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Abstract—In recent years, it has been a common practice 
to execute client authentications for network access inside a 
protective tunnel. Man-in-the-middle (MitM) attacks on such 
tunneled authentications have been discovered early on and 
cryptographic bindings are widely adopted to mitigate these 
attacks. In this paper, we shake the false sense of security given 
by these so-called protective tunnels by demonstrating that most 
tunneled authentications are still susceptible to MitM attacks 
despite the use of cryptographic bindings and other proposed 
countermeasures. Our results affect widely deployed protocols, 
such as EAP-FAST and PEAP. 

Index Terms—Protective tunnel, authentication, tunnel-based 
EAP method, man-in-the-middle attack, cryptographic binding. 

I. IN T RO D U C T I O N 

During the last decade, people have been searching for cost-
effective solutions that allow the continued use of legacy pro
tocols for client authentication with existing equipment while 
enhancing the protocols’ security. Tunneled authentications 
were mainly invented for this purpose. Here, authentications 
are executed in a protective tunnel and it is generally believed 
that even though some of the legacy authentication methods 
may be weak, with the protective tunnel, they can still be 
securely used. Current standards efforts within the IETF aim 
to define a standard tunneled authentication protocol to support 
“password-based authentication mechanism, and additional 
inner authentication mechanisms” [1]. 

A tunneled authentication typically consists of two phases. 
First, the client and the authentication server establish a pro
tective tunnel, usually through a tunnel protocol that employs 
public key-based schemes. This phase derives tunnel keys and 
generally includes the authentication of the server. TLS is 
commonly used as such a tunnel protocol [2]. In the second 
phase, the client executes an authentication protocol with the 
server inside the tunnel, i.e., protected by the established keys 
which is referred to as inner authentication in the remainder 
of this paper. The protocol execution commonly ends with the 
derivation of a master session key that can be used later on 
to derive further keys, e.g., traffic protection keys to protect 
subsequent communications. 

Asokan et al. [3] identified a man-in-the-middle (MitM) 
attack on tunneled authentication protocols that exploit that 
tunnel protocol and inner methods are executed independently 
from each other. In the same paper, the authors propose bind
ing the tunnel protocol and inner methods, which is commonly 

referred to as cryptographic binding. Such cryptographic bind
ings have become the de facto mitigation technique for MitM 
attacks on tunneled authentications and are implemented in 
widely deployed tunneled authentication protocols such as 
PEAP [4] and EAP-FAST [5]. In fact, cryptographic bindings 
are a mandatory requirement in the IETF standard for tunneled 
authentication that is currently defined. 

In this paper, we shake the false sense of security given 
by tunneled authentications with cryptographic bindings by 
demonstrating that most of these tunneled authentications are 
still susceptible to MitM attacks. Our analysis shows that 
the standard binding approach can only protect strong client 
authentications with strong key derivation, while this as well 
as all other investigated binding methods fail to protect more 
common use cases, such as legacy password and any non-key 
deriving authentication schemes. In other words, passwords 
and other credentials, sent inside a tunnel and considered safe, 
are in fact still at risk. 

While current solutions are agnostic to the inner methods 
and implementation environments, our analysis shows that the 
applicability and effectiveness of a particular binding method 
depend on the security properties of the inner authentication 
method as well as the network infrastructure. Furthermore, we 
show that using a fixed derivation scheme for traffic protection 
keys for different types of tunneled authentications may expose 
subsequent communications. Further results indicate that other 
proposed countermeasures in form of security policies are 
insufficient and/or impractical in most environments. These 
results are unsettling and affect widely deployed tunneled 
authentication methods, such as PEAP and EAP-FAST. 

In the next section, we briefly review concepts and define 
terms used in the remainder of this paper. In Section III, we 
introduce various binding methods, while Section IV summa
rizes our threat model. In Sections V and VI, we analyze 
the applicability and effectiveness of cryptographic binding 
methods and security policies, respectively. Secure session 
key derivations are discussed in Section VII. In Section VIII, 
we discuss the security pitfalls of widely deployed tunneled 
authentication methods. And finally, in Section IX, we draw 
conclusions. 



II. RE V I E W A N D DE FI N I T I O N S 

This section briefly reviews tunneled authentications and 
previous work. 

A. Tunneled Authentications 

A tunneled authentication, as depicted in Figure 1, consists 
of a tunnel protocol that is executed to establish a protective 
tunnel, an inner authentication method that is executed inside 
the tunnel and, finally, the derivation of a master session key 
that is used to derive traffic protection keys. These subroutines 
are defined in the following paragraphs. 

