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a b s t r a c t

In the first part of this paper an effective Hamiltonian for a non-rotating diatomic molecule containing
only crystal-field and spin–orbit operators is set up to describe the energies of the five spin–orbit com-
ponents that arise in the ground electronic configuration of the nickel monohalides. The model assumes
that bonding in the nickel halides has the approximate form Ni+X�, with an electronic 3d9 configuration
plus closed shells on the Ni+ moiety and a closed shell configuration on the X� moiety. From a crystal-
field point of view, interactions of the positive d-hole with the cylindrically symmetrical electric charge
distribution of the hypothetical NiX� closed-shell core can then be parameterized by three terms in a tra-
ditional expansion in spherical harmonics: C0 + C2Y20(h, /) + C4Y40(h, /). Interaction of the hole with the
magnetic field generated by its own orbital motion can be parameterized by a traditional spin–orbit
interaction operator AL � S. The Hamiltonian matrix is set up in a basis set consisting of the 10 Hund’s case
(a) basis functions |L, K;S ,Ri that arise when L = 2 and S = 1/2. Least-squares fits of the observed five
spin–orbit components of the three lowest electronic states in NiF and NiCl are then carried out in terms
of the four parameters C0, C2, C4, and A which lead to good agreement, except for the two |X| = 1/2 states.
The large equal and opposite residuals of the |X| = 1/2 states can be reduced to values comparable with
those for the |X| = 3/2 and |X| = 5/2 states by fixing A to its value in Ni+ and then introducing an empirical
correction factor for one off-diagonal orbital matrix element. In the second part of this paper the usual
effective Hamiltonian B(J–L–S)2 for a rotating diatomic molecule is used to derive expressions for the
X-type doubling parameter p in the two |X| = 1/2 states. These expressions show (for certain sign con-
ventions) that the sum of the two p values should be �2B, but that their difference can vary between
�10B and +10B. These theoretical results are in good agreement with the two observed p values for both
NiF and NiCl. The present formalism should in principle be applicable to NiBr and NiI, and to the halides
of palladium, since Pd+ has a well isolated 4d9 electronic ground configuration. Extension to metal halides
having dn configurations with n < 9, or to platinum halides may present difficulties, since manifolds from
the dn and dn�1s configurations may be heavily mixed, thus requiring ‘‘too many’’ parameters in the elec-
tronic part of the problem. Application to linear triatomic molecules may also present problems because
of the large number of vibronic perturbations made possible by their four vibrational degrees of freedom.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction The basic model consists of representing NiX as a singly charged
A large number of papers have appeared over the last 20 years
in which the electronic and microwave spectra of the four nickel
monohalides (NiX) and of nickel monohydride (NiH) have been
studied experimentally. Examples of such studies (with rotational
resolution) are: NiF [1–7], NiCl [8–14], NiBr [15–17], NiI [18–21],
and NiH [22–26]. The electronic states of these and related mole-
cules have also been studied theoretically [27–32]. From the point
of view of the present paper, we are interested in the following
information extracted from these works.
ll rights reserved.
Ni+ ion bonded to a singly charged X� ion. The isolated X� atomic
ion has a 1S0 electronic ground state. Since excitations of these
closed-shell electrons are ignored here, only the average charge
distribution of the X� ion is of interest. The isolated Ni+ atomic
ion has an [Ar]3d9 ground electronic configuration [33], and the
L = 2 and S = 1/2 angular momenta of its d hole give rise to atomic
2D3/2 and 2D5/2 states, which are split by 1506.94 cm�1 [33], lead-
ing to a free-ion spin–orbit constant A = �602.8 cm�1.

When the two ions combine to form a molecule, we expect
(from a simple one-configuration model) that the spin–orbit cou-
pling constant of the molecule will remain close to the atomic va-
lue. A more noticeable effect of molecule formation, however,
arises from the perturbation of the atomic d-orbital energy in the
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Ni+ ion by the electrostatic field of the X� ion, which can be
thought of as splitting the free-ion states into three Hund’s case
(b) [34] electronic states of symmetry 2R+, 2P, and 2D, or into five
Hund’s case (c) states (i.e., five spin–orbit components of the three
case (b) states) with |X| = 1/2, 1/2, 3/2, 3/2, and 5/2. Such an elec-
trostatic perturbation of atomic energy levels is often referred to as
a crystal-field effect [35], because electrostatic models of various
symmetries were used in many early studies of the colors of ionic
crystals containing transition-metal or rare-earth cations. The
crystal-field and spin–orbit forces compete with each other to
determine the good quantum numbers, and thus also the energy
level pattern, in the non-rotating molecule.

Coriolis forces generated when the molecule rotates then fur-
ther attempt (via various DX = ±1 mixings) to dictate the choice
of good quantum numbers in the final electronic-rotational wave-
functions, which leads in NiX and NiH to very large X-doubling
splittings in the X = 1/2 states (or equivalently, to very large
spin-rotation splittings when the X = 1/2 state is treated as a 2R
state). The various phenomena arising from such Coriolis mixings
are often associated with the words L-uncoupling and S-uncou-
pling in discussions of Hund’s coupling cases [34].

The goal of the present paper is to derive expressions relating
the positions of the five spin–orbit components in the 3d9 manifold
to the sign and magnitude of the X-doubling constant p in each of
the two X = 1/2 states in this manifold. Such expressions can then
be used to check rotational assignments in the sometimes confus-
ing X = 1/2 states.

The quantum mechanical formalism used here is extremely sim-
ilar to that presented two decades ago in a beautiful treatment of the
electronic-rotational states of ‘‘the {Ni+ 3d9 2D} supermultiplet’’
[27], and the reader is referred to that paper for much explanatory
material not repeated here. The main differences in the present for-
malism are: (i) the use of three crystal-field parameters, rather than
three term values, to describe the positions of the Hund’s case (b)
2R+, 2P, and 2D electronic states arising from the Ni+2D atomic state,
and (ii) the use of only 1 � 1 and 2 � 2 Hamiltonian matrices to
calculate the nickel monohalide rotational levels. The change in
viewpoint (i) was introduced in the hope that variation of empirical
crystal-field parameters of NiX across the four halides
(X = F, Cl, Br, I) will give additional chemical insight. The simplifica-
tion (ii) was introduced because BNiX� BNiH, so that many of the L-
uncoupling and S-uncoupling interactions that must be treated by
exact diagonalization in NiH [27], can be treated by second-order
perturbation theory in the nickel halides [16,17,21]. Note also that
perturbations arising from Dv – 0 interactions among the 3d9 elec-
tronic states [27] are missing from these small matrices.

The treatment below should in principle be applicable without
change to the halides of palladium, since Pd+ has a well isolated 4d9

electronic ground configuration [33]. For Pt+, however, some levels
of 5d9 and 5d86s are interleaved [33], which violates one of the
assumptions of the model. The treatment below may also be appli-
cable to the ground vibrational levels of 3d9 electronic states in lin-
ear triatomic molecules like NiCN [32,36], provided that
complications due to the Renner–Teller effect and/or the larger
number of vibrational modes can be ignored.

2. Theoretical model

As is often done in the diatomic literature, we divide our model
into two parts, one dealing with the non-rotating molecule [27–
32], the other dealing with the rotating molecule [27]. The reader
is referred to Ref. [37] for a pedagogical description and algebraic
details of this way of thinking as applied here. Symbolically, we
can write

H ¼ Hnon-rot þ Hrot ¼ Hcf þ Hso þ Hrot; ð1Þ
where Hnon-rot is further divided, after the second equality, into a
crystal-field (cf) term and a spin–orbit (so) term.

2.1. Non-rotating-molecule Hamiltonian operator and basis set

Since the electronic part of the present problem involves only
one d-hole outside of closed shells, the only operator of interest
in the separated ions is that describing spin–orbit interaction [38],

Hso ¼ AL � S; ð2Þ

which depends on the spin–orbit coupling constant A and on the
orbital (L = 2) and spin (S = 1/2) angular momenta of the d-hole.

The electrostatic crystal-field perturbation of the d-orbital
caused by the axial field of the diatomic molecule [28,29] can in
principle be expressed as an infinite series in spherical harmonics
Y‘m(h, u) centered on the Ni nucleus [35], where h is the polar angle
and u is the azimuthal angle of the d-hole. This infinite series can
be severely truncated for the present problem by noting that: (i)
the electrostatic field has cylindrical symmetry, which requires
m = 0 for all allowed terms in the series; (ii) we consider only ma-
trix elements between states within the same electronic configura-
tion, which requires ‘ = even for non-vanishing matrix elements;
and (iii) L = 2 for d-electrons, which restricts ‘ to 0, 2 or 4 for
non-vanishing matrix elements. Thus, the crystal-field Hamilto-
nian for the present problem contains only three terms.

Hcf ¼ c0 þ c2Y20ðhÞ þ c4Y40ðhÞ: ð3Þ

These three crystal-field terms can be thought of as the electrostatic
energy contribution to a 3d-hole on Ni+ after averaging the cylindri-
cally symmetric electric charge distribution of the hypothetical
closed-shell NiX� molecule over the d-orbital radial distribution.
The first term gives only a constant energy offset, which can be cho-
sen to correspond to the observed center of gravity of the electronic
states of the d9 manifold. The second and third terms are of greater
interest, since they determine the splittings between the 2R, 2P,
and 2D electronic states.

Note that in the present work we treat the coefficients c0, c1, and
c2 as empirical parameters that are adjusted to fit experimental
data. This is quite different from Refs. [28,29], where these param-
eters were computed by quantum chemistry methods, and then
used to predict energy level positions and assignments.

