen Gesellschaft, 17, 152 (1915).

[9] P. Mohanty et al., Phys. Rev. B 70, 195301 (2004).

[10] A. A. Kovalev et al., Phys. Rev. B 75, 014430 (2007).

[11] G. Zolfagharkhani et al., Nature Nanotech. 3, 720 (2008).

[12] We neglect phonon scattering in this paper. It may be
included by the addition of the phonon Hamiltonian and
phonon-electron coupling to Ho.

[13] There are two contributions to the orbital moment, an
atomic-like contribution and a contribution to the to-
tal orbital angular momentum from itinerant motion
through the lattice. If we assume that the atomic-like
contribution dominates the coupling to the spin, the itin-
erant contribution drops out of the problem. Such ap-
proximations are generally quite good because spin-orbit

coupling is strongest in the atomic core regions due to
the large electric field. The distinction between “local”
and “itinerant” orbital angular momentum is discussed
in Ref. [14].

[14] T. Thonhauser et el., Phys Rev. Lett. 95, 137205 (2005).

[15] A. S. Nifiez and A. H. MacDonald, Solid State. Comm.
139, 31 (2006).

[16] M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407
(2002).

[17] In deriving Egs. (3), the commutator of the kinetic en-
ergy operator with the position operator 121 gives the di-
vergence of the angular momentum current. For Hy =
7h2V2/2m + V(r), our definition of 715 is equivalent to
[V(r)7 ﬁ] because the kinetic energy commutes with the
rotation operator.

[18] T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006).

[19] A. M. Malik et al., Phys. Rev. B 59, 2861 (1998).

[20] A. Manchon and S. Zhang, Phys. Rev. B 78, 212405
(2008).

[21] Ion Garate and A. H. MacDonald, Phys. Rev. B 80,
134403 (2009).

[22] A. Chernyshov, et al., Nat. Phys. 5, 656 (2009).

[23] K. M. D. Hals et al., Euro. Phys. Lett. 90, 47002 (2010).

[24] D. Chiba et al., Phys. Rev. Lett. 93, 216602 (2004).

[25] M. Elsen et al., Phys. Rev B 73, 035303 (2006).