1)	 Tunnel protocol - A tunnel protocol is a key estab
lishment protocol between a client and a server that 
provides server authentication, mutual authentication or 
no authentication (anonymous tunnel). Since this paper 
focuses on client authentications inside a tunnel, we only 
consider the following two options in the remainder: 

a)	 Anonymous tunnels; or 
b) Tunnels with server authentication. 

In an anonymous tunnel, neither client nor server au
thenticates to the other party and authentications are 
executed later on inside the tunnel. This is sometimes 
used to provide privacy, credential provisioning, or to 
protect pre-shared key-based authentications not directly 
supported by the tunnel protocol. 
This paper explores attacks on tunneled authentications 
inside cryptographically strong tunnels, i.e., we make 
the following assumptions: 
•	 The key establishment used in the tunnel protocol 

cannot be compromised through solving the under
lying hard mathematical problem. 

•	 In tunnels with server authentication, the client is 
assured that the server authentication is bound to 
the key establishment, i.e., only the client and the 
server can obtain the established key. 

In this paper, we use KT to denote a key established 
by the tunnel protocol. A tunneled message is de
noted as T (D1, D2, ..., Dm), where each Di is a data 
field in the message. In our analysis, we assume that 
every tunneled message is encrypted and optionally 
integrity-protected. Note that TLS tunnels always pro
vide integrity-protection and optionally encryption. 

2)	 Inner authentication - An inner authentication method 
provides client authentication to an inner authentication 
server, which may or may not be the same server with 
which the tunnel has been established (see Figure 1). 
We make the following assumptions for inner authenti
cations: 1) the long-term authentication credentials are 
either a secret key Kin (or a password) or a pair of auth 
public/private keys (pkin , skin ), 2) public keys are auth auth 
certified by a trusted third party, 3) whenever a secret 
key is used, the client is authenticated by a keyed hash, 
such as a message authentication code (MAC), and 4) 
whenever the authentication is public key-based, the 
client is authenticated by generating a digital signature. 

Fig. 1. Tunneled Authentication. 

We consider the following categories for tunneled client 
authentications: 

a) Strong authentication & strong key establishment; 
b) Strong authentication & weak/no key establish

ment; 
c) Weak authentication & strong key establishment; 
d) Weak authentication & weak/no key establishment. 

In this paper, we refer to authentications that are based 
on digital signatures or keyed hash with the required 
security strength1 as strong authentications. On the other 
hand, we refer to an authentication as weak authentica
tion if the secret or private authentication credential of 
a client and/or the server can be compromised when
ever an attacker has access to the protocol exchange. 
Examples of weak authentication schemes are schemes 
that exchange secret credentials in the clear, are prone 
to dictionary attacks or use weak hash function such 
as MD5 or HMAC-MD5 that cannot resist pre-image 
attacks [7] to generate the keyed hashes. 
Furthermore, a key establishment as part of an inner 
method is referred to as strong key establishment, if an 
attacker cannot obtain the established key during an on
going session by attacking the underlying mathematical 
problem of the key agreement scheme or the proto
col itself. Unlike attacks on the authentication scheme, 
attacks on the key establishment are time-bound by 
the tolerated protocol delays. Conversely, an inner key 
establishment is considered as weak key establishment, 
if an attacker can obtain the established keys during the 
on-going session. If the inner authentication has a key 
establishment, we use KI N to denote the established 
key. 

3)	 Master session key derivation - The master session key 
is an output of the tunneled authentication and often 
used to protect subsequent communications between the 
client and another network entity, such as a wireless 
access point. We denote this key as KSE S and consider 
the following options for its derivation: 

a)	 KSES = f(KT ), 
b)	 KSES = f(KI N ), 
c)	 KSES = f(KT , KI N ), 

1Please refer to NIST SP 800-57 [6] for guidelines on security strengths 
of algorithms and adequate key lengths. 



Fig. 2. Original Man-in-the-Middle Attack on Tunneled Authentications [3]. 

where f is a key derivation function. In the rest of 
this paper, f is always used to denote a key derivation 
function without special notation. 

B. Previous Work 

MitM attacks on tunneled authentications and authentica
tions in anonymous tunnels have been identified in [3] and [8], 
respectively. For the sake of simplicity, we review the attacks 
for scenarios in which tunnel server and inner authentication 
server are the same entity. The attacks, illustrated in Figure 2, 
consist of the following steps: 

1)	 An attacker executes a tunnel protocol with a tunnel 
server, either by intercepting a tunnel protocol initiated 
by the server with a client or by initiating a protocol 
with the server pretending to be the client. Here, the 
server’s certified static or authenticated ephemeral public 
key pkAS is used to establish the tunnel key KT , i.e., 
the tunnel protocol provides server authentication2. As 
a result, both the server and attacker obtain KT . 

