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OCR Error Rate Versus Rejection Rate for Isolated
Handprint Characters

Over twenty-five organizations participating in the First Census OCR Systems Con-
ference submitted confidence data as well as character classification data for the digit
test in that Conference. A three parameter function of the rejection rate r is fit to
the error rate versus rejection rate data derived from this data, and found to fit it
very well over the range from r = 0 to r = 0.15. The probability distribution un-
derlying the model e( r) curve is derived and shown to correspond to an inherently
inefficient rejection process. With only a few exceptions that seem to be insignificant,
all of the organizations submitting data to the Conference for scoring seem to employ
this same rejection process with a remarkable uniformity of efficiency with respect to
the maximum efficiency allowed for this process. Two measures of rejection efficiency
are derived, and a practical definition of ideal OCR performance in the classification
of segmented characters is proposed. Perfect rejection is shown to be achievable, but
only at the cost of reduced classification accuracy in most practical situations. Human
classification of a subset of the digit test suggests that there is considerable room for
improvement in machine OCR before performance at the level of the proposed ideal is
achieved.

Over 40 different OCR systems using different preprocessing, feature extraction, and
classification algorithms were represented in the First Census OCR Systems Conference. [1]
The Conference provided three tests, one with 58,646 segmented digits, a second with
11941 segmented upper case letters, and a third with 12,000 segmented lower case let-
ters. Over 115 test results representing different systems and tests were submitted to
NIST for scoring as part of the Conference.

Most of the test results submitted for scoring were accompanied by confidence files, and
most of the rest by rejection files. Rejection files contain integers from the set {0,1},
one integer per test-character image. A 1 indicates that the hypothetical classification
should be scored as a reject rather than as correct or incorrect, and a 0 indicates that
the classification should be scored as correct if identical to the correct classification,
and incorrect otherwise. Each rejection file defines one point e(r) on the error rate e
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Figure 1: Error rate versus rejection rate for all systems providing confidence data with their
classifications for the digit test.

versus rejection rate r curve, so many rejection files per hypothesis file are needed to
show the detailed shape of the curve.

Confidence files contain fixed point numbers on the range from 0.0 to 1.0 inclusive,
one confidence per test character image. The ordering of the confidencedata indicates
the order in which the hypothetical classifications should be rejected as unclassifiable
when generating error rate versus rejection rate data for the given test and system.
Only one confidence file per hypothesis file is needed to show the full detail of the e( r )
curve.

Figure 1 (2) showsall of the error rate versus rejection rate e( r) data calculated over the
range 0 ::; r ::; 0.15 for all of the systems that submitted confidence (rejection) files to
the Conference. Figure 1 suggests at least two questions: 1) Is there any significanceto
the fact that all of the curves in that figure seem to have similar shapes with a strong
negative correlation between e(O) and dIn e(O)jdr, and 2) how close does the lower
envelope of the curves in that figure come to the ideal OCR system performance?

To answer the first question, we derive the relation between the function e(r) and its
underlying probability distribution q( r). We then show that the e( r) data calculated
from the test results submitted with confidencefiles is well described over a significant
range of r by a simple three parameter equation, and that the probability distribution
q( r) associated with this equation represents an inherently inefficient rejection process
compared to the perfect rejection process.

We also show that we do not have techniques that allow us to answer the second
question. However, comparison with human classification of a subset of the digit test
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Figure 2: Error rate versus rejection rate for all systems providing rejection data with their
classifications for the digit test.

suggests that there is considerable room for improvement in both e(O) and in e'(r)
beyond the lower envelope of the e( r) curve in Fig. 1.

The discussion in this paper is confined to the digit test of the First Census OCR
Systems Conference, but the results were similar for the upper and lower case letter
tests, with a single qualification: e(O) ~ 0.05,0.10, or 0.20 for the digit, upper case,
and lower case tests, respectively, for roughly half of the results submitted for scoring.
The e(r) curves for all three tests are plotted over the range a ~ r ~ 0.50 fo~all of the
systems submitting results in the Conferencereport. [1]

2 Error rate versus rejection rate

Let A be a subset of the ASCII character set, let T be a set of segmented character
images, let H be a function whose domain is T and whose range is A, and let R be a
set of subsets of T including T, such that for each non-empty set that is a member of
R there is one and only one set in R that has one less member.

