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Generalized ellipsometry of artificially designed line width roughness
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We use azimuthally resolved spectroscopic Mueller matrix ellipsometry to study a periodic silicon line
structure with and without artificially-generated line width roughness (LWR). We model the artificially
perturbed grating using one- and two-dimensional rigorous coupled-wave methods in order to evaluate the
sensitivity of the experimental spectrally resolved data, measured using a generalized ellipsometer, to the
dimensional parameters of LWR. The sensitivity is investigated in the context of multiple conical mounting
(azimuth angle) configurations, providing more information about the grating profile.
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Published by Elsevier B.V.
1. Introduction

Line width roughness (LWR) represents one of the challenges of
today's semiconductor technology process control [1]. With constant-
ly decreasing pitch, the importance of LWR increases as the ratio
between LWR and mean line width also increases. Optical character-
ization tools, proven invaluable for fast and non-destructive inline
process control, require new methods and models in order to achieve
the efficiency needed for the real-time quality measurement of the
LWR [2]. There has been previous demonstration of an optical method
for LWR assessment using reflectometer operating in the Fourier
space [3]. More recent theoretical work on the sensitivity of angularly
resolved data to LWR [4,5] demonstrated the significance of the
problem and explored limits of effective medium approximations for
the purpose of LWR modeling.

It is becoming even more challenging with new applications
requiring measurements to be done in very small (usually less than
100 μm) targets. Such measurements using spectral ellipsometer
techniques require significant focusing of the light beam (with few
degrees wide incidence angles range) in order to access small targets
and achieve sufficient light intensity. The numerical aperture of the
incident light beam puts more demands on the optical modeling and
requires reevaluation of the sensitivity of the optical methods to the
LWR. The effects of the finite numerical aperture include non-
coherent averaging over incidence and azimuthal angles that result
in a “washing out” of the spectral features [6]. This may decrease the
sensitivity of the data to imperfections in line shapes, namely to LWR.
In order to investigate the sensitivity of the Mueller matrix
ellipsometry technique to the LWR, a sample with artificially designed
periodic perturbation of the lines was manufactured using e-beam
lithography. The periodicity does not exactly resemble the random
nature of typical LWR, but it allows the origin of the change in the
spectral optical response to be positively confirmed. The purpose of
this work is to present an approach consisting of finding the proper
parametric model for the unperturbed grating and determining the
magnitude of the change in mean square error (MSE) due to the line
perturbation. The periodic LWR can be modeled using a generalized
biperiodic rigorous model [7]. This approach provides necessary
certainty in order to confirm that the differences in the optical
response are due to the line perturbation and are not due to some
other imperfection or omitted feature(s) in the line grating model.

In Section 2 the basic experimental background is given, together
with a description of the multi-azimuth Mueller matrix ellipsometric
method. Special emphasis is put on the modeling of depolarization
effects caused by the significant numerical aperture of the instrument.
Section 3 summarizes results showing clear distinction between the
quality of fits for the unperturbed and perturbed line gratings.
Differences are explained using a rigorous model for biperiodic
gratings which leads to a comparable quality of the fit for both
gratings. Results are summarized in Section 3.

2. Experimental details and modeling methods

The sample studied in this work was manufactured at the
University of North Carolina, Charlotte, using e-beam lithography to
etch a 736 nm pitch line grating into the silicon wafer. Nominal
heights of gratings are 400 nm with nominal middle widths are
300 nm. Samples with different levels of perturbation are situated
into different 100 μm×100 μm targets. A scanning electron
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Fig. 2. MeasuredM12, M33, andM34 elements of the normalizedMueller matrices, plotted as
functionsof thewavelengthof incident light, for the reference linegrating(solid lines) and the
gratingwithartificial LWR(dashed lines).Graphs showdata acquired for (a) azimuthangle of
0° (planar configuration) and (b) azimuthal angle of 90°.
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microscope image taken from the top of the unperturbed sample is
shown in Fig. 1(a). A second sample has its artificial LWR designed by
periodic modulation (period of 512 nm) of the line-width with the
nominal amplitude being 2% of the line-width [see Fig. 1(b)].

Both samples were measured using a generalized ellipsometer
with an automatic rotating stage at different azimuthal configura-
tions. Measured data consists of 11 elements of the spectrally-
resolved normalizedMueller matrices, where elements in the last row
of the Mueller matrix are not available. The instrument uses focusing
optics in order to project the beam onto the sample with a spot size
smaller than 60 μm at a fixed incident angle of 65°. Experimental
azimuthal angles were chosen from the range between−90° and 90°
with steps of 15° (where the planar configuration corresponds to the
angle of 0°). Azimuths of opposite sign were used simultaneously
during modeling in order to decrease the importance of systematic
experimental errors which do not have the same symmetries as the
natural physical symmetry present in the optical response of the
grating. The information in off-diagonal elements is important for
decorrelating some profile parameters from each other at different
conical configurations (different azimuth angles) and for the sensitive
determination of precise values of azimuthal angles offsets. Measure-
ment errors provided by the instrument are in average usually smaller
than 0.01.