2)	 Then the attacker initiates authentication method X 
with a client pretending to be an authentication server 
(or waits until the client initiates such a session). The 
attacker redirects the client’s responses inside the tunnel 
that has been established in Step 1. From the server’s 
perspective, the client authenticates to the server using 
inner method X . 

3)	 Upon a successful authentication, the master session key 
KSES is derived. At this point, the protocol terminates 
and the authentication server considers the client authen
tication as successful. 

The authors in [3] observed that in order to thwart the 
described MitM attack, the server needs assurance that the 
client is the same entity that executed both, the tunnel protocol 
and the inner authentication method. As a possible counter
measure, the authors suggest deriving a compound key by 
combining either the tunnel key KT with the inner key KI N , 
if available, or the tunnel key KT with the client’s long-term 
inner authentication key Kin So-called explicit protocol auth. 
variants provide key confirmation of these compound keys. 
Both methods are referred to as cryptographic binding in [3]. 
PEAP and EAP-FAST have both adopted the first approach 
with key confirmation, i.e., combining KT and KI N . As an 

2The attack also works for anonymous tunnels. In that case the server’s 
anonymous public key pkanom is used to establish the tunnel. 

alternative to cryptographic bindings, the authors in [3] suggest 
enforcing a policy that prevents authentication methods that 
are tunneled from being executed outside a protective tunnel. 
Similarly, the authors in [8] propose a number of security 
policies, including to prohibit anonymous tunnels, to thwart 
the reviewed attacks. 

EAP-FAST supports mutually authenticated tunnels for ses
sion resumption which prevent MitM attacks. However, the ini
tial full protocol execution is still at risk and, if compromised, 
can compromise subsequent session resumptions as well. 

In our analysis, we show the insufficiencies and practical 
issues of cryptographic bindings and security policies in 
thwarting MitM attacks. 

III. TY P E S O F CRY P TO G R A P H I C BI N D I N G S 

We present four general methods for cryptographic bindings 
in the following subsections. Cryptographic bindings can be 
computed as soon as the required information is available and 
need to be verified before the master session key KSE S is 
derived. Latter is important to prevent attackers from com
puting and using KSES before a failed cryptographic binding 
indicates the occurrence of an MitM attack. 

A. Method A: Standard Binding 

In this method, the keying material KT established through 
the tunnel protocol and KI N established through the inner 
authentication are combined to derive a compound key Kc, 
i.e., 

Kc = f(KT , KI N ). 

For a proof of the binding, the client uses Kc to generate a 
message authentication code 

M AC (Kc, R), 

where R can be a random factor provided by the server, a 
sequence number, a time stamp or a combination of these, 
and sends it to the server. 

Method A is similar to one of the cryptographic bindings 
with explicit authentication defined in [3] and is used in PEAP 
and EAP-FAST. 

B. Method B: Inner Binding 

To remove the dependency with inner key establishments, 
a compound key could be computed using the tunnel key KT 

and the client’s long-term authentication credential Kin 
auth, i.e., 

Kc = f(KT , K in )auth 

As in Method A, the derivation of the key needs to be 
confirmed by the client. 

This cryptographic binding method is similar to one of the 
bindings with explicit authentication in [3] and, to the best of 
our knowledge, has not been implemented yet. Instead of using 
the long-term credential directly, a key derived from it could 
be used in the binding to comply with the “single purpose” 
principle of cryptographic keys. 



C. Method C: Inside-Out Binding 

As Method B, Method C uses the client’s long-term au
thentication credential to generate a binding with the tunnel 
protocol. However, instead of deriving a compound key, the 
long-term credentials are used to sign the tunneled data. In 
particular, if the inner authentication is public key-based, the 
client’s private key skin is used to sign the tunneled message auth 
T (D1, D2, ..., Dm), i.e., the proof of binding is presented as 

S ig(skin	 )).auth, T (D1, D2, ..., Dm 

On the other hand, if the inner method is secret key-based, 
then the client’s long-term authentication key Kin is used auth 
to generate a MAC over T (D1, D2, ..., Dm), i.e., the proof of 
binding is presented as 

M AC (Kin	 )).auth, T (D1, D2, ..., Dm 

Here, instead of Kin , a key derived from Kin could be auth	 auth 
used as the MAC key for the same reason as pointed out for 
Method B. 