H is a set of hypothetical classificationsof T, and R is a complete rejection set for H.
The rejection rate r is defined for each subset of T in R as the ratio of the number
of members of that subset to the number of members of T. The classifications in H
that correspond to the images in each rejection subset of R are rejected rather than
scored correct or incorrect to generate each e( r) point. The classifications that are not
rejected are said to be accepted.



For any given T, the range of the variable r is a discrete set, but for simplicity, we
treat it as a continuum in the following analysis. Let q( r) be the fraction of the
classifications rejected as the rejection rate is changed from r to r + dr. Thus, q(r) is
the probability as a function of rejection rate r that a rejected classification is actually
an incorrect classification. In this case, the error rate e( r), which is defined as the
ratio of accepted (unrejected) classifications that are incorrect to the total number of
accepted classifications, is given by

e(r) = e(O) - f(r),
l-r

f(r) =lr

q(s)ds

is the fraction of the rejected classifications as a function of r that are actually incorrect,
and is equal to r for perfect rejection. Equations 1 and 2 may be combined to give the
slope of the error rate,

e'(r) = e(O) - f(r) - f'(r)(l- r) = e(r) - q(r).
(l-r)2 l-r .

where ec is a constant. This means that the probability of rejecting an incorrect classi-
fication is equal to the fraction of incorrect classifications remaining in the unrejected
sample. In this case, the rejection mechanism just rejects classifications at random.

e(r) = e(O) - f(rl) - qc(r - rl)
l-r

over the same subrange. Equation 6 can be written in terms of r2 instead of rl, but
due to the integral definition of f(r) in eq. 2 only one of the two end points of the
interval over which q( r) is constant is needed to express the derivative in this case.



e( r) = h( r ) e(0) - r .
1-r

3 Ideal OCR system performance

Wilkinson and Geist [2]point out that it is not necessarily possible even in theory for
an OCR system to correctly classify every test image in a real sample of segmented
hand-printed characters without errors due to reader/writer (WR) ambiguity. The
best performance that can be postulated for an ideal OCR system presented with WR
ambiguous characters is 1) that it classify every WR unambiguous character image
correctly and assign it a confidenceof 1.0, and 2) that it classifyevery WR ambiguous
image as the most probable character and assign it a confidence equal to the WR
probability that the classification is correct over the appropriate set of writers and
readers. This requires that the system ambiguity be identical to the WR ambiguity for
each image in the test set. Conditions 1) and 2) constitute a practical definition of an
ideal OCR system with respect to the task of classifyingsegmented characters.

It is important to distinguish between the system probability ps(r) that a classification
is correct and the WR probability pWR(r) that a classification is correct. The WR
probability is an a priori probability defined by a set of writers and a set of readers,
which establishes the upper bound for the system probability. On the other hand, the
system probability that a classificationis correct ps( r) is an a posteriori probability
equal to 1 - q(r). For Conditions 1) and 2) in the preceding paragraph to hold, it is
necessary that ps(r) = pWR(r).

It is also important to understand that an ideal OCR system as defined above will
not produce the perfect e( r) curve of eqs. 7 and 8 unless there are no WR ambiguous
characters in the set of test images. However,it is possible to trade off performance
with respect to ideal OCR system behavior to improve rejection performance. In the
extreme case, one can purposely reclassify images with low confidences incorrectly
using a character that is not allowed. This assures that the probability of rejecting an
incorrect classification is unity, and therefore produces the perfect rejection behavior
of eq. 8 while simultaneously increasing the error rate over the range of r where this
strategy is employed. The bottom line is that the overall system performance at any
value of r is no better, and is probably worse, but the rejection process is perfect. On
the other hand, this does not mean that a near perfect rejection curve is necessarily a
symptom ofnon-ideal classification. Perfect rejection is possiblewith WR unambiguous



images. This discussion shows that the analysis of e(r) curves requires care to assure
that false conclusions are not drawn.

Finally, the fact that Conditions 1) and 2) are given in terms of probabilities means
that an OCR system satisfying them is ideal only in a statistical sense. It is possible
for a non-ideal OCR system to out-perform the ideal system on any given test, but,
by definition, this cannot happen for the ensemble average of tests over which the WR
probabilities are defined.