The crystal-field Hamiltonian in Eq. (3) can be further simplified
by using the concept of operator equivalents [35,39], which allows
us, when only DL = 0 matrix elements are considered (i.e., only ma-
trix elements within the d9 manifold), to avoid 3-j and 6-j symbols,
etc. and simply replace the spherical harmonics by appropriate col-
lections of orbital angular momentum operators. With this simpli-
fication, and with arbitrary scaling factors for the operator
equivalents, Hcf becomes

Hcf ¼ C0 þ C2½ð1=6Þð3L2
z � L2Þ� þ C4½ð1=48Þð35L4

z � 30L2L2
z

þ 3L4 þ 25L2
z � 6L2Þ�: ð4Þ

A convenient electronic basis set for use with Hnon-rot = Hso + Hcf

can be written as [27–29]

jL;KijS;Ri; ð5Þ

where K and R represent the signed projections of L and S, respec-
tively, along the diatomic axis. Another electronic basis set, ob-
tained by first coupling L and S to get the total electronic angular
momentum Je = L + S and then taking the signed projection
Xe �K + R of Je along the diatomic axis, can be written as

jL; S; Je;Xei: ð6Þ

The basis set of Eq. (5) will always be used when setting up Hamil-
tonian matrices below, but the basis set of Eq. (6), which is more
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closely related to the Ni+ atomic 2D3/2 and 2D5/2 states (and some-
times more closely related to the final eigenfunctions) will often
aid in our qualitative understanding.

It is now time to compare the number of parameters in
Hnon-rot to the number of levels in the non-rotating molecule.
There are four adjustable parameters in Hnon-rot as defined by
Eqs. (1)–(4), namely A, C0, C2, and C4. There are ten basis func-
tions in Eq. (5) when L = 2 and S = 1/2, but because of symmetry
(Section 2.7) these states all occur as doubly degenerate pairs in
the non-rotating molecule, giving rise to only five energy levels.
The result of this counting is thus somewhat disappointing, since
the number of adjustable parameters is only one less than the
number of energy levels for the d9 manifold. If one could assume
|C4|� |C2|, one of these parameters could be eliminated, but this
assumption does not seem to be useful for the NiX series
(Section 4).

2.2. Non-rotating-molecule Hamiltonian matrix and energy levels

Using well-known angular momentum matrix elements, it is
relatively easy to set up the matrix of the Hamiltonian Hnon-rot in
the basis set |L, Ki|S, Ri [37]. Since Hnon-rot has no matrix elements
off-diagonal in Xe, the non-rotating-molecule Hamiltonian matrix
immediately factors into six submatrices, two of dimension 1, with
Xe = ±5/2, and four of dimension 2, with Xe = ±3/2 and ±1/2.
Because of symmetry, we need diagonalize only the matrices with
positive values of Xe.

For Xe = +5/2, the only element of the 1 � 1 Hamiltonian matrix
is

h2;þ2jh1=2;þ1=2jHnon�rotj2;þ2ij1=2;þ1=2i
¼ C0 þ Aþ C2 þ ð1=4ÞC4: ð7Þ

For Xe = +3/2, the independent elements of the 2 � 2 Hermitian
Hamiltonian matrix are

h2;þ2jh1=2;�1=2jHnon-rotj2;þ2ij1=2;�1=2i
¼ C0 � Aþ C2 þ ð1=4ÞC4; ð8aÞ

h2;þ1jh1=2;þ1=2jHnon-rotj2;þ1ij1=2;þ1=2i
¼ C0 þ ð1=2ÞA� ð1=2ÞC2 � C4; ð8bÞ

h2;þ2jh1=2;�1=2jHnon-rotj2;þ1ij1=2;þ1=2i ¼ þA: ð8cÞ

For Xe = +1/2, the independent elements of the 2 � 2 Hermitian
Hamiltonian matrix are

h2;þ1jh1=2;�1=2jHnon-rotj2;þ1ij1=2;�1=2i
¼ C0 � ð1=2ÞA� ð1=2ÞC2 � C4; ð9aÞ

h2;0jh1=2;þ1=2jHnon-rotj2;0ij1=2;þ1=2i
¼ C0 � C2 þ ð3=2ÞC4; ð9bÞ

h2;þ1jh1=2;�1=2jHnon-rotj2;0ij1=2;þ1=2i ¼ þð3=2Þ1=2A: ð9cÞ

Matrix elements for the corresponding basis functions with Xe < 0
can be obtained from Eqs. (7)–(9) by changing the signs of all K
and R values on the left of the equalities. (Note that the matrix ele-
ments in Eqs. (7)–(9) agree, for example, with those in Ref. [28],
apart from a change in notation.)

The matrices above can all be diagonalized algebraically to ob-
tain the following non-rotating-molecule energy levels as a func-
tion of the spin–orbit coupling constant A and the three crystal-
field parameters C0, C2, and C4.

EðXe ¼ þ5=2Þ ¼ C0 þ Aþ C2 þ ð1=4ÞC4; ð10aÞ
E�ðXe ¼ þ3=2Þ ¼ C0 þ ð1=4Þf½�Aþ C2 � ð3=2ÞC4�
� ½25A2 � 3Að6C2 þ 5C4Þ þ ð1=4Þð6C2 þ 5C4Þ2�1=2g; ð10bÞ

E�ðXe ¼ þ1=2Þ ¼ C0 þ ð1=4Þfð�A� 3C2 þ C4Þ
� ½25A2 � 2AðC2 � 5C4Þ þ ðC2 � 5C4Þ2�1=2g; ð10cÞ

where the ± subscripts in Eqs. (10b) and (10c) indicate the higher
and lower energy state for a given Xe. An identical set of levels is
obtained for the corresponding negative values of Xe.

Let us now look at three limiting cases defined by the energies
in Eq. (10). If C2 = C4 = 0, we recapture the Ni+ atomic energy levels,
i.e. 2D3/2 at C0 � (3/2)A and 2D5/2 at C0 + A, although the Je = 3/2 and
5/2 levels are only labeled in Eq. (10) by their Xe projections along
the internuclear axis. When A > 0 the spin–orbit splitting is regular.
When A < 0, as expected for a d-hole [38], it is inverted. If A = C4 = 0
and C2 > 0, Eq. (10) gives (again labeled only by their Xe projec-
tions) a case (b) 2R ground state at C0 � C2, the two spin compo-
nents of a case (b) 2P state at C0 � (1/2)C2, and the two
components of a case (b) 2D state at C0 + C2. If C2 < 0, the 2D state
becomes the ground state. If A = C2 = 0 and C4 > 0, Eq. (10) gives a
2R state at C0 + (3/2)C4, a 2P ground state at C0 � C4, and a 2D state
at C0 + (1/4)C4. If C4 < 0, the ground state is 2R.

It is also useful to look at how the four parameters in Eq. (10)
are related to various sums of the observed electronic energy
levels.

Eðþ5=2Þ ¼ C0 þ Aþ C2 þ ð1=4ÞC4;

ð1=2Þ½Eþðþ3=2Þ þ E�ðþ3=2Þ� ¼ C0 þ ð1=4Þ½�Aþ C2 � ð3=2ÞC4�;
ð1=2Þ½Eþðþ1=2Þ þ E�ðþ1=2Þ� ¼ C0 þ ð1=4Þð�A� 3C2 þ C4Þ:

ð11Þ

Eq. (11) indicates that C0 is the center of gravity of all five levels. It
further shows that if A is fixed to some estimated value (presum-
ably near the atomic Ni+ value), then values for the three crystal-
field parameters, including their signs, can be determined from a
set of three linear equations.

2.3. Empirical correction factor b

The number of adjustable parameters could theoretically be in-
creased by one, making it equal to the number of non-rotating-
molecule energy levels in the 3d9 manifold, by noting that the
spin–orbit interaction should be decomposed (on group-theoreti-
cal grounds) into one interaction along the diatomic axis and a
slightly different interaction perpendicular to the diatomic axis,
i.e.,

Hso ¼ AjjLzSz þ A?ðLxSx þ LySyÞ: ð12Þ

If the Ni+ atomic d-orbital is not too badly distorted by molecule for-
mation, we might hope that the introduction of this extra parame-
ter would not be necessary for a reasonable description of the non-
rotating-molecule energy levels.

In fact, after some trial and error, a slightly different empirical
adjustment [27] seems helpful, as explained in more detail in Sec-
tion 4. For matrix elements of the orbital angular momentum lad-
der operator we suppose

h2;þ2jLþj2;þ1i ¼ þ2; ð13aÞ
h2;þ1jLþj2;0i ¼ þb

ffiffiffi
6
p

; ð13bÞ

with 0.5 6 b 6 1. This is equivalent to the assumption [27] that the
|L = 2, K = ±2i and |L = 2, K = ±1i electronic orbital functions are
quite pure, but that |L = 2, K = 0i is significantly contaminated by
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some unknown |K = 0i function from outside the 3d9 manifold. Eq.
(13b) leads to altered Eqs. (9c) and (10c) of the form

h2;þ1jh1=2;�1=2jHnon-rotj2;0ij1=2;þ1=2i ¼ þð3=2Þ1=2bA; ð14aÞ

E�ðXe ¼ þ1=2Þ

¼ C0 þ ð1=4Þfð�A� 3C2 þ C4Þ � ½ð1þ 24b2ÞA2

� 2AðC2 � 5C4Þ þ ðC2 � 5C4Þ2�1=2g: ð14bÞ
2.4. Rotating-molecule Hamiltonian operator and basis set

The rotating-molecule Hamiltonian can be written in the usual
way [37], by multiplying the rotational constant B of the diatomic
molecule by the square of the purely rotational angular momen-
tum R, to obtain

Hrot ¼ BR2 ¼ B½ðJx � Lx � SxÞ2 þ ðJy � Ly � SyÞ2�
¼ B½J2 � J2

z þ L2 � L2
z þ S2 � S2

z þ ðLþS� þ L�SþÞ
� ðJþL� þ J�LþÞ � ðJþS� þ J�SþÞ�: ð15Þ

A quartic centrifugal distortion operator Hcd can be written as well,
in the form

Hcd ¼ �DR4 ¼ �D½ðJx � Lx � SxÞ2 þ ðJy � Ly � SyÞ2�2: ð16Þ

The electronic-rotational basis set for the full Hamiltonian then
takes one of the two forms

j L;KijS;RijJ;Xi; ð17aÞ
j L; S; Je;XeijJ;Xi; ð17bÞ

where the |J, Xi are basically symmetric-top basis functions modi-
fied to eliminate one rotational angle [37], and where, as for all lin-
ear molecules (because Rz � 0), we require [37]
X � Xe ¼ Kþ R: ð18Þ
2.5. Rotating-molecule Hamiltonian matrix elements with and without
the empirical correction factor b

We now turn to the problem of calculating rotational energy
levels for the electronic states belonging to a d9 manifold. Hrot in
Eq. (15) and Hcd in Eq. (16) have non-vanishing matrix elements
off-diagonal in X �Xe, so that matrices of dimension 10 must in
principle be diagonalized to obtain the final rotational levels for
all electronic states in the d9 manifold. This is in fact what was
done in the 2D supermultiplet treatment of NiH in Ref. [27]. In
the present paper, we instead calculate only rotational energy lev-
els for X = 1/2 states that are separated from other states by ener-
gies large compared to BJ. Such ‘‘isolated’’ X = 1/2 states are
expected to be the normal situation up to relatively high J values
in the nickel halides. For NiH, on the other hand, the value of BJ ap-
proaches electronic state energy separations even for moderate J
values, so that the full 10 � 10 matrix treatment cannot easily be
avoided for transition metal hydrides.