Method C is loosely related to the channel binding mecha
nism for EAP methods executed inside an IKEv2 tunnel [9]. 
However, unlike Method C, the method in [9] requires the 
inner authentication to derive a key. 

D. Method D: Outside-In Binding 

Here, the tunnel key and the client’s long-term inner au
thentication key are used to derive a new inner authentication 
key, i.e., 

K	in−T = f(Kin 
auth auth, KT ). 

The new inner authentication key Kin−T is used in the inner auth 
Kin Kin−Tauthentication in place of Note that is anauth. auth 

ephemeral key that will be used only in this session. 

IV. TH R E AT MO D E L 

In our analysis we do not only consider the MitM attacks 
proposed in [3] and [8], but also a new extended MitM attack 
that is a modified combination of both attacks. While the 
original attack relies on the fact that clients may execute inner 
methods outside a protective tunnel, the extended attack ex
ploits that clients may accept the establishment of anonymous 
tunnels. The extended MitM attack is illustrated in Figure 3 
and can be described as follows: 

1)	 As in the original MitM attack, the attacker executes a 
tunnel protocol with a tunnel server, where the server 
is authenticated. The established tunnel is referred to as 
tunnel 2 and is protected by tunnel key KT 

2 . 
2)	 Then the attacker initiates an anonymous tunnel protocol 

with the client posing as the tunnel server. Here the 
attacker’s anonymous public key pkanom is used to 
derive tunnel key K1 and establish tunnel 1. T 

3)	 Now the attacker listens to all messages sent inside 
one tunnel and then redirects the messages into another 
tunnel, making client and server believe they share a 
protective tunnel with each other. 

Fig. 3. Extended MitM Attack. 

Throughout our analysis, we consider an MitM attack on a 
tunneled authentication as successful if at least one of the 
following conditions hold: 
•	 the attacker successfully impersonates a client, i.e., the 

attacker can authenticate to the server as the client, 
•	 the attacker is able to obtain session-specific confidential 

information, such as session keys, and use this informa
tion to launch attacks in the same session, or 

•	 the attacker is able to obtain confidential long-term cre
dentials in an on-line or off-line attack that can be used 
to compromise future sessions. 

V.	 SE C U R I T Y ANA LY S I S O F CRY P TO G R A P H I C BI N D I N G S 

We now discuss the applicability and effectiveness of 
the cryptographic binding methods presented in Section III. 
Throughout our analysis, we distinguish between the four cate
gories of inner authentication methods defined in Section II-A. 
The analysis also covers different implementation scenarios as 
well as the execution of multiple authentications within the 
same tunnel. Our results are summarized in Table I. 

A. Applicability and Other Constraints 

An obvious limitation of Method A is that it only works 
for inner methods that derive keys. On the other hand, this 
results into the benefit that Method A, unlike the other 
binding methods, uses only ephemeral keys for the binding 
computation. 

Methods B and D only work for secret key-based inner 
methods. Methods B and C require that the inner authenti
cation credentials can be used by the tunneled authentication 
protocol. 

The implementation environment of the tunnel protocol may 
not allow to generate tunneled messages, sign them, and then 
send them trough the tunnel. In this case, the signatures in 
Method C need to be sent outside the tunnel, which may not 
be feasible in some applications, e.g., whenever a client needs 
to send all data through a VPN tunnel. Furthermore, Method C 
does not work for inner methods in which inner authentication 
and inner key establishment are inseparably combined, such 
as in password-authenticated key establishments (e.g., [10]). 

The design of Method D has two consequences: 1) it 
requires the modification of the inner authentication method 
contradicting one of the original design goals of tunneled 
authentications, and 2) the inner authentication method can 
only be executed if a tunnel key KT is available. The second 



property prevents the original MitM attack, because the inner well as the proof of binding, respectively. The attacker knows 
method needs to be executed inside a tunnel. However, the both K1 

T and K2 
T and has access to the exchanged data. Hence, 

extended MitM attack presented in Section IV still applies. 

B. Strong Inner Authentication & Key Establishment 

First we consider the ideal case, i.e., the inner method 
provides strong authentication and strong key establishment. 
This refers to inner methods of category (a) as defined in 
Section II-A. 

Whenever applicable (see previous subsection), all cryp
tographic bindings methods prevent the considered MitM 
attacks. Method A prevents the attacks because the attacker 
cannot obtain KI N , and Methods B, C and D because the 
attacker cannot get Kin to compute the respective binding. auth 

C. Strong Inner Authentication & Weak Key Establishment 

We now study a less ideal case, where the client authentica
tion is strong with weak or no key establishment. This refers 
to inner methods of category (b) as defined in Section II-A 
and covers protocols that are exclusively designed for entity 
authentications, e.g., using a token or a personal identity 
verification (PIV) card. 