4 Form of Conference e(r) data

To answer the first question posed in Section 1 about Fig. 1, we attempted to fit all of
the data in that figure to a simple model. A visual examination of the curves in that
figure suggests that they might be well described by

e(r) = (eo - emin) exp(-r/ro) + emin.
1-r

To test this conjecture, we fit the natural logarithms of the measured e(r) data to the
natural logarithm of eq. 9 over the range 0 ~ r ~ 0.15, where eo ;:::0, emin ;:::0, and
ro ;:::0 were adjusted in the fit. Natural logarithms were used to minimize the variance
of the relative differences between the model and calculated e( r) values rather than
the variance of the absolute differences.

The results of the fits are summarized in Table 1, which lists the values of eo, emin,
and ro for each curve in Fig. 1. This table also lists the residual standard deviation CT

of each fit, and two ratios R1 and R2 that will be described later.

Eight data points were used in each fit. Three parameters were estimated. This leaves
five degrees of freedom in each fit. Because the fits were carried out on the natural
logarithms of the data, the residual standard deviations of the fits are actually the
standard deviations of the relative differences between the measured error rates and
those predicted by eq. 9. Thus a residual standard deviation of 0.01 corresponds to a
standard deviation of the relative errors of the fit of 1% over the range of the fit.

Equation 9 fits the data of Fig. 1very wellas should be expected from visual inspection
of that figure; only two residual standard deviations are greater than 3%, and two thirds
are less than 2%. In fact, most of the e( r) curves for all of the tests and all of the
systems are well described byeq. 9 over a subrange 0 ~ r ~ rsb and by

over a subrange rsl ~ r ~ rs2, where es, rsl, and rs2 are system dependent constants,
rsl ~ rs2, and rs2 ~ 0.15. The results of fits of eq. 9 to the e(r) data obtained for the



SYSTEM q eo emin TO R} R2
AEG 0.0284 0.0347 0.0011 0.0525 0.6279 0.4889
ASOL 0.0319 0.0922 0.0000 0.2032 0.3971 0.2309
ATTJ 0.0293 0.0326 0.0018 0.0509 0.5915 0.3838
ATT..2 0.0159 0.0363 0.0013 0.0533 0.6942 0.5558
ATT-3 0.0721 0.0505 0.0077 0.0481 0.8828 0.5745
ATTA 0.0199 0.0417 0.0012 0.0607 0.6540 0.5005
ERIM_1 0.0207 0.0391 0.0002 0.0597 0.6373 0.5336
ERIM.2 0.0151 0.0395 0.0009 0.0635 0.6208 0.4810
GTESS_1 0.0126 0.0667 0.0000 0.1044 0.6127 0.5082
GTESS..2 0.0068 0.0677 0.0030 0.1027 0.6030 0.5358
HUGHES_1 0.0288 0.0501 0.0000 0.0846 0.5697 0.4142
HUGHES.2 0.0298 0.0497 0.0000 0.0901 0.5274 0.4607
IBM 0.0144 0.0349 0.0016 0.0523 0.6233 0.5213
IFAX 0.0032 0.1703 0.0196 0.2062 0.6763 0.6724
KODAKJ 0.0415 0.0490 0.0008 0.0764 0.6109 0.4184
KODAK..2 0.0191 0.0413 0.0006 0.0708 0.5743 0.4117
NESTOR 0.0165 0.0452 0.0022 0.0650 0.7177 0.5268
NIST_2 0.0041 0.0918 0.0000 0.1469 0.5872 0.5552
NIST_3 0.0053 0.0973 0.0000 0.1386 0.6698 0.6357
NISTA 0.0117 0.0501 0.0014 0.0782 0.6403 0.4941
NYNEX 0.0244 0.0441 0.0022 0.0674 0.6717 0.4708
OCRSYS 0.0042 0.0155 0.0134 0.0348 0.0474 0.0370
THINK_1 0.0093 0.0493 0.0017 0.0720 0.6928 0.5143
THINK..2 0.0195 0.0382 0.0022 0.0539 0.7413 0.5913
UPENN 0.0039 0.0905 0.0004 0.1484 0.5682 0.5436
VALEN_1 0.0078 0.1811 0.0000 0.2525 0.6534 0.5235
VALEN..2 0.0130 0.1595 0.0000 0.2228 0.6604 0.5166

upper case and lower case letter tests, which can be found in Ref. [1], are very similar
to those shown in Table 1. However, the single ratio shown in that reference is a less
useful efficiencymeasure than the two ratios R1 and R2 that are discussed in the next
section.

e'(O) = _ eo(l - TO) - emin .
TO

din e(O) e'(O) 1- TO - emin/ eo
dT = e(O) = TO



Since ro ~ e(O) < 1 and emin < eo for the systems in Table 1, dlne(O)ldr becomes
more negative as e(O) decreases. This produces the strong negative correlation between
e(O) and dlne(O)ldr in Fig. 1.