Measurements of the unperturbed line grating and the sample
with the nominal 2% perturbation were taken using exactly the same
azimuthal angles in order to compare the data directly. Due to the
perturbed grating having the same “average width” as the unper-
turbed grating, it is possible to directly compare measured data
without using any model. Comparisons between data measured on
both samples, shown in Fig. 2(a) and (b), illustrate small differences at
two different azimuthal angles (0° and 90°) which are supposedly
caused by the line perturbations. The magnitude of differences
between data demonstrates sensitivity of the spectral ellipsometric
method to the periodic line width perturbation. Differences are not
very large, but are indeed observable and measurable. They also
strongly depend on the azimuthal angle, making some configurations
more sensitive than others.

The optical response of periodic gratings can be modeled using
rigorous coupled-wave analysis (RCWA), which uses Fourier series
expansions of the electric and magnetic fields inside layers within the
structure in order to express and calculate propagating and
evanescent modes. Afterwards, tangential field components are
matched at boundaries between different layers and overall reflection
and transmission coefficients are determined. Standard RCWA
implementations are based on the original work of Moharam and
Gaylord [8,9] using a staircase approximation of the grating profile.
The convergence rate is significantly increased for lamellar gratings
(especially in the case of absorbingmaterials) using factorization rules
that appeared first in the work of Lalanne and Morris [10] and then
mathematically proven by Li [11]. Another standard improvement to
the original formulation [8] is to use the scattering matrix approach
instead of the original transmittance matrix approach. This approach
Fig. 1. Scanning electron microscope images from abov
permits calculations for deeper gratings, which use more terms in the
field expansions, and which otherwise suffer from finite numerical
precision used in all modern computers. In the scattering matrix
algorithm [12], the modes outside of the structure are organized into
two subsets: modes approaching the structure and modes leaving the
structure. This algorithm leads to a more consistent calculation of the
modes propagating through the structure and to an increased stability
of the numerical implementation. Both improvements, combined
with the original work of Moharam and Gaylord (or work of
Rokushima for anisotropic gratings [13]), are now considered as the
standard rigorous method to calculate optical response of periodic
gratings.

Although the optical response of the perfect grating to a plane
wave can be completely described using the Jones matrix formalism
[14], in some measurements, depolarization can appear as the direct
consequence of some experimental imperfections and must be
treated properly. The major source of depolarization considered in
this work is the high numerical aperture (NA≈0.065 [6]) of the
incident beam. As the result, experimental data show depolarization
e (a) unperturbed and (b) perturbed line grating.
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due to the incoherent superposition of the optical response over all
incidence and azimuthal angles included within the numerical
aperture. Depolarization effects are best treated using the Mueller
matrix formalism, where the superposition is straightforward [6,15].
The most significant impact on the measured data can be seen in
spectral regions with sharp spectral features. Neglecting depolariza-
tion effects caused by NA increases root mean square error values by a
factor of about five. Modeling of depolarization in experimental data
has substantial impact on the calculation time due to the necessity to
perform calculations for multiple incidence configurations [6].

3. Results and discussions

In this work, we evaluate sensitivity of advanced ellipsometric
methods to LWR represented by periodic perturbation of lines. The
main goal is to confirm that observed differences between measured
data obtained with and without LWR are solely due to the line width
perturbation and not some other imperfection in the model or
another physical difference between two samples. In order to do
that, we have established a reasonably accurate and stable optical
model of the unperturbed grating based on a multi-trapezoidal
profile shape.

The grating profile is composed of four trapezoids on top of each
other, with a thin silicon dioxide layer on the top of the first one (see
Fig. 3). The profile is parameterized using eleven free parameters
including: the total height, heights of top, and two bottom trapezoids;
five trapezoid bases; offset to the nominal azimuthal angle; and the
thickness of the silicon dioxide layer on the top. The absolute values of
the correlations between parameters are very good, mostly much less
than 0.7 with some exceptions leading up to 0.9. Except for 90°
azimuth, there are no more than two correlations between para-
meters which reach values over 0.7, where the highest values (around
0.88) are typically connected to the heights of the bottom two
trapezoids. At an azimuth of 90°, there are two correlations reaching
0.9 between the total height, the bottom trapezoid height and the
bottom trapezoid base size. As a whole, correlations between profile
parameters are very goodwith the best case being 75° azimuth, where
all correlations were under 0.65.

The profile of the grating was determined for each incident
azimuth separately by a least-squares optimization procedure that
searches for optimal values of model parameters, which provide the
best correspondence between experimental and modeled Mueller
matrix data. Searching for the optimal values of parameters (values
found at local minimum of the parametric merit function) is initiated
using a numerical gradient based method, and the result is used as an
initial guess for the Levenberg–Marquardt method [16,17]. The merit
Fig. 3. Comparison between profiles acquired using the one-dimensional RCWA model
on the reference grating (blue lines) and the biperiodic RCWAmodel of the grating with
artificially designed LWR (red lines). Red profile represents perturbed grating in the
narrow part.
function is defined as a function of free parameter set p using all
experimentally available elements of the normalizedMuellermatrices
as follows:
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where Mx
ij,k denote the ij element of the k-th spectral normalized

Mueller matrix and x stands for the modeled (m) or the experimental
data (e), respectively. Numbers Ns and n denote the total number of
spectral points and the number of free model parameters, respec-
tively. Root mean square error (RMSE) used in the following text is
defined as RMSE=(MSE)1/2.