The non-vanishing matrix elements of each part of Hrot in Eq.
(15) in the basis set of Eq. (17a) are given by

hL;K; S;R; J;XjB½J2 � J2
z þ L2 � L2

z þ S2 � S2
z �jL;K; S;R; J;Xi

¼ þB½JðJ þ 1Þ �X2 þ LðLþ 1Þ �K2 þ SðSþ 1Þ � R2�; ð19aÞ

hL;K� 1; S;R	 1; J;XjBðLþS� þ L�SþÞjL;K; S;R; J;Xi

¼ þB½ðL	KÞðL�Kþ 1ÞðS� RÞðS	 Rþ 1Þ�1=2
; ð19bÞ

hL;K� 1; S;R; J;X� 1j � BðJþL� þ J�LþÞjL;K; S;R; J;Xi

¼ �B½ðJ 	XÞðJ �Xþ 1ÞðL	KÞðL�Kþ 1Þ�1=2
; ð19cÞ
hL;K; S;R� 1; J;X� 1j � BðJþS� þ J�SþÞjL;K; S;R; J;Xi

¼ �B½ðJ 	XÞðJ �Xþ 1ÞðS	 RÞðS� Rþ 1Þ�1=2
: ð19dÞ

We also give matrix elements for the sum of the operators in Eqs.
(19c) and (19d) in the basis set of Eq. (17b)

hL;S; Je;Xe�1; J;X�1j�B½JþðL� þS�Þþ J�ðLþ þSþÞ�jL;S; Je;Xe; J;Xi
¼�B½ðJ	XÞðJ�Xþ1ÞðJe	XeÞðJe�Xeþ1Þ�1=2

; ð20Þ

since this expression will be convenient when discussing molecule
formation from the X� and 2D3/2 or 2D5/2 Ni+ separated ion limits
[34].

The question now arises of how to introduce the empirical cor-
rection factor b into the rotating-molecule problem in a way that is
consistent with its introduction into the non-rotating-molecule
problem. It seems obvious that we must again use b so that
hK = ±1|L±|K = 0i = hK = 0|L	|K = ±1i? +b

p
6, i.e., we must replace

Eqs. (19b) and (19c) above, when K = 0, by

hL;�1; S;R	 1; J;XjBðLþS� þ L�SþÞ j ðL;0; S;R; J;Xi
¼ þbB½LðLþ 1ÞðS� RÞðS	 Rþ 1Þ�1=2

; ð21aÞ
hL;�1; S;R; J;X� 1j � BðJþL� þ J�LþÞjðL;0; S;R; J;Xi
¼ �bB½ðJ 	XÞðJ �Xþ 1ÞLðLþ 1Þ�1=2

: ð21bÞ

Since the quantum number K is not present in the basis set of Eq.
(17b), it is not easy to introduce this correction factor into Eq. (20).

2.6. Rotating-molecule energies for |Xe| = 1/2 states

Because of various possibilities for confusion in this section, we
distinguish more carefully than usual between signed values X and
unsigned values |X| for this quantum number, as well as between
the projection along the diatomic (or linear) axis Xe of the elec-
tronic (or vibronic) angular momentum Je and the projection X
along this same axis of the total angular momentum J (even though
Xe �X for linear molecules).

We are particularly interested in the rotational energy levels of
the |Xe| = 1/2 states in the 3d9 manifold, because these two states
normally exhibit very large X-type doubling. We make the further
assumption in this section that the two |Xe| = 1/2 states are well
separated from each other and from other |Xe| states, i.e., sepa-
rated by energies large compared to BJ. It is then useful, as shown
below, to imagine a continuum of properties for this pair of
|Xe| = 1/2 states. At one limit we have the familiar rotational levels
of a case (a) 2P1/2 state and a case (b) 2R state, corresponding to
Xe = ±1/2 non-rotating-molecule wavefunctions of the form
|K = ± 1, R = 	 1/2i and |K = 0, R = ±1/2i, respectively. At the other
limit we have the relatively unfamiliar rotational levels of a Je = 3/
2, |Xe| = 1/2 state and a Je = 5/2, |Xe| = 1/2 state, corresponding to
Xe = ±1/2 wavefunctions of the form 0.775|K = ±1, R = 	1/2i
� 0.632|K = 0, R = ±1/2i and 0.632|K = ± 1, R = 	1/2i + 0.775|
K = 0, R = ±1/2i, respectively.

Because a case (b) 2R state exists at only one point along this
continuum of wavefunctions, we choose here to use always the
|Xe| = 1/2 state expression for X-type doubling [34]

ErotðjXej ¼ 1=2Þ ¼ BJðJ þ 1Þ � ð1=2ÞpðJ þ 1=2Þ; ð22Þ

where J is half-integral, rather than the 2R expressions for rho-type
doubling [34]

Erotð2RÞ ¼ BNðN þ 1Þ þ ð1=2ÞcN; ð23aÞ
Erotð2RÞ ¼ BNðN þ 1Þ � ð1=2ÞcðN þ 1Þ; ð23bÞ

where N is integral and Eqs. (23a) and (23b) apply to J = N + 1/2 and
J = N � 1/2, respectively. In fact, Eqs. (22) and (23) describe the



Fig. 1. Reduced electronic energy levels (unitless) for a d9 manifold in NiX,
calculated from Eqs. (10a)–(10c) with C4 = 0, and plotted against a ratio (unitless)
involving the spin–orbit coupling constant A in Eq. (2) and the crystal-field
parameter C2 in Eq. (4). Energies for the two X = 1/2 states are plotted as solid
circles –d–. Energies for the two X = 3/2 states are plotted as open circles –s–.
Energies for the X = 5/2 state are plotted as a solid line. Note that spin–orbit coupling
is absent at the extreme left of these diagrams, so that the three energy levels there
are those of a Hund’s case (b) 2R, 2P, and 2D state. Crystal-field interaction is absent
at the extreme right, so that the two energy levels there are those of an atomic 2D3/2

and 2D5/2 state. (a) Energy levels when A and C2 have the same sign. If both constants
are positive (negative), the sign on the ordinate labels is the same as (opposite to) the
sign of the true energy. (b) Energy levels when A and C2 have opposite sign. If A � C2

is positive (negative), the sign on the ordinate labels is the same as (opposite to) the
sign of the true energy. The differences in Fig. 1a and b mainly arise from the fact that
the energy level patterns on the left in these two diagrams are the negatives of each
other, while the patterns on the right are exactly the same.
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same set of rotational energy levels from two different points of
view, so they can be interconverted, but the exact process depends
on the sign conventions adopted for p in Eq. (22), as discussed in
Section 2.7, and on whether the 2R state is a 2R+ or a 2R� state.

Although the details of the physical interactions in the mole-
cules are quite different, matrix elements like those in Eqs. (19)
have been successfully used in the past to explain anomalously
large spin-rotation splittings in several types of |Xe| = 1/2 states.
The procedure has two steps. In the first step, the composition of
a given pair of degenerate non-rotating-molecule |Xe = ±1/2i states
(in some appropriate basis set for the non-rotating molecule)
is either assumed or determined experimentally. In the second
step, matrix elements of Hrot are calculated between the
rotating-molecule wavefunctions |Xe = +1/2i|J, X = +1/2i and
|Xe = �1/2i|J, X = �1/2i corresponding to these states. In one
example of this procedure [40], the compositions of the two 2R
vibronic states arising for v2 = 1 in a linear triatomic molecule
exhibiting the Renner–Teller effect were calculated from the
spin–orbit coupling constant and the Renner–Teller parameter,
after which DR = ± 1 matrix elements of the type in Eq. (19d) were
used to compute the X-type doubling parameter p. In another
example [41], the non-rotating molecule |Xe = ±1/2i states were
assumed to have the K = 0, R = ±1/2 composition appropriate for
a pure 2S+1R state of a diatomic molecule, but the 1/2 states were
assumed to be well separated (because of large second-order
spin–orbit effects) from the other components of the 2S+1R state
so that matrix elements of Hrot between the Xe = ±1/2 pair and
other states could be ignored. Fig. 1 of Ref. [41] presents a diagram
showing how the p M c conversion process works for 2S+1R± states
and for one choice of sign conventions for p. In a third example,
matrix elements like those in Eq. (20) have been used to explain
the large spin-rotation splitting in an excited electronic state
of HgAr+ [42,43] that correlates with the separated atoms
Hg+(2D5/2) + Ar(1S0). This HgAr+ situation is actually quite similar
to the problem under discussion here, since some of the 3d9 states
of NiX can be correlated with Ni+(2D5/2) + X�(1S0).