5 Significance of shape of e( r) function

Equation 10 corresponds to the case where the rejection process has degenerated to a
random sampling of the unrejected classifications, as described in connection with eq.
4. On the other hand, according to eq. 3, eq. 9 corresponds to the case where the
probability of rejecting a classification that is actually incorrect is given by

() eo - emin ( I )q r = ----exp -r rO ,
rO

()
e(r)(l- r) - emin

q r = -------,
rO

The probability distribution of eq. 15 is an improvement by a factor of 1/ro over
the probability distribution for a completely random rejection process given in eq. 4,
but it is still greatly inferior to the distribution for a perfect process. In fact, no
probability distribution that is proportional to e(r) can be efficient, because the very
act of reducing e( r) through the rejection process reduces the efficiency with which
incorrect classifications are rejected.

The two ratios R1 and R2 in Table 1 address the efficiency of the rejection process.
When e( r) satisfies eq. 9, e'(O) is given by eq. 11 and is bounded below by e(O) - 1
according to eq. 6. Thus

e'(O) eo(l - ro) - emin
R1 = e(O) - 1 = -r-o[-l---e-(O-)]-

in Table 1 is a measure of the efficiency of a rejection process over the range of r (if
any) for which it satisfies eq. 9. On the other hand, eq. 9 describes a very inefficient
rejection process, so



where r2 has a small value, is a measure of how efficientthe early part of the rejection
process is compared to the perfect process described by eq. 8. For Table 1, r2 =
0.02. Since R1 and R2 measure efficiencyover different ranges of r, they are not well
correlated in Table 1.

The question that this section addressed was whether or not it is significant that all
of the e( r) curves in Fig. 1 appear to have the same shape. The answer is yes. All of
the systems producing the e( r) data in that figure seem to employ an inherently ineffi-
cient rejection process for which the probability of rejecting an incorrect classification
decreases in proportion to the fraction of incorrect classificationsremaining in the un-
rejected set of classifications. For all but three of these systems the proportionality
constant ranges from 53% to 74% of the maximum value consistent with this type of
rejection process. Two of the three are significantly less efficient, and the third is a
little more efficient (88%), but has a relatively large (7%) residual standard deviation
of the fit.

The use by 23 of 26 systems of what is essentially the same rejection process with a
factor of 1.4 variation in its efficiencyconstitutes surprising uniformity in light of the
fact that e(O) ranges over a factor of more than 5.5 for the same systems, and the fact
that these systems employ diverse preprocessing, feature extraction, and classification
algorithms.

Both Figs. 1 and 2 have one curve that becomesflat for very small r. Both curves were
obtained from the same system because both rejection files and confidence files were
submitted with the hypotheses files for this system. This system had a significantly
better value for e(O) and a significantlyworsevalue for for dln( e(O))jdr than any other
system. There is also a system in Fig. 2 whose e( r) curve is defined by only two
points, but which employs a rejection process that is significantly more efficient than
any of the others shown in Figs. 1 and 2. However, 90% of the classifications that
were rejected by this system to generate its second point (e(0.03) = 0.0186) in Fig.
2 had been classified incorrectly on purpose by submitting an illegal character as the
hypothetical classification. So e(O) was artificially increased to improve rejection. The
rest of the e( r) curves in Fig. 2 are not significantly different than those in Fig. l.
Thus, 34 out of 38 OCR systems show remarkable uniformity in the nature of their
rejection process, and there does not appear to be anything significant from the point
of view of rejection theory about the 4 outliers.

Thus the answer that the shape of the e( r) curve signifiesa very inefficient rejection
process combined with the fact that there is a surprising uniformity among the e( r)
curves leads to a new question. Is the shape of the e( r) curve determined in some
fundamental way by the data? For instance, is it possible that the WR unambiguous
images are distributed in image space in such a way that inadequacies in preprocess-
ing, feature extraction, and classification generate system ambiguities whose rejection
probabilities are given by eq. 13. If so, rejection efficiencywill be improved by the



same measures that improve forced decision accuracy. If not, special measures would
apparently be required to substantially improve rejection efficiency.