If the inner authentication has a weak key establishment, 
then Method A is applicable. However, an MitM attacker 
could break the key establishment scheme during the on
going session, derive compound key Kc, and successfully 
impersonate the client. Hence, Method A cannot prevent MitM 
attacks for this category of inner methods. 

Methods B, C, and D all prevent the MitM attacks, be
cause the attacker has no access to the client’s long-term 
authentication credentials Kin , and, thus, cannot compute auth 
the cryptographic binding. 

D. Weak Inner Authentication & Strong Key Establishment 

In this section, we analyze bindings for protocols with weak 
authentication but a strong key establishment. The authors are 
currently not aware of deployed protocols that fall into this 
category (c). 

The standard binding does not successfully prevent attacks 
for inner methods of category (c). An MitM attack would 
be detected due to a failure in presenting the cryptographic 
bindings, however, by then the attacker could be already in 
possession of the client’s long-term authentication credentials. 

Methods B and C both depend on the long-term authenti
cation credentials and thus cannot mitigate the MitM attacks. 
In particular, if the credentials are weak, then the attacker 
can break the cryptographic binding. In any case, the weak 
authentication algorithm enables an MitM attacker to recover 
the client’s authentication credential in an on-line or off-line 
attack. 

Applying Method D, launching the original MitM attack is 
not feasible, however, an attacker could attempt an extended 
MitM attack. Here, the client computes its updated authentica

authentication schemes exchanging secrets in the clear are 
broken. If the inner authentication method is weak because 
Kin has low entropy, then the attacker can obtain the key auth 
in an on-line or off-line dictionary attack. On the other hand, 
if the weakness is due to a weak authentication algorithm 
but Kin has sufficient entropy, then the attacker can only auth 
obtain the updated authentication key Kin−T through an offauth 
line attack on the MAC. This key Kin−T is only used in the auth 
current session. Hence, if given Kin−T and KT one cannot auth 
recover Kin , then Method D prevents the attack and is a auth 
suitable proof of binding. 

E. Weak Inner Authentication & Key Establishment 

Last but not least, we will discuss the worst case, where the 
authentication is weak with a weak or no key establishment, 
i.e., category (d) in Section II-A. Actually, this worst category 
inspired the introduction of tunneled authentications and con
stitutes the most common application. For example, some of 
the EAP methods specified in the original EAP standard [11], 
such as One-Time Password (OTP) and MD5-Challenge, fall 
into this category. Other examples include the widely deployed 
MS-CHAP v1 and v2 authentication protocols ([12], [13]) that 
are vulnerable to dictionary attacks and are nowadays tunneled 
using PEAP. 

In this scenario, the standard binding does not provide a 
proof of binding since an MitM attacker can obtain KI N and 
derive the compound key Kc. 

Methods B, C and D all depend on the security of long-
term authentication credential Kin and, thus, for providing a auth 
valid proof of binding it does not matter whether the inner key 
establishment is strong, weak or does not exist at all. Hence, 
the same discussions as in the previous subsection for inner 
methods in category (c) apply. As a result, only Method D 
may be able to provide a proof of binding under the conditions 
listed in the previous subsection. 

F. Multiple Inner Authentications 

Multiple client authentication methods may be executed 
concurrently or sequentially inside a tunnel, e.g., allowing 
clients to provide different levels of authentication using 
different sets of credentials. 

In general, concurrently executed inner authentication meth
ods are independent from each other and as such each require 
individual protection by a cryptographic binding method. 
Hence, the same discussions as in Sections V-B-V-E apply. 

On the other hand, cryptographic bindings of sequentially 
executed inner authentication methods may be combined to 
a chained cryptographic binding. In particular, given n se
quentially executed inner methods supporting the same cryp
tographic binding, an intermediary cryptographic binding can 
be computed upon the completion of each inner method i, such 

= f(Kintion key Kin−T 
auth auth, K1 

T ), where the server computes that it binds all completed inner methods to the tunnel and to 
Kin−T f(Kin= auth auth, KT ), which will be typically used in a each other. Such a chained cryptographic binding has been 
MAC to compute and verify the inner authentication data as proposed for standard cryptographic bindings (Method A) [5], 
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TABLE I
 
EFF E C T I V E N E S S O F CRY P T O G R A P H I C BI N D I N G ME T H O D S F O R DI FF E R E N T IN N E R AU T H E N T I C AT I O N ME T H O D S .
 