A general calculation, appropriate for rotational levels of the
two |Xe| = 1/2 states in a d9 manifold, can be carried out as follows.
The 2 � 2 Hamiltonian matrix for the non-rotating molecule is set
up using Eqs. (9a), (9b), and (14a). The required algebraic calcula-
tion can be simplified by formally defining two new variables r and
h (as functions of A, C0, C2, and C4), so that the matrix implied by
Eqs. (9a), (9b), and (14a) has the form

H0 þ r cos 2h þr sin 2h

þr sin 2h H0 � r cos 2h

� �
: ð24Þ

In this matrix, row 1 and column 1 are labeled by |L, Ki|S, Ri =
|2, +1i|1/2, �1/2i, and row 2 and column 2 by |L, Ki|S, Ri =
|2, 0i|1/2, +1/2i, and also

H0 ¼ C0 þ ð1=4Þð�A� 3C2 þ C4Þ;
r cos 2h ¼ ð1=4Þð�Aþ C2 � 5C4Þ;
r sin 2h ¼ þbð3=2Þ1=2A;

ð25Þ

with r always taken to be positive. Note that Eqs. (24) and (25) also
describe the Hamiltonian matrix obtained when row and column 1
are labeled by |L, Ki|S, Ri = |2, �1i|1/2, +1/2i, and row and column 2
by |L, Ki|S, Ri = |2, 0i|1/2, �1/2i.

The column eigenvectors and their eigenvalues from the matrix
in Eq. (24) can then be written rather simply in terms of r and h as

þ cos h

þ sin h

� � � sin h

þ cos h

� �
;

H0 þ r H0 � r

WXe ð2Þ WXe ð1Þ
ð26Þ
for either Xe = +1/2 or �1/2. The (1), (2) labels on the wavefunctions
WXe follow the convention of counting states of the same symmetry
from the lowest energy state upward. Note that there is an arbitrary
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sign in Eq. (26). If, for example, 2h is replaced by 2h � 2p in Eq. (25),
then h is replaced by h � p in Eq. (26). This changes the sign of both
cos h and sin h, corresponding to a multiplication of the original
WXe(1) and WXe(2) wavefunctions by the arbitrary phase factor �1.

We now set up the 2 � 2 matrix of Hrot within electronic-rota-
tional basis functions formed by multiplying the electronic func-
tions in Eq. (26) by appropriate |J, Xi rotational functions.
Consider first the matrix whose rows and columns are labeled by
X = ±1/2 electronic-rotational basis functions formed from the
higher-energy electronic functions W+1/2(2) and W�1/2(2) from
Eq. (26), i.e., the matrix whose rows and columns are labeled (in
the notation |L, Ki|S, Ri|J, Xi) by

Wþ1=2ð2ÞjJ;þ1=2i ¼ þ cos hj2;þ1ij1=2;�1=2ijJ;þ1=2i
þ sin hj2; 0ij1=2;þ1=2ijJ;þ1=2i; ð27aÞ

W�1=2ð2ÞjJ;�1=2i ¼ þ cos hj2;�1ij1=2;þ1=2ijJ;�1=2i
þ sin hj2; 0ij1=2;�1=2ijJ;�1=2i: ð27bÞ

Matrix elements from the parts of Hrot in Eq. (19a) and in Eq.
(19b), which is in fact replaced by Eq. (21a), are diagonal in this
basis set, with the same value in both diagonal positions of the
2 � 2 matrix:

B cos2 h½JðJ þ 1Þ � ð1=2Þ2 þ 6� 12 þ 3=4� ð1=2Þ2�
þ B sin2 h½JðJ þ 1Þ � ð1=2Þ2 þ 6� 02 þ 3=4� ð1=2Þ2�
þ 2

ffiffiffi
6
p

bB sin h cos h

¼ B½JðJ þ 1Þ þ 23=4� � ð1=2ÞB cos 2hþ
ffiffiffi
6
p

bB sin 2h: ð28Þ

Matrix elements from the parts of Hrot in Eq. (19c), which is re-
placed by Eq. (21b), and in Eq. (19d) are off-diagonal in the basis
set of W+1/2(2) |J, +1/2i and W�1/2(2) |J, �1/2i, with the same value
in both off-diagonal positions of the 2 � 2 matrix:

�BðJ þ 1=2Þ½ð1=2Þð1� cos 2hÞ þ
ffiffiffi
6
p

b sin 2h�
� þð1=2Þpð2ÞðJ þ 1=2Þ: ð29Þ

The off-diagonal element of Hrot is equated on the right of Eq. (29) to
the usual splitting expression for |Xe| = 1/2 states, with a subscript
(2) on p to indicate that this is the p value associated with the high-
er-energy |Xe| = 1/2 state. The plus sign used in this definition of p(2)

will be explained in the next section, where e and f levels and parity
are discussed.

Equations analogous to Eqs. (28) and (29) can be obtained for
electronic-rotational basis functions formed from the lower-
energy electronic functions W+1/2(1) and W�1/2(1) in Eq. (26) by
making the formal substitution h ? h + p/2. We then obtain for
the diagonal element

B½JðJ þ 1Þ þ 23=4� þ ð1=2ÞBcos2h�
ffiffiffi
6
p

bB sin 2h; ð30Þ

and for the off-diagonal element

�BðJ þ 1=2Þ½ð1=2Þð1þ cos 2hÞ �
ffiffiffi
6
p

b sin 2h�
� þð1=2Þpð1ÞðJ þ 1=2Þ: ð31Þ

Consider now these X-type doubling results for two limiting
cases. For the first limiting case, we take C2 � 5C4
 |A|
 BJ, so
that crystal-field effects are much larger than spin–orbit effects.
This leads to the limiting values cos 2h = +1 and sin 2h = 0 in Eq.
(25). Substituting these values into Eqs. (28)–(31), and diagonaliz-
ing the implicit 2 � 2 matrix, we obtain the following J-dependent
part of the energy level expressions for the upper (2P) and lower
(2R) X = 1/2 states, respectively
Erotð2PÞ ¼ BJðJ þ 1Þ; ð32aÞ
Erotð2RÞ ¼ BJðJ þ 1Þ � BðJ þ 1=2Þ; ð32bÞ

where as always in this paper, J is half-integral. Eq. (32a) gives the
rotational energy levels of a case (a) 2P1/2 state that exhibits no X-
type doubling. Eq. (32b) can be converted in the usual way [37] to
the familiar BN(N + 1) rotational energy levels of a case (b) 2R state
(where N is an integer) by making the substitution J + 1/2 ? N for
the upper sign choice and J � 1/2 ? N for the lower sign choice.

For the second limiting case we take |A|
 |C2|, |C4|
 BJ, with
A < 0 and b = 1, so that spin–orbit effects are much larger than crys-
tal-field effects. This leads to the limiting values cos 2h = +(1/5) and
sin 2h = �(24/25)1/2 in Eq. (25). Substituting these values into Eq.
(28)–(31) and diagonalizing, we obtain for the upper (2D3/2) and
lower (2D5/2) |Xe| = 1/2 states

Erotð2D3=2Þ ¼ BJðJ þ 1Þ � 2BðJ þ 1=2Þ; ð33aÞ
Erotð2D5=2Þ ¼ BJðJ þ 1Þ � 3BðJ þ 1=2Þ; ð33bÞ

where Eq. (33b) agrees with the results for HgAr+ in Ref. [42].

2.7. Parity considerations

There is a recommended convention [44] for labeling rotational
states of different parity [34,37] in linear molecules with an odd
number of electrons, namely e states have parity +(�1)J�1/2 and f
states have parity �(�1)J�1/2. Following the sign convention for p
in widespread use for the nickel halides [4,6,9,13], we then write

FeðJÞ ¼ BJðJ þ 1Þ þ ð1=2ÞpðJ þ 1=2Þ; ð34aÞ
Ff ðJÞ ¼ BJðJ þ 1Þ � ð1=2ÞpðJ þ 1=2Þ: ð34bÞ

While not specifically discussed here, phase conventions for the
various basis functions have been chosen so that they transform as
follows [37] under the parity operator rv (recall that the labora-
tory-fixed inversion operation E� used to define the parity of a state
corresponds in molecule-fixed coordinates to reflection rv in a
plane containing the diatomic axis [37]),

rv jL;Ki ¼ ð�1ÞL�KjL;�Ki;
rv jS;Ri ¼ ð�1ÞS�RjS;�Ri;
rv jJ;Xi ¼ ð�1ÞJ�XjJ;�Xi;
rv jL;KijS;RijJ;Xi ¼ ð�1ÞJ�1=2jL;�KijS;�RijJ;�Xi; ð35Þ

where we have used L = 2, S = 1/2, and K + R + X = 2X = odd integer
to simplify the last equation. Eq. (35) can be used to show that the
two electronic-rotational basis functions in Eqs. (27a) and (27b) are
related by

rvWþ1=2ð2ÞjJ;þ1=2i ¼ ð�1ÞJ�1=2W�1=2ð2ÞjJ;�1=2i; ð36Þ

with a similar equation relating the electronic-rotational basis func-
tions formed from W+1/2(1) and W�1/2(1) in Eq. (26). Eq. (36) indi-
cates that W+1/2(2)|J, +1/2i + W�1/2(2) |J, �1/2i is an e function,
and W+1/2(2) |J, +1/2i �W�1/2(2)|J, �1/2i is an f function. It is then
a simple matter to note that the e function receives an energy con-
tribution equal in sign and magnitude to the off-diagonal matrix
element, while the f function receives an energy contribution equal
to the negative of the off-diagonal matrix element. Comparison
with Eq. (34) then requires the plus sign on the right of Eqs. (29)
and (31).

The splitting parameters p(1) and p(2) for the two |Xe| = 1/2
states in the d9 configuration of NiX molecules, when signed
according to these symmetry-based conventions, satisfy the fol-
lowing relations
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pð1Þ þ pð2Þ ¼ �2B; ð37aÞ

pð1Þ � pð2Þ ¼ �2Bð2
ffiffiffi
6
p

b sin 2h� cos 2hÞ: ð37bÞ

Eq. (37a) gives a simple way of estimating p for one of the Xe = 1/2
states, if p for the other Xe = 1/2 state is known. Eq. (37b) can be
used to show that the difference in signed p values for the two
Xe = 1/2 states falls between two limits, i.e.