The resulting profile of the grating defined by the lamellar layers as
it is directly used by the RCWA is shown in Fig. 3 (blue lines) for the
azimuthal angle of 45°. The profile is rather complex with significant
overhang on the top which is crucial for the precise modeling of the
measured data. In fact, it was not before the parameterization
allowing this kind of overhang shape was used that the RMSE
dropped to values smaller than 0.07 for all azimuthal angles. Due to
some parameter correlations, there is some ambiguity about the exact
shape of the overhang profile, but its existence and its significance are
clear. An independent confirmation using atomic force microscopy
(AFM) technique was performed using a critical dimension re-entrant
tip. The results, shown in Fig. 4, clearly show this overhang.

The grating profile was determined for every measured azimuthal
angle separately in order to confirm the stability of the profile and
provide useful information about the accuracy of the model. The line-
width in the middle of the grating height has mean value of 291 nm
with standard deviation of 0.9 nm calculated from 7 different
azimuths. The resulting RMSE values achieved for all azimuths are
shown in Fig. 5 (black boxes) with values increasing with increasing
azimuthal angle (up to 90°). It is a typical trend which reflects the
sensitivity of data to different profile features, where the higher
sensitivity is usually closer to 90° as opposed to 0°. Fig. 5 suggests that
there is still place for improvement for bigger azimuths where RMSE
reach noticeably larger values.

Fig. 5 also shows RMSE values acquired by fitting the same profile
model for the perturbed grating (red circles), showing significantly
greater values than for the unperturbed one. Differences between
RMSE values illustrate sensitivity of our method to the line
perturbation, where larger contrast means higher sensitivity. The
RMSE increases approximately 0.006 – 0.011 over the range of
azimuths. From Fig. 5, we can say that the use of Mueller matrix
ellipsometric methods is very promising for detecting the small line
width perturbation, as there is very clear distinction between the
results for unperturbed and perturbed line grating.

In order to further support the increase of RMSE values being due
to artificial LWR, as opposed to other differences between the
Fig. 4. Grating profile measured by AFM with all scales in micrometers. Line profiles
show a clear presence of an overhang on the top of the grating.
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Fig. 5. Azimuthal dependence of RMSE from the best fits of the unperturbed grating
using the one-dimensional RCWAmodel (black boxes) and the perturbed grating using
the one-dimensional (red circles) and biperiodic RCWA model (blue triangles).

2636 M. Foldyna et al. / Thin Solid Films 519 (2011) 2633–2636
samples, the following study has been carried out. Taking advantage
of the periodicity of our designed line perturbation, we have
proceeded to apply a two-dimensional (biperiodic) model of the
grating, adjusting two additional parameters (the perturbation
feature length and depth) during the optimization process. The result
of the fits is illustrated in Fig. 3 with two profiles compared at an
azimuthal angle of 45°, where the narrower one corresponds to
narrow places of the perturbed line. The mean value of the
perturbation depth obtained by azimuthal fits was 20 nm (around
3.4% of the middle line-width) which is in a good agreement with
21 nm acquired from the original SEM image (see Fig. 1). The middle
line width was reduced by 11 nm in the narrow part of the perturbed
line.

Resulting RMSE values from the biperiodic RCWA modeling are
shown in Fig. 5 (blue triangles) and compared with the unperturbed
grating modeled using the one dimensional RCWA (black boxes). The
comparison shows that the RMSE values are very close, which
confirms that when the effect of the artificial roughness is correctly
taken into account using the biperiodic model, the differences in the
quality of fits disappear. This positive confirmation of the rising of
RMSE values being solely due to artificial LWR allows us to conclude
that the presented ellipsometric method is very sensitive to
imperfections of grating lines. Moreover, it is apparent that even
smaller artificial LWR can be detected and distinguished from other
effects as there is sufficient difference between the RMSE values.

4. Conclusions

In this work we have presented an advanced ellipsometric method
applied to the study of line-width roughness. Measurements and
RCWA modeling were performed on the reference etched silicon line
grating and the grating with artificially designed periodic line-width
roughness. The multi-azimuth, Mueller matrix method used in this
work allowed for a conclusive decision on the correctness of the
proposed grating profile and helped to identify the overhang on the
top of the grating line, which had a tremendous impact on the quality
of the fit. The RMSE values for the reference and perturbed grating are
acquired separately for multiple azimuths and show large differences.
These differences disappear as soon as the proper 2D model of the
artificial line width roughness is applied.

We can conclude that the ellipsometric method presented is very
sensitive to artificial LWR and can be used to conclusively confirm
origins of differences between optical responses of gratings with and
without significant LWR. The multi-azimuth method improved the
robustness of the method as there are different correlations between
parameters at different azimuthal angles.
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