Cryptographic Binding Category (a) 
Inner Authentication Method 

Category (b) Category (c) Category (d) Limitations 
Method A �∗ X† X X 
Method B � � X X - secret key-based inner authentication 

- re-usable long-term credentials 
- not desirable for separate servers‡ 

Method C � � X X - sending signed tunnel data 
- re-usable long-term credentials 
- stand-alone authentication 
- MAC variant not desirable for separate 
servers‡ 

Method D � � � 
with conditions§, 
else X 

� 
with conditions§, 
else X 

- secret key-based inner authentication 
- modification of inner method 
- not desirable for separate servers‡ 

∗�:This combination of cryptographic binding method and inner authentication method resists the MitM attacks. 
†X: This combination of cryptographic binding method and inner authentication method does not resist all MitM attacks. 
‡See our discussion in Section V-G.
 
§The conditions are: Kin has sufficient entropy and given Kin−T and KT one cannot recover Kin
 

auth auth auth. 

where for inner methods that do not have a key establishment, 
an all zero string is used in place of the inner key to derive 
the cryptographic binding. Here the intermediary binding is 
computed as intermediary compound keys 

Ki = f(Ki−1, K i ), for 0 < i ≤ n and K0 = KT ,c c I N c 

where Ki is the key established by the i-th inner method. I N 
Similar chained cryptographic bindings can be designed for 
the other binding Methods B/C/D. 

One may intuitively assume that the security conditions for 
at least some of the tunneled inner methods can be relaxed due 
to the chained cryptographic binding. However, for a binding 
method to prevent the considered MitM attacks on every inner 
method, the properties of the inner methods are not the only 
factor and co-dependent on various implementation factors. 
The problem is quite complex as we will illustrate by means 
of example in the remainder of this section. 

Considering the above formula, let’s suppose the first i ≤ n 
inner methods do not provide strong key establishments, while 
inner method i + 1 does. In this case an MitM attacker 
can compute all intermediary compound keys K1 to Ki, but c c 
cannot derive any subsequent compound keys Ki+1 to Kn .c c 
What does this mean for the security of all inner methods? If 
the protocol instantly verifies each intermediary cryptographic 
binding upon the completion of an inner method and im
mediately aborts after detecting a failure, attacks on weak 
inner authentications and key establishments are limited to 
the first i + 1 and i inner methods, respectively. Otherwise, 
the authentication credentials and key establishments of every 
inner method are exposed to attacks. As an alternative to 
instant intermediary cryptographic binding verification, the 
tunnel key KT could be replaced by compound key Kc 

j 

to protect the next inner method j + 1, creating a chained 
compound tunnel. 

From this example it can be observed that chained bindings 
alone cannot help to relax the requirements on inner methods, 
but in combination with several other implementation factors, 

such as instant intermediary cryptographic binding verification 
or chained compound tunnels, inner methods i with i > 1 
could be from other categories than indicated in Table I 
without compromising the overall security. However, these 
implementation factors render cross-platform implementations 
insecure and require a secure sequence negotiation that ensures 
that the first method in a sequence is chosen according to 
Table I. 

G. Server Implementation Scenarios 

It has been considered as one of the implementation sce
narios for tunneled authentications that the server for the 
tunnel protocol, called tunnel server, may not be the same 
as the server for the inner authentication, called inner server. 
Verifying cryptographic bindings requires a protected interface 
between the tunnel server and the inner server, so that they can 
pass the keys that are necessary for the verification to each 
other (see Figure 1). While one goal of tunneled protocols 
is the preservation of legacy systems, it can be observed 
that most implementations supporting cryptographic bindings 
require changes to the inner server, either to pass on keys to 
the tunnel server or carry out the binding verification. In the 
following we discuss for each binding method under which 
condition the tunnel server and inner server can be separated 
and which server preferably acts as the verifier3 . 

Verifying the standard cryptographic binding requires that 
either the inner server passes the KI N to the tunnel server or 
the tunnel server passes KT to the inner server. Both servers 
can act as the verifier. 

For verifying the cryptographic bindings of Method B, 
either Kin (or its derivative) or KT need to be passed to the auth 
respective server. However, passing Kin to another server auth 
is undesirable because it is a long-term credential. Here, the 
inner server should act as a verifier. On the other hand, if 

3In [3], the verifier of a standard binding is called a “binding agent”, where 
the discussion was developed w.r.t. whether the binding agent should be co
located with the inner server or tunnel server. 



a derivative of this key was used to compute the binding, 
then only this ephemeral derivative key needs to be passed 
to the tunnel server. In this case, the binding verification can 
be performed by either server. 