�10B 6 �2Bð1þ 24b2Þ1=2
6 ðpð1Þ � pð2ÞÞ 6 þ2Bð1þ 24b2Þ1=2

6 þ10B: ð38Þ

The existence of Kramers degeneracy for Xe = half-integral
states in a non-rotating linear molecule like NiX can be derived
from the transformation properties in Eq. (35), which are associ-
ated with reflection in a plane containing the linear axis. A consid-
eration of time reversal, which is required to derive Kramers
degeneracy in polyatomic molecules with no point-group symme-
try, can be avoided in this paper.

3. Pictorial representation of electronic energy level patterns in
the non-rotating molecule

The effects of the competition between crystal-field effects and
spin–orbit effects in non-rotating NiX molecules can be illustrated
by a simple diagram if we reduce the number of crystal-field split-
ting parameters from two to one by considering one of the ideal-
ized cases: (i) C4 � 0, (ii) C2 � 0, or (iii) C2/C4 � constant. For
brevity we consider only the first case here. The general scheme
is to first define two limiting cases, one with no spin–orbit interac-
tion (A = 0) and one with no crystal-field interaction (C2 = 0), and
then to define intermediate cases using values of the unitless
parameter (A � C2)/(A + C2) when AC2 > 0, or values of (A + C2)/
(A � C2) when AC2 < 0. These ratios take values lying between �1
and +1 for all possible values of A and C2 satisfying the indicated
relative sign requirements.

Fig. 1a and b shows reduced energy levels (unitless) for the five
spin–orbit components arising from the d9 configuration, as ob-
tained by dividing results calculated from Eq. (10) by (A + C2) when
AC2 > 0 or by (A � C2) when AC2 < 0, respectively. At the left we
have the Hund’s case (b) 2R, 2P, and 2D diatomic-molecule states.
At the right we have the 2D3/2 and 2D5/2 atomic states. In between
we have the molecular states arising when both spin–orbit and
crystal-field effects are present. It can be seen that the energy
ordering of the electronic states in Fig. 1 changes significantly on
going from left to right in Fig. 1a and b, i.e., on going from the
Table 1
Positions of the five spin–orbit components arising from the 3d9 ground electronic configura
of these levels. All quantities are in cm�1, except for b, which is unitless.

Statea T0
b o–cc o–cd o–ce

A2D3/2 2223.5743 44 5 6
B2R+ 1574.1057 �34 �72 2
A2D5/2 829.4761 �34 �3 �4
2R 251.2522 67 94 0
X2P3/2 0 �43 �25 �3

a In the notation of Table 2 of Ref. [3]. In the present work, we use only the X values to
while K and R are not. X = 1/2 for the two 2R states in this column.

b In cm�1 from Table 2 of Ref. [3].
c Observed-minus-calculated residuals and parameter values from a fit to the four pa

determined, but still within one standard error of A = �602.8 cm�1 [33] in the free Ni+ i
d Residuals and parameters from a fit to the three parameters C0, C2, and C4 in Eq. (10), w

the two X = 1/2 states (see text).
e Residuals and parameters from a fit to the three parameters C0, C2, and C4 in Eqs. (10

factor b has been optimized manually to the nearest 0.001. In this fit the residuals are a
model of this paper.

f Parameters from the energy expressions in Eqs. (10) and (14). Numbers in parenthe
g Parameter held fixed during the least-squares fit.
limiting case of no spin–orbit interaction to the limiting case of
no crystal-field interaction.

Fig. 1a and b, and others like them, illustrate how one might at-
tempt to use Eqs. (10a)–(10c) to discuss some part of the changes
in the relative energy pattern for the five spin–orbit components
arising from the 3d9 configuration across the four nickel halides
(including changes in the ground state symmetry species) in terms
of changes in electrostatic crystal-field effects, rather than discuss-
ing them exclusively in terms of changes in the d-electron partici-
pation in the molecular bonding.
4. Comparison with experiment

We now use the formulas derived above to treat the rather
complete experimental spectral information on NiF and NiCl. For
each molecule, the positions of the five electronic-state spin–orbit
components will be treated first, and the X-doubling parameters
for the X = 1/2 states will be treated second.
4.1. NiF electronic energy levels

Columns 1 and 2 of Table 1 give state labels and positions in
cm�1 for the five 3d9 spin–orbit components of NiF taken directly
from Table 2 of Ref. [3]. Column 3 gives observed-minus-calculated
residuals from a least-squares fit of these levels to the four param-
eters A, C0, C2, and C4, using the expressions in Eq. (10). These resid-
uals are quite large and evenly distributed among the five levels.
Column 7 gives the parameter values obtained from this fit. The
spin–orbit constant A is poorly determined and somewhat smaller
in magnitude than that of the free Ni+ ion.

Column 4 gives residuals from an exploratory (and in retrospect
diagnostic) fit of the five levels to the three crystal-field parameters
C0, C2, and C4, with the spin–orbit constant fixed to its value in the
free Ni+ ion, as shown in column 8. Residuals from this fit suggest
that something may be wrong with the treatment of the X = 1/2
states. A visual display of this problem is presented in Fig. 2. Com-
parison of column 4 in Fig. 2, which shows the energy levels calcu-
lated from this exploratory fit, with the observed levels shown in
column 6 indicates that the two X = 1/2 states have been ‘‘pushed
apart’’ too far by the theoretical model. Eq. (9c) indicates that the
two X = 1/2 basis functions are connected by an off-diagonal ma-
trix element +(3/2)1/2A, which takes the value �738 cm�1 when
the Ni+ value for A is used. This off-diagonal matrix element re-
quires the two X = 1/2 states calculated from the model to be
tion in NiF, together with residuals and parameter values from three least-squares fits

Constf Valuec Valued Valuee

A �574(47) �602.8g �602.8g

b 1.0g 1.0g 0.878g

C0 976(48) 976(40) 976(3)
C2 392(66) 391(55) 386(4)
C4 282(88) 273(70) 300(5)

label these states, since X is a good quantum number in the non-rotating molecule,

rameters A, C0, C2, and C4 in Eq. (10). The A value obtained in this fit is very poorly
on.

ith A fixed to its free Ni+ value. In this fit the most serious fitting problems occur for

) and (14), where A has been fixed to its free Ni+ value and the empirical correction
ll below 10 cm�1, which can be taken as an estimate of the accuracy for the simple

ses indicate one standard error (type A, k = 1) [45] from the least-squares fit.



Table 2
Positions of the five spin–orbit components arising from the 3d9 ground electronic
configuration in NiCl, together with residuals and parameter values from three least-
squares fits of these levels. All quantities are in cm�1, except for b, which is unitless.

Statea T0
b o–cc o–cd o–ce Constf Valuec Valued Valuee

B2R+ 1768 �30 �49 2 A �587(39) �602.8g �602.8g

A2D3/2 1646 31 7 8 b 1.0g 1.0g 0.897g

X2P1/2 382 59 74 0 C0 791(40) 791(31) 791(4)
A2D5/2 161 �17 �0 �6 C2 �85(56) �84(43) �88(5)
X2P3/2 0 �43 �32 �5 C4 234(75) 228(54) 263(6)

a In the notation of Fig. 1 of Ref. [10]. In the present work, we use only the X
values to label these states, since they are good quantum numbers in the non-
rotating molecule, while K and R are not. X = 1/2 for the 2R+ state in this column.

b In cm�1 from Fig. 1 of Ref. [10].
c Observed-minus-calculated residuals and parameter values from a fit to the

four parameters A, C0, C2, and C4 in Eqs. (10). The value of A = �587(39) cm�1

obtained in this fit is very poorly determined, but still within one standard error of
A = �602.8 cm�1 [33] in the free Ni+ ion.

d Residuals and parameter values from a fit to the three parameters C0, C2, and C4-

in Eqs. (10), with A fixed to its value of �602.8 cm�1 in the free Ni+ ion. In this fit the
most serious fitting problems occur for the two X = 1/2 states (see text).

e Residuals and parameter values from a fit to the four parameters b, C0, C2, and C4

in Eqs. (10) and (14), where A has been fixed to its free Ni+ value and the empirical
correction parameter b has been optimized manually to the nearest 0.001. In this fit
the residuals are all below 10 cm�1, which can be taken as an estimate of the limit
of accuracy for this simple model.

f Parameters from the energy expressions in Eqs. (10) and (14). Numbers in
parentheses indicate one standard error (type A, k = 1) [45] from the least-squares
fit.

g Parameter held fixed during the least-squares fit.
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Fig. 2. Energy levels of NiF calculated when various interactions in Eqs. (10) and
(14) are ‘‘turned on’’ sequentially. The first column on the left (column 1) gives the
energy of the ten-fold degenerate 2D state of the Ni+ ion when spin–orbit
interaction is suppressed. Column 2 gives the energies of the Hund’s case (b) 2R,
2P, 2D states of NiF calculated when only the crystal-field interaction is turned on
(using C0, C2, C4 from column 8 of Table 1 and A = 0). Column 3 gives the energies of
the case (a) 2R, 2P1/2, 2P3/2, 2D3/2, and 2D5/2 states calculated when the crystal-field
interaction and the diagonal spin–orbit interaction is turned on (using the same C0,
C2, C4 as before and A = �602.8 cm�1 in the operator ALzSz). Column 4 gives the case
(c) energy levels calculated when the crystal-field interaction and the full spin–
orbit interaction are turned on, i.e., using the previous constants and
A = �602.8 cm�1 in the operator A(LxSx + LySz), corresponding to the fit summarized
in columns 4 and 8 of Table 1. Column 5 gives the energy levels calculated in the
least-squares fit summarized in columns 5 and 9 of Table 1, where both the crystal-
field interaction and the full spin–orbit interaction are turned on, and where the
matrix element between K = 0 and K = ±1 is reduced, as shown in Eq. (21b), by an
empirical factor b = 0.878. Disagreements between the calculated levels in column 5
and the observed levels [3] in column 6 (the thick lines) are almost invisible on the
2000 cm�1 scale of this figure. The second column from the right in Fig. 2 shows the
2D3/2 and 2D5/2 energy levels of the free Ni+ ion. The pattern of observed 3d9

electronic levels for NiF in column 6 can thus be viewed either as arising from
crystal-field splittings of the Ni+ atomic ion levels in column 7, or from spin–orbit
splittings of the case (b) diatomic levels in column 2.
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separated by at least 1476 cm�1, when in fact the experimentally
observed separation in NiF is only 1323 cm�1. Attempts to fix this
disagreement by starting the four-parameter fits with smaller val-
ues of A, in the hopes of finding another least-squares minimum in
parameter space, were unsuccessful, e.g., fits starting with
A = �200 cm�1, �300 cm�1, and �400 cm�1 all converged to the
previously obtained fit shown in columns 3 and 7 of Table 1.