6 Comparison with human performance

It is not clear that we have the means to determine the ideal e(r) curve for any given
test. Nevertheless, results of human classification are certainly a good start. One of
the authors (JG) classified the first 10,000 images in the digit test under the same
test conditions as the OCR systems represented in the Conference. The results were
e(O) = 0.0157 and e(0.0122) = 0.0035.··
The human value for e(O) is very close to the lowest value, e(O) = 0.0156, obtained by
any of the systems represented in the Conference, but this is misleading. All images
that were perceived by the human classifier to be ambiguous were classified as question
marks, which artificially increased e(O) while producing perfect rejection for 0 ~ r ~
0.0122. Even a non-optimum strategy like random guessing would have reduced e(O) by
0.1 X 0.0122 = 0.0012. Furthermore, many of the ambiguities existed between only two
digits, so confining the guessing to the two most likely possibilities might have reduced
e(O) by as much as 0.5 x 0.0122 = 0.0061. Thus the human might have been able to
obtain 0.0096 ~ e(O) ~ 0.0145, while leaving e(0.0122) unchanged. If the human were
able to choose the more (or most) likely of the classifications when ambiguities existed,
then even lower values for e(O) would be possible.

Moreover, the fact that the human value e(0.0122) = 0.0035 is well over a factor offour
lower than the lowest value of e(0.0122) in Figs. 1 and 2 strongly suggests that the lower
envelope of the curves in those figures is still far from the performance of an ideal OCR
system. The only caveats are that the human performance was obtained for a single
human on a single test that is a subset of the test used for the OCR systems. Grother
[3]has shown that it is unlikely that the human result would be significantly different
for the complete digit test. It is also unlikely that the factor of four superiority of the
human result is a statistical fluke that would change significantly over an ensemble of
tests involving more writers and more human classifiers.

There is a fundamental problem with using a single human in an attempt to deter-
mine the ideal e(r) curve for a set of real-world character images such as used in the
Conference. Humans are not comfortable, and maybe not even capable, of generating
confidences for their classifications. Humans with sufficient incentive are quite happy
rejecting ambiguous characters images while classifying those that they find unambigu-
ous, but they are not so comfortable assigning a single classification to an ambiguous
image, much less a confidence. Even the plurality vote of a large number of human
classifiers will suffer from this problem unless it happens that different humans usually
find different character images ambiguous.

Our experience suggests that it might be possible to get humans to generate the data
needed to calculate an e(r) curve in a multipass process. On the first pass each human



would hit the appropriate keyboard key to classify the subjectively unambiguous char-
acters,-and reject the rest by typing a question mark. The second pass would present
only the rejected characters for classification. On this pass each human would hit two
different keys to assign two different classes to any images that were subjectively am-
biguous between only two characters, and so forth. We can even imagine letting the
human classifiers hit the key corresponding to each character of an ambiguous charac-
ter set a number of times proportional to his or her subjective estimate of the relative
plausibility of the classification. Still, it is not clear that humans would be comfortable
with this task when more than two-character classifications were attempted. Never-
theless, pooling the results of a number of human multipass classifications might give
a good estimate the ideal e(r) curve for a given set of test images, at least over a useful
subrange of r.

We have derived the relation between e(r) and its underlying probability distribution
q( r). We also showed that the e(r) data submitted for the digit test of the First
Census OCR Systems Conference are well described for 0 :$ r :$ 0.15 by eq. 9, and
that the corresponding probability distribution q(r), given in eq. 13, describes an
inherently inefficient rejection process compared to the perfect rejection process. We
have introduced some measures of the efficiencyof the rejection process for isolated
character OCR, and have proposed a definition of ideal performance in the latter
task. The definition is statistical in nature, but it is general enough to allow ideal
performance to be better than human performance, since we have no reason to expect
human performance to be ideal. We have also discussed the difficulties of determining
ideal performance on any given test, and have compared the digit test results to human
classification of a subset of that test. The results suggest that there is considerable
room for improvement in machine OCR before it can challenge human performance
for accuracy. Of course, that does not mean that it cannot already challenge human
performance in applications where accuracy must be balanced with cost.
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