If Method C is used with digital signatures, then verifying 
the binding includes verifying the signature over tunneled data. 
This is the only case that does not require the modification of 
the inner server, because the tunnel server knows tunneled 
message T (D1, D2, . . . , Dn) while public key pkin and its auth 
certificate are publicly available. However, if Method C is 
applied with a MAC, the verifier needs access to the other 

Kininput key to derive the compound key, i.e., auth or its 
derivative. For the same reasons as discussed for Method B, 
the inner server should act as a verifier if Kin or a key auth 
derived from Kin is required for the binding verification. auth 

When Method D is applied, the binding must be verified 
by the inner server, because it is undesirable to pass long-
term credential Kin to the tunnel server. In this case, the auth 
tunnel key KT is passed from the tunnel server to the inner 
server. Since Method D requires the modification of inner 
methods, the modification of the inner servers does not add 
any additional burden. 

VI. ANA LY S I S O F CO N FI G U R AT I O N PO L I C I E S 

Finally, we discuss the feasibility and effectiveness of 
security policies that have been discussed as countermeasures 
for MitM attacks and could be used whenever cryptographic 
bindings are ineffective or impractical (see Table I). 

Security policies demanding clients to execute inner meth
ods only inside a tunnel [3] or servers not to accept anonymous 
tunnels [8] do not prevent the extended MitM attack presented 
in this paper. In order to prevent the original as well as the 
extended MitM attacks, we derive the following configuration 
policy: 
• Inner authentication methods can only be executed inside 

a server-authenticated protective tunnel. 
The above policy needs to be enforced by the client, because 
the server is unaware of clients engaging in non-tunneled or 
anonymous sessions with an attacker (see Figures 2 and 3). 
However, client-side policy enforcement suffers from several 
difficulties. First of all, a client device may be used inside an 
enterprise intranet as well as in public environments such as 
airports, coffee shops, or home offices for remote access. In 
the former setting, an authentication can be executed without 
tunnel while in the latter, it must be tunneled. Hence, the used 
authentication methods have to allow two modes: tunneled and 
non-tunneled. Furthermore, whenever a password is used for 
user authentication, one cannot rely on the user to distinguish 
whether he is sending data through a tunnel or not. But exactly 
this client capability is necessary to enforce the security policy. 

In addition, anonymous tunnels are still supported by some 
clients. Finally, client devices are more susceptible to attacks 
(e.g., compared to servers) and thus an attacker could tamper 
with the device to hinder the enforcement of the policy or make 
the client believe that data is submitted inside a protective 
tunnel, where in fact it is submitted in the clear. 

TABLE II
 
SE C U R E MA S T E R SE S S I O N KE Y KSE S DE R I VAT I O N F O R DI FF E R E N T
 

IN N E R AU T H E N T I C AT I O N ME T H O D S .
 

Key Derivation Input 
Inner 
Authentication KT KI N (KT , KI N ) 
Method 
Category (a) O ∗ �† � 
Category (b) O X‡ O 
Category (c) O O O 
Category (d) O X O 

∗O: This input key can be used to derive KS E S in combination with a 
suitable cryptographic binding method or enforced configuration policy. 
†�: This input key can be used to derive KS ES with or without 

cryptographic binding. 
‡X: Using this input key to derive KS ES puts communication protected 

under KSE S at risk of compromise. 

VII. SE C U R E SE S S I O N KE Y DE R I VAT I O N 

This section discusses the dependencies between the secure 
derivation of master session key KS E S and different inner 
authentication methods with or without cryptographic binding. 
Only if derived securely, KSE S can be used to protect subse
quent communications. Our results are summarized in Table II 
and it can be observed that only for inner methods with strong 
authentication and strong key establishment, KSES can be 
securely derived from KI N or a combination of KI N and 
KT if no binding method has been used. In all other cases, 
the secure key derivation requires the use of a suitable binding 
method. For example, without cryptographic bindings, tunnel 
key KT cannot be used as only input to derive KSES because 
it is known to MitM attackers. In addition, inner keys KI N 

from weak inner key establishments should never be used 
to derive KSES , while keys from strong key establishments 
paired with weak authentications (category (c)) cannot be 
securely used as sole input because the authenticity of the 
keys cannot be ensured. 