After some trial and error, it became clear that that the large
residuals could be reduced by introducing the empirical correction
factor b discussed in Section 2.3, which corresponds physically [27]
to assuming that the |L = 2, K = 0i basis function in the 3d9 config-
uration is contaminated by orbital functions from other configura-
tions. This assumption agrees well with the ab initio results
reported in Table 3 of Ref. [31], i.e., (in their notation) ‘‘the d1

and p1 molecular orbitals are essentially atomic Ni3d, whereas
both r1 and r2 are hybrids between Ni3dr and Ni4s.’’ Columns 5
and 9 of Table 1 show that all residuals can be reduced to 6 cm�1

or less with A fixed to �602.8 cm�1 and b optimized manually to
0.878. This probably indicates the limit of accuracy that can be ob-
tained from the present simple model. We note in passing, that if
both A and b are floated, we then arrive at a (somewhat meaning-
less) exact fit of five lines to five parameters. Nevertheless, even
this exact fit is encouraging, because it gives the physically reason-
able values of A = �606.9144 cm�1 and b = 0.87367. We further
note that these values for b in NiF are quite close to the value
cRp ¼ 0:855 for the corresponding parameter in NiH, given in Ta-
ble 5 of Ref. [27].

We now return to a closer examination of Fig. 2 (which is quite
similar in design to Fig. 3 of Ref. [32]). The first column on the left
gives the (hypothetical) energy of the 2D state of the Ni+ ion when
spin–orbit interaction is removed, and when the zero of energy is
placed at the position of the X = 3/2 molecular ground state, shown
further to the right in the diagram. This 2D level is ten-fold degen-
erate. The second column from the left gives the (again hypothet-
ical) energies of the 2R, 2P, 2D states of NiF calculated when only
the crystal-field interaction is turned on, i.e., calculated from the
values of C0, C2, C4 given in column 8 of Table 1 and a value of
A = 0. Because A = 0, these can be thought of as the calculated posi-
tions of the Hund’s case (b) electronic states arising from the 3d9
electron configuration in NiF. (It is important to remember, how-
ever, that the crystal-field constants used in this calculation were
actually obtained when the spin–orbit constant A was fixed to
�602.8 cm�1). The third column from the left gives the (again
hypothetical) energies of the 2R, 2P1/2, 2P3/2, 2D3/2, and 2D5/2 states
of NiF calculated when the crystal-field interaction and the diago-
nal (in K and R) spin–orbit interaction are turned on, i.e., calcu-
lated from the same values of C0, C2, C4 as before and with a
value A = �602.8 cm�1 in the operator ALzSz. These can be thought
of as the calculated positions of the Hund’s case (a) electronic
states arising from the 3d9 electron configuration in NiF.

The fourth column from the left in Fig. 2 gives the energy levels
calculated when the crystal-field interaction and the full spin–orbit
interaction are turned on, i.e., calculated from the previous con-
stants and a value of A = �602.8 cm�1 in the operator A(LxSx + LySz).
These can be thought of as the calculated positions of the Hund’s
case (c) electronic states arising from the 3d9 electron configura-
tion in NiF. They are qualitatively different from the case (a) levels
immediately to their left, i.e., the repulsions of levels with the same
value of X caused by the off-diagonal (in K and R, but not in X)
spin–orbit interaction are extremely large on the 2000 cm�1 en-
ergy scale of this diagram.

The fifth column from the left in Fig. 2 gives the energy levels
calculated when the crystal-field interaction and the full spin–orbit
interaction are turned on, but when the orbital ladder operator ma-
trix element between K = 0 and K = ±1 is reduced, as shown in Eq.
(13b), by an empirical factor b = 0.878. These are the levels calcu-



Table 3
Positions of the four observed spin–orbit components arising from the 3d9 ground electronic configuration in NiCN, together with residuals, parameter values, and a prediction of
the missing X = 1/2 state from three least-squares fits of the observed levels. All quantities are in cm�1, except for b, which is unitless.

Statea T0
b o–cc o–cd o–ce Constf Valuec Valued Valuee

X = ½ _h 2796i 2730i 2672i A �602.8g �602.8g �602.8g

W1
2P3=2 2238 9 9 9 b 1.0g 0.89g 0.78g

X2
2D3=2 830 �15 �15 �15 C0 1324(11) 1311(11) 1299(11)

X = ½ 755 �2 �2 �2 C2 �589(13) �570(13) �554(13)
X1

2D5=2 0 8 8 8 C4 �559(13) �582(13) �602(13)

a In the notation of Ref. [36]. In the present work, we use only the X values to label these states, since X is a good quantum number in the non-rotating molecule.
b In cm�1 from Fig. 16 of Ref. [36] and a suggestion in Ref. [32].
c Observed-minus-calculated residuals and parameter values from a fit of the four observed spin–orbit components to the three crystal-field parameters C0, C2, and C4 in

Eqs. (10), with A = �602.8 cm�1 fixed to the Ni+ free ion value.
d Residuals and parameter values from a fit of the four observed spin–orbit components to the three parameters C0, C2, and C4 in Eqs. (10) and (14), with fixed

A = �602.8 cm�1 and b = 0.89 (as used for NiF in Table 1 and NiCl in Table 2).
e Residuals and parameter values from a fit of the four observed spin–orbit components to the three parameters C0, C2, and C4 in Eqs. (10) and (14), with fixed

A = �602.8 cm�1 and b = 0.78 (arbitrarily chosen).
f Parameters from the energy expressions in Eqs. (10) and (14). Numbers in parentheses indicate one standard error (type A, k = 1) [45] from the least-squares fit.
g Parameter held fixed during the least-squares fit.
h This spin–orbit component has not yet been experimentally identified.
i Energy for this spin–orbit component predicted from the fit in this column.
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lated in the least-squares fit summarized in columns 5 and 9 of
Table 1. Visual comparison of the calculated and observed energy
levels in columns 5 and 6 of Fig. 2 shows that their energy differ-
ences are almost invisible on a 2000 cm�1 scale.

Starting on the right of Fig. 2, we can compare the observed
electronic energy levels in NiF with the 2D3/2 and 2D5/2 energy lev-
els of the free Ni+ ion. In the author’s opinion, the pattern of ob-
served 3d9 electronic levels for NiF in column 6 of Fig. 2 makes
more sense when viewed as small crystal-field splittings of the
Ni+ atomic ion levels in column 7, than when viewed as large
spin–orbit splittings of the case (b) diatomic levels in column 2.
4.2. NiF rotational energy levels in X = 1/2 states

We now turn to the question of X-type doubling in the two
X = 1/2 states shown in Fig. 2, which should be proportional to
J2X = J [34,37] if interactions with states having other values of X
can be neglected. Neglect of other states should be a good approx-
imation for low-J transitions in NiF, since electronic state separa-
tions are typically hundreds of cm�1, while B values are near
0.4 cm�1, i.e., the relevant Coriolis interaction energy BJ [37]
reaches 100 cm�1 only for J � 250.

A pictorial understanding of the p values given by Eqs. (29) and
(31) can be obtained from Fig. 3, which gives a plot of p(1)/2B(1) and
p(2)/2B(2) (i.e., p/2B for the 1/2 states at lower and higher energy,
respectively) against 2h for the interval 0 6 2h 6 2p, based on
curves calculated from the final-fit constants in column 9 of Ta-
ble 1. These constants and Eq. (25) give a value of 2h = 4.52 rad.
The intersection of the vertical line at this value of 2h in Fig. 3 with
the two p/2B curves then predicts values of �2.51 and +1.51 for the
lower and upper 1/2 states, respectively.

Molecular constants are reported for these two 1/2 states [3,7],
treating them as if they were traditional 2R states, i.e., treating the
splittings within a given N rotational state according to Eq. (23).
We can convert the c values reported in the literature to p values
by comparing Eq. (34) with the difference between two levels hav-
ing the same J = N + 1/2 = (N + 1) � 1/2 in Eqs. (23a) and (23b):

DErotð2R; J ¼ N þ 1=2Þ
¼ ½BNðN þ 1Þ þ ð1=2ÞcN� � ½BðN þ 1ÞðN þ 2Þ
� ð1=2ÞcðN þ 2Þ�

¼ �2BðN þ 1Þ þ cðN þ 1Þ ¼ ðJ þ 1=2Þðc� 2BÞ
¼ �pðJ þ 1=2Þ: ð39Þ

The upper and lower sign choice applies to 2R+ and 2R� electronic
states, respectively, as can be seen by noting that (�1)J�1/2 = (�1)N

for Eq. (23a), which corresponds to the parity of rotational levels
for 2R+ states, etc. Using the assignments and the B and c values
in Refs. [3,7], we obtain the ‘‘experimental’’ p/2B values (subscript
‘‘exp’’) just to the right of the equal signs below

pð1Þ=2Bð1Þ ¼ �2:23exp ! �2:23exp � �2:51theor; ð40aÞ
pð2Þ=2Bð2Þ ¼ �1:19exp ! þ1:19chg � þ1:51theor: ð40bÞ

The theoretical values predicted in this paper (subscript ‘‘theor’’)
are given following the � signs. The value following the arrow in
Eq. (40b) (subscript ‘‘chg’’) is the experimental value with its sign
changed to bring it into agreement with the theoretically predicted
sign (see below).

The values following the arrows in Eq. (40) are in reasonable
agreement with the theoretical values. It is interesting to note that
the sum of these two p/2B values is�1.04, which is within 4% of the
theoretical value of�1 given in Eq. (37a), even though the two p/2B
values themselves are only 89% and 79% of their predicted values.
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column 6 give the observed levels [10], which are probably better viewed as arising
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As a possible contribution to the 4% difference from unity of the
sum of the two p/2B values, we recall that the present model as-
sumes a single B value for all states arising from the 3d9 configura-
tion, whereas the B values reported for the two 1/2 states under
discussion here differ from each other by 1%. This fact requires fur-
ther investigation, however, since the reported B values may just be
effective rotational constants, i.e., constants containing contribu-
tions from L and/or S uncoupling effects, much as the B values for
the two spin components of a case (a) 2P state do [34].

The values following the arrows are shown graphically as short
horizontal lines crossing the vertical line at 4.52 rad in Fig. 3. If
agreement between theory and experiment were perfect, intersec-
tions of the short horizontal lines and the vertical line would fall
exactly on the p/2B versus 2h curves.

We turn now to a more detailed discussion of the experimental
determination of the relative and absolute parity [34] of rotational
levels in the nickel halides. The relative parity can in principle be
determined experimentally, since observed dipole-allowed transi-
tions can be used to divide rotational states into one group with
one parity and another group with the other parity. Relative pari-
ties can be used to obtain a consistency check on the relative signs
of the p constants, which is actually of some importance because of
the theoretical prediction that the two correctly signed p constants
must sum to �2B. As indicated above and in Fig. 3, the p values for
the two X = 1/2 states in NiF should have opposite signs, which
leads to the conclusion that for given J value, the upper (lower)
rotational energy level of the upper X = 1/2 spin–orbit state has
the same parity as the lower (upper) rotational level of the lower
X = 1/2 state. To assign relative parities in NiF, we look (in the sim-
plest case) for a pair of electronic transitions which connect the
two X = 1/2 states from the 3d9 manifold to the same upper state,
which itself should have a measurable X-type doubling. Fig. 1 of
Ref. [3] indicates that four candidate pairs of such transitions have
already been observed, one pair from the [19.7] X = 3/2 upper
state, one pair from [20.1] X = 1/2, one pair from [23.0] X = 3/2,
and one pair from [23.5] X = 1/2. However, for the first, second,
and third of these pairs only one of the two transitions has been
rotationally analyzed. For the fourth pair neither transition has
been rotational analyzed. Examination of all the NiF data [1–7]
indicates that a more indirect way of connecting the two X = 1/2
states is also not available. Thus, until additional rotational analy-
ses are published, relative parities of the rotational levels of the
two X = 1/2 states from the 3d9 manifold cannot be assigned
experimentally. For this reason, it is does not contradict the pres-
ently available experimental information to change the sign of
p(2) without changing the sign of p(1) in Eq. (40), since the former
can be accomplished simply by exchanging the e and f labels on
all branches in the observed line list for the [22.9] 2P3/2 � [1.5]
B2R+ transition in Table 1 of Ref. [3].

Absolute parities can only be assigned on the basis of some theo-
retical model. In the present paper, we have essentially done that in
Section 2. With the conventions adopted, absolute parities of the
rotational levels of the two X = 1/2 states in the 3d9 manifold are
determined by Eq. (34a) and (34b) and the calculated sign of p in
Eq. (29) and (31). For example, for p > 0 and even values of J � 1/2,
the positive parity state of given J lies above the negative parity state
for that J. Absolute parities assigned in this way can then be used to
label + M � transitions as electric-dipole allowed, to label + M + and
�M � transitions as magnetic-dipole or electric-quadrupole al-
lowed, to restrict consideration of perturbations to pairs of levels
with the same parity, etc.

4.3. NiCl electronic energy levels

We now repeat the procedures in Sections 4.1 and 4.2 for NiCl.
Columns 1 and 2 of Table 2 give labels and positions in cm�1 of the
five 3d9 spin–orbit components of NiCl taken from Fig. 1 of Ref.
[10]. Column 3 gives observed-minus-calculated residuals from a
least-squares fit of these levels to the four parameters A, C0, C2,
and C4, using the expressions in Eq. (10). These residuals are again
large (as for NiF) and evenly distributed among the five levels. Col-
umn 7 gives the parameter values obtained from this fit. The mag-
nitude obtained for the spin–orbit constant A is again poorly
determined and somewhat smaller than that in the free Ni+ ion.

Column 4 gives residuals from a fit of the five levels to the three
crystal-field parameters C0, C2, and C4, with the spin–orbit constant
fixed to its value in Ni+, as shown by the constants from this fit gi-
ven in column 8. These residuals resemble those for NiF and again
suggest that something may be wrong with the treatment of the
X = 1/2 states. Column 4 in Fig. 4 shows the energy levels calcu-
lated from this fit. Comparison of these calculated levels with the
observed levels shown in column 6 of Fig. 4 shows that the
X = 1/2 states have again been ‘‘pushed apart’’ too far by the mod-
el, and their observed separation of 1386 cm�1 in NiCl is again
smaller than the minimum of 1476 cm�1 required by the off-diag-
onal matrix element +(3/2)1/2A = �738 cm�1 when the Ni+ value for
A is used.

Column 5 of Table 2 shows that the empirical correction factor b
is again quite effective in reducing the residuals, since they are all
8 cm�1 or less with A fixed to �602.8 cm�1 and b optimized to
0.897. Constants from this fit are given in column 9. We note that
the exact fit of five lines to five parameters (not shown) gives the
values A = �608.2187 cm�1 and b = 0.89144.

The long discussion of Fig. 2 given earlier for NiF could be re-
peated here almost without change for Fig. 4 of NiCl. Instead we
simply note that the observed levels for NiCl cluster even more clo-
sely around the 2D3/2 and 2D5/2 atomic ion states.
4.4. NiCl rotational levels in X = 1/2 states

Fig. 5 gives a plot of p(1)/2B(1) and p(2)/2B(2) (i.e., p/2B for the 1/2
states at lower and higher energy, respectively) against 2h for the
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interval 0 6 2h 6 2p, based on curves calculated from the final-fit
constants in column 9 of Table 2. These constants and Eq. (25) give
a value of 2h = 4.42 rad. The intersection of the vertical line at this
value of 2h in Fig. 5 with the two p/2B curves then predicts values
of �2.46 and +1.46 for the lower and upper 1/2 states, respectively.

For NiCl, rotational analyses involving both of the 3d9 X = 1/2
states have been reported [9,11,13]. Converting the c value in
Table 3 of Ref. [9] to a p(2) value as described in connection with
Eq. (40), and taking the p(1) value directly from Table 1 of Ref.
[13], we obtain the experimental values for p/2B following the
equal signs below.

pð1Þ=2Bð1Þ ¼ þ2:32exp ! �2:32chg � �2:46theor; ð41aÞ
pð2Þ=2Bð2Þ ¼ �1:32exp ! þ1:32chg � þ1:46theor: ð41bÞ

The theoretical numbers obtained here for these same quantities
are given following the � signs. The numbers following the arrows
(with subscript ‘‘chg’’) are again the experimental values, but with
their signs changed to agree with the theoretical predictions (see
below). These changed values differ by only 6% and 11%, respec-
tively, from the theoretical predictions. They are also shown graph-
ically as short horizontal lines in Fig. 5.

For NiCl it is quite useful to look more closely at the relative
signs of the p values, since these can be determined experimentally
from line lists for the [12.3] 2R+ � B2R+ transition [11] and for the
[12.3] 2R+ � X2P1/2 transition [13], which share a common upper
state having measureable X-type doubling. It can easily be shown
that

½Rff ðJÞ � PeeðJÞ�ð12:3�XÞ � ½Rff ðJÞ � PeeðJÞ�ð12:3�BÞ

� ðJ þ 1=2Þ½pð1Þ � pð2Þ�; ð42Þ

where the � sign indicates that centrifugal distortion and other
higher order corrections are not taken into account. Carrying out
this calculation for J = 46.5, 47.5, and 48.5 in the line lists of Refs.
[11,13], and dividing by (J + 1/2) and twice the average B value,
we obtain

½pð1Þ � pð2Þ�=½Bð1Þ þ Bð2Þ� ¼ 3:61;3:61; and 3:60: ð43Þ

The experimentally determined magnitudes (for three different J
values) of the expression in Eq. (43) are consistent with the exper-
imentally determined values for p/2B in Eq. (41) only if p(1)/2B(1)

and p(2)/2B(2) have opposite signs, as predicted by theory and as re-
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Fig. 5. A plot of p/2B versus 0 6 2h 6 2p, as calculated from Eqs. (25), (26), (27a),
(27b), (28)–(31) with b = 0.897 (see Table 2). The theoretical value of 2h for NiCl
from these equations is indicated by the vertical line at 2h = 4.42 radians. The
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value of p/2B for the upper and lower X = 1/2 states of NiCl. The observed values
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and experiment, which is somewhat smaller than that for NiF in Fig. 3, can again be
described by saying that the theoretical value of 2h for NiCl is slightly too large, or
that the amplitude of the sinusoidal curves is slightly too large.
flected in the different experimental signs just after the equality in
Eq. (41a) and (41b).