We conclude, that if a suitable cryptographic binding 
method is applied, it is advisable to derive KS ES either 
from both tunnel key KT and inner key(s) KI N or from the 
tunnel key KT alone. When both inner authentication and key 
establishment are strong (category (a)), KI N may be used as a 
sole input to derive KSES . In case of category (c), if the weak 
inner authentication is due to low entropy credentials, only 
when the configuration policy in Section VI is truly enforced, 
KI N can be used as the only input to derive KSE S . If multiple 
inner methods i are tunneled, any combination of inner keys 
Ki may be used to derive KSES as long as the overall key I N 
derivation complies with the previous discussions. 

VI II. SE C U R I T Y PI T FA L L S I N CU R R E N T DE P L OY M E N T S 

Most of the currently deployed tunneled authentications are 
tunnel-based EAP methods such as EAP-TTLS [14], EAP
FAST [5], and PEAP [4]. Based on our findings in this 
paper, we point out some security pitfalls of these tunneled 
authentication protocols. 



A. Standard Bindings 

As we have shown in this paper, the applicability and 
effectiveness of a cryptographic binding method highly depend 
on the inner method executed inside the tunnel (see Table I). 
However, tunnel-based EAP methods allow any type of inner 
method to be tunneled, while either applying the standard 
cryptographic binding (EAP-FAST and PEAP) or no binding 
at all (EAP-TTLS). Obviously, without any binding, MitM 
attacks are feasible unless other countermeasures are applied 
(see next subsection). On the other hand, as demonstrated in 
this paper, using the standard cryptographic binding can only 
protect inner methods with strong authentication and strong 
key establishment. However, such methods are an exception. 
For example, commonly tunneled client authentication proto
cols are MS-CHAP v1 and v2, that are, when not tunneled, 
prone to dictionary attacks and fall into our category (d) 
of inner authentication methods. These and any other inner 
methods without key establishment lead to the computation of 
a trivial compound key Kc. In particular in EAP-FAST and 
PEAP, KI N is replaced with a zero string resulting into a 
cryptographic binding that cannot serve as a proof of binding 
and, thus, cannot mitigate MitM attacks. 

In addition, EAP supports the execution of multiple inner 
methods and we showed in Section V-F that chained crypto
graphic bindings as implemented in EAP-FAST only protect 
against MitM attackers if every inner method provides strong 
authentication and strong key establishment or several other 
security techniques are in place such as instant intermedi
ary cryptographic binding verification or chained compound 
tunnels. However, such additional security measures are not 
specified in the EAP framework or EAP-FAST. 

B. Client-Enforced Security Policies 

With the standard cryptographic binding applied by EAP
FAST and PEAP only preventing the known attacks in a 
few rare applications, the enforcement of the configuration 
policy derived in Section VI becomes crucial. However, the 
proposed policy is difficult to enforce in networks using 
EAP for tunneled authentications, because EAP specifies that 
inner methods should not be modified. Without modifications, 
existing authentication methods cannot be aware of whether 
they are executed inside a tunnel or not, because they cannot 
process any input from the tunnel protocol. Furthermore, 
unmodified existing methods do not output binding-related 
information. As a result, the correct enforcement of the policy 
cannot be verified by the tunneled authentication protocol itself 
and must be ensured by the client alone outside of the protocol 
execution. This is difficult to ensure for the reasons discussed 
in Section VI. 

Note that TLS, the tunnel protocol used by tunnel-based 
EAP methods, supports anonymous tunnels, enabling the ex
tended MitM attack presented in this paper and violating the 
configuration policy. 

IX. CO N C L U S I O N S 

This paper reveals the inconvenient truth about tunnels used 
to protect client authentications, namely that currently used 
tunneling methods are at risk to MitM attacks. None of the 
analyzed cryptographic binding methods is able to prevent 
MitM attacks on tunneled legacy password authentication 
schemes. In fact, the current standard binding only prevents 
attacks on tunneled methods providing strong authentication 
and strong key establishment. 

Our results also indicate that the identified pitfalls of current 
deployments won’t be easy to address. A secure deployment 
of tunneled authentications needs to implement the right 
combination of cryptographic bindings, traffic key derivations 
and configuration policies based on the tunneled methods. 
However, while the presented binding method D is the most 
effective one w.r.t. different categories of inner methods, it has 
the most implementation limitations making it impractical in 
many settings. In fact, method D could not be used in EAP 
methods without breaking existing implementations. In further 
results we showed that client-enforced policies that could 
prevent MitM attacks whenever cryptographic bindings fail 
are impractical in many environments. Concluding, tunneling 
weak client authentication methods is and likely remains an 
insecure practice, further emphasizing the need to ultimately 
replace legacy authentication methods with cryptographically 
stronger methods. 
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