As mentioned earlier, absolute parities cannot be determined
experimentally, and the signs of all three values in Eq. (43) would
be reversed if the subscript exchange e M f were carried out on all
branch labels for the [12.3] 2R+ � B2R+ transition in Table 2 of Ref.
[11] and for the [12.3] 2R+ � X2P1/2 transition in Table 2 of Ref.
[13] (as well as on branch labels for transitions involving [1.7]
2R+ in Ref. [9]). This exchange would then give the signed p/2B val-
ues following the arrows in Eq. (41), which agree with those pre-
dicted by theory. The author obviously favors making such an
e M f exchange, so it is now of interest to examine what changes
this would require in the original symmetry species and quantum
number assignments and in the original molecular fitting parame-
ters. There are three cases.

An e M f exchange is quite simple for X = 1/2 states that have
been treated as 2P1/2 states: All J assignments are kept unchanged.
The parities of all levels are changed + M �. The signs of all X-dou-
bling parameters (i.e., of p and its centrifugal distortion correc-
tions) are changed. All other molecular constants are kept
unchanged. This is exactly the situation for the X2P1/2 state used
to determine p(1) above. (Note that an analogous procedure would
also apply to states that have been treated as 2P3/2, 2D3/2, 2D5/2,
etc.)

The next simplest situation corresponds to one possibility for
carrying out an e M f exchange for X = 1/2 states that have been
treated as 2R+ states, i.e., treated using the spin-splitting parameter
c: All N and J assignments and all molecular constants are kept un-
changed. The parities of all levels are changed + M �. The 2R+ elec-
tronic symmetry species is changed to 2R�. At first this seems like a
rather drastic thing to do, but Zou and Liu have already suggested
[31], based on their ab initio calculations, that the [12.3] 2R+

assignment in Refs. [11,13] should be changed to [12.3] 2R�. This
is exactly what is required for the e M f exchange proposed here.
(Note that an analogous procedure could also be applied to states
that were originally treated as 2R�.)

The most complicated situation corresponds to the other possi-
bility for carrying out an e M f exchange for states treated as a 2R+

state, i.e., treated using the spin-splitting parameter c: The J assign-
ments, the 2R+ assignment, and all molecular constants except c
(and its centrifugal distortion correction terms) and the band ori-
gin m0 are kept unchanged. The parities of all levels are changed
+ M �. N = J ± 1/2 assignments are all changed to N = J 	 1/2. The
c value is changed to 4B � c. The band origin is changed to
m0 + 2B � c. This is exactly the situation for the B2R+ state used to
determine p(2) above. (Note that an analogous procedure could also
be applied to states that were originally treated as 2R�.)

4.5. NiBr, NiI, and NiCN

The positions of only two of the five spin–orbit components
from the 3d9 configuration have been published for NiBr [15,16]
and NiI [18–20]. None of the four known states for NiBr and NiI
have X = 1/2.

Four spin–orbit components of the 3d9 manifold, with X = 5/2,
3/2, 3/2, and 1/2 have been observed for the related molecule NiCN
[32,36]. The present model should in principle be applicable to
unperturbed vibrationless electronic states in this molecule, which
provides an opportunity to predict the missing X = 1/2 level.
Table 3 shows three fits of the four observed positions to the crys-
tal-field parameters C0, C2, and C4 of the present formalism, with A
fixed to the Ni+ free ion value of�602.8 cm�1, and with b = 1.00 (no
empirical correction to the matrix element hK = +1|L+|K = 0i in Eq.
(13b)), b = 0.89 (similar to the values used for NiF in Table 1 and
NiCl in Table 2), and b = 0.78 (arbitrarily chosen). In contrast to
the fits for NiF and NiCl, these values for b all lead to the same
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(and to rather large) residuals in the NiCN fit. It is thus possible
that the present formalism is less suitable for triatomics than for
diatomics, presumably because the presence of four vibrational de-
grees of freedom in a linear triatomic molecule, instead of only one,
as in the diatomic nickel monohalides, gives rise to many more
opportunities for randomly distributed vibronic perturbations.

In spite of this concern, Table 3 gives the predicted position of
the missing X = 1/2 state obtained from each of the three fits.
The author prefers the prediction at 2730 cm�1, obtained from
the fit with b = 0.89, since similar b values were needed for NiF
and NiCl, but in fact none of the predicted positions in Table 3
are far from the 2773 cm�1 position predicted by ab initio calcula-
tions [32].
4.6. NiH

As mentioned earlier, the large rotational constants of 7 or
8 cm�1 for electronic states of NiH [22,26] make the truncated
2 � 2 matrix approximation used in the present treatment of rota-
tional energy levels invalid. The treatment of the five spin–orbit
components of the 3d9 manifold in the non-rotating NiH molecule
could in principle still be carried out, but for such a treatment to be
accurate at the 1 cm�1 level, all reported band origins would have
to be carefully corrected for various contributions arising from
B[J2 � J2

z + L2 � L2
z + S2 � S2

z ] in the rotational Hamiltonian of Eq.
(15). This brings up the problem of what empirical correction to
apply to the nominal value of hL2i = 6, or BhL2i � 45 cm�1. For these
various reasons, we will not consider NiH in this paper.
5. Discussion

A simple additional test of the formalism in this paper would be
to rotationally analyze one of the several pairs of transitions in NiF
connecting a given upper state to both X = 1/2 states in the 3d9

manifold [10], since this would experimentally confirm or disprove
the proposed change of only one sign in Eq. (40), i.e., confirm or
disprove the theoretical prediction that p(1) and p(2) have opposite
signs in NiF. If the relative signs of the p values from such analyses
agree with the present theory, it would then be the author’s opin-
ion that the e, f labels (and therefore the parity labels) should be
revisited for all observed transitions in NiF and NiCl, to bring both
the signs of the p values of the X = 1/2 states as well as the ± char-
acter of the [12.3] 2R state into agreement with theory, and then to
make the e, f assignments in all other presently observed transi-
tions consistent with these changes.

Other tests of the present formalism involve the more difficult
task of finding and rotationally analyzing the remaining 3d9

spin–orbit components in NiBr and NiI, or of studying the 4d9

spin–orbit components in the palladium halides. As mentioned
above, triatomics like NiCN may be less favorable molecules for
formalism-testing purposes, since the four vibrational degrees of
freedom greatly increase the chances of accidental vibronic reso-
nances causing unwanted perturbations in the positions of the ex-
cited electronic states of the 3d9 manifold.

If sufficient confidence in the present formalism can be estab-
lished, then it might be desirable to extend it to a determination
of the experimentally observed X-doubling parameters in various
X = 3/2 states. Such an extension would probably only involve
applying second-order perturbation theory to the rotationally in-
duced mixing of each X = 3/2 state with both X = 1/2 states in
the d9 manifold, i.e., to the L and S uncoupling induced by J±L	
and J±S	. This second-order perturbation theory would also lead
to ‘‘corrected’’ B values for the X = 1/2 states (i.e., to B values more
closely related to the internuclear distance).
Finally we consider, with the help of Fig. 1a and b, the some-
what confusing question of exactly which Hund’s coupling case
[34] best describes the five spin–orbit components of the three
orbital electronic states occurring in the 3d9 manifold. At the ex-
treme left of these figures, i.e., at �1 on the abscissa, we clearly
have three Hund’s case (b) states. At the extreme right (at +1 on
the abscissa) it seems reasonable to say that we have Hund’s case
(e) states, since L and S are coupled to form a resultant electronic
angular momentum Je = L + S, and the projection Xe of Je is not cou-
pled to the internuclear axis (i.e., there is no energy difference be-
tween the different Xe states for a given Je). For the rest of the
discussion, we assume that we are considering rotational levels
for which BJ/|(A + C2)|� 1 in Fig. 1a or BJ/|(A � C2)|� 1 in Fig. 1b.
(As mentioned earlier, these inequalities will normally be satisfied
for the usually observed rotational levels in the nickel halides, but
will normally not be satisfied for the usually observed rotational
levels of nickel hydride.) Moving a little to the right of �1 on the
abscissa, the D state in Fig. 1a, and the D and P states in Fig. 1b,
will behave like case (a) states, since spin–orbit splittings are large
compared to BJ. The P state in Fig. 1a would probably behave more
like case (b), since its spin–orbit splitting is quite small at values
between �1.0 and �0.5 on the abscissa.

The most difficult question arises when we move somewhat to
the left of +1 on the abscissa, since then: (i) L and S are still coupled
to form a resultant Je = L + S, and (ii) the projection Xe of Je is cou-
pled to the internuclear axis by energies larger than BJ, but (iii) the
usual projections K (of L) and R (of S) along the internuclear axis
are not good quantum numbers. As we have seen above, a position
a little to the left of +1 on the abscissa corresponds to the actual sit-
uation in NiF and NiCl (and probably also to the situation in NiBr
and NiI, though there is no experimental proof of this yet.) Follow-
ing Ref. [34], it is possible to rule out for states lying between +0.7
and +0.8 on the abscissa: case (a), because K and R are not defined
(are not good quantum numbers), as well as cases (b), (d), and (e),
because Xe is well defined. In an early discussion of Hund’s cou-
pling cases [46], Mulliken defined a case (c), which corresponds ex-
actly to this situation, namely L and S are coupled to form a
resultant Je = L + S, the projection Xe �K + R of Je is coupled to
the internuclear axis (i.e., X �Xe is a good quantum number),
but K and R are not individually good quantum numbers. Mulliken
noted in that 1930 paper [46], that no examples of this case (c) had
yet been found. In 1931 Mulliken expanded his definition of case
(c) [47] to its modern form [34], i.e., to states in which only Xe is
a good quantum number, and then applied that label to a number
of molecules. The author is certainly in favor of keeping the well-
established modern definition of case (c), i.e., to require for case
(c) that only Xe be a good quantum number in the non-rotating
molecule, but then to add a prime, i.e., to use the label case (c0),
when Je is also a good quantum number, as it was in Mulliken’s ori-
ginal definition of case (c). Figs. 2 and 4 then indicate that NiF is
close, and NiCl is closer, to this Hund’s case (c0) limit.

States near the middle of Fig. 1a or b are not near any limiting
Hund’s coupling case, and are therefore probably most conve-
niently referred to as ‘‘intermediate coupling’’ states